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ABSTRACT

Campylobacter is a worldwide foodborne pathogen, associated with human gastroenteritis. The 
efficient translocation of Campylobacter and its ability to secrete toxins into host cells are the 2 
key features of Campylobacter pathophysiology which trigger inflammation in intestinal cells and 
contribute to the development of gastrointestinal symptoms, particularly diarrhoea, in humans. 
The purpose of conducting this literature review is to summarise the current understanding 
of: i) the human immune responses involved in the elimination of Campylobacter infection and 
ii) the resistance potential in Campylobacter against these immune responses. This review has 
highlighted that the intestinal epithelial cells are the preliminary cells which sense Campylobacter 
cells by means of their cell-surface and cytosolic receptors, activate various receptors-
dependent signalling pathways, and recruit the innate immune cells to the site of inflammation. 
The innate immune system, adaptive immune system, and networking between these systems 
play a crucial role in bacterial clearance. Different cellular constituents of Campylobacter, mainly 
cell membrane lipooligosaccharides, capsule, and toxins, provide protection to Campylobacter 
against the human immune system mediated killing. This review has also identified gaps in 
knowledge, which are related to the activation of following during Campylobacter infection: i) 
cathelicidins, bactericidal permeability-increasing proteins, chemokines, and inflammasomes 
in intestinal epithelial cells; ii) siglec-7 receptors in dendritic cell; iii) acute phase proteins in 
serum; and iv) T-cell subsets in lymphoid nodules. This review evaluates the existing literature 
to improve the understanding of human immunity against Campylobacter infection and identify 
some of the knowledge gaps for future research.

Keywords: Campylobacter; Lipooligosaccharides; Guillain-Barré Syndrome; Inflammasomes; 
Toll-like receptors; Antigen-presenting cells

INTRODUCTION

Campylobacter is commensal in poultry, but pathogenic in humans (1,2). The annual estimated 
number for Campylobacter infection cases is 96 million worldwide (2). Campylobacter is not 
harmless even for chickens as it stimulates the innate and adaptive immune responses in 
almost all types of chicken breeds. However, the extent of harm posed by Campylobacter may vary 
among different breeds of chickens (3). The differential susceptibility to Campylobacter across 

Immune Netw. 2019 Dec;19(6):e38
https://doi.org/10.4110/in.2019.19.e38
pISSN 1598-2629·eISSN 2092-6685

Review Article

Received: Aug 20, 2019
Revised: Nov 17, 2019
Accepted: Nov 18, 2019

*Correspondence to
Amber Hameed
Division of Life Sciences, Waterside Campus, 
University of Northampton, University Drive, 
Northampton NN1 5PH, United Kingdom.
E-mail: amberhameed175@gmail.com

Copyright © 2019. The Korean Association of 
Immunologists
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Amber Hameed 
https://orcid.org/0000-0002-0526-158X

Conflict of Interest
The author declares no potential conflicts of 
interest. 

Abbreviations
AIDP, acute inflammatory demyelinating 
polyneuropathy; APC, Ag-presenting cell; 
ASC, apoptosis-associated speck-like protein 
containing a caspase recruitment domain; 
BPI, bactericidal permeability increasing; 
CadF, cadherin-fibronectin binding protein; 
CAP, cationic antimicrobial peptide; Fn, 
fibronectin; GBS, Guillain-Barré syndrome; 
GI, gastrointestinal; GROα, growth related 
oncogene alpha; hBD, human β-defensins; 

Amber Hameed  *

Division of Life Sciences, University of Northampton, Northampton NN1 5PH, UK

Human Immunity Against 
Campylobacter Infection

https://immunenetwork.org
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-0526-158X
https://orcid.org/0000-0002-0526-158X
https://orcid.org/0000-0002-0526-158X
http://crossmark.crossref.org/dialog/?doi=10.4110/in.2019.19.e38&domain=pdf&date_stamp=2019-12-02


IBS, Irritable bowel syndrome; IEC, intestinal 
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PRR, pathogen recognition receptor; RNS, 
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receptor-associated factor 6; TRAM, Toll/IL-1 
receptor-domain-containing adapter-inducing 
IFN-β-related adaptor molecule; TRIF, Toll/
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inducing IFN-β

different breeds of chicken can be associated to the variation in their diet and gut microbiota 
composition (4,5). Chickens become colonised with Campylobacter at the age of 2–3 wk. Due to 
a lack of a fully developed adaptive immune system at this age, maternal Abs, already passed 
from hens to chicks, provide protection against Campylobacter (6,7). Maternal Abs against the 
Campylobacter flagellar proteins, outer membrane proteins and lipooligosaccharides (LOS) were 
observed in new-born chicks (7). After developing an adaptive immune system at the age of 6–7 
wk, chickens produce Abs against Campylobacter cellular components, such as outer membrane 
proteins and flagellum (7,8). However, circulation of maternal Abs as well as development 
of adaptive immune B-cells play a limited role in the clearance of Campylobacter cells from the 
chicken intestines (6,9). It is proposed that Campylobacter avoids rapid clearance in the chicken 
intestine due to the adaptation to a novel colonisation mechanism, where it continues short-
term invasion of chicken intestinal cells followed by escape from these cells (10). Clearance 
of Campylobacter from the chicken intestines may take many weeks, causing its persistence in 
chickens beyond slaughter age. Therefore, a poultry flock contaminated with Campylobacter is 
considered as a major source of Campylobacter transmission to humans (9,11).

The gastrointestinal (GI) tract in humans structurally comprises of four cell layers: the mucosa, 
submucosa, muscularis externa, and serosa. The mucosa is the innermost layer which is further 
divided into the epithelium, lamina propria, and muscularis mucosae. The mucosal epithelium of 
the small intestine comprises of a single layer of intestinal epithelial cells (IECs), mucus secreting 
goblet cells, paneth cells, and M-cells. The epithelium forms villi or crypts (finger-like projections) 
which are covered by a highly viscous mucus layer (12). The Campylobacter adherence to the mucus 
layer as well as its invasion into the IECs and lamina propria occurs mainly due to its mucins (that 
are glycosylated proteins in the mucus layer) degrading enzymes, flagella, and adhesins (which 
primarily include Jejuni lipoprotein A, fibronectin [Fn], Fn-binding protein FlpA, cadherin-Fn 
binding protein [CadF], cell binding factor 1, and cell-surface glycans) (13-17). Following invasion 
into the host cells, Campylobacter reside into the LAMP-1 (late endosome marker) expressing 
Campylobacter-containing vacuoles (18,19). The adherence, invasion and intracellular survival 
facilitate the cellular translocation (endocytosis and exocytosis) of Campylobacter within the 
epithelial cells. Campylobacter translocation is coupled with the release of toxins in order to trigger 
the ion instability, cell apoptosis, and pore formation in host cells (20,21). The Campylobacter 
translocation and its potential to secrete toxins into host cells are the two main features of 
Campylobacter pathophysiology which enhance the inflammation and fluid secretion in intestinal 
cells and contribute to the development of infection in humans (16,20-22). Campylobacter infection 
in humans is characterised by an acute, self-limiting gastroenteritis which lasts for 5 to 7 days. 
The abdominal pain, watery or bloody diarrhoea, headache, fever, chills, and dysentery together 
with stools containing leukocytes and erythrocytes are the major signs of severe Campylobacter 
infection (23-26). Campylobacter infection can improve the progression of various persistent 
diseases including Guillain-Barré syndrome (GBS), Miller Fisher syndrome, Reiter's arthritis, 
and Irritable bowel syndrome (IBS) in humans. The LOS-outer core structures of Campylobacter 
are variable and mimic the structures of human neuronal gangliosides and for this reason, Abs 
produced against the LOS structural epitopes do not only bind to LOS structures, but also to 
human gangliosides. The cross-reactivity or non-specific binding of anti-LOS Abs with human 
neuronal gangliosides forms the basis of neural diseases specifically GBS development in 
humans (Fig. 1) (27-30).

The scope of this review is to summarise available data on human immune responses 
involved in the defense against Campylobacter and how Campylobacter cells oppose these 
immune responses during infection. This review explains the role of human immune system 
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in the elimination of Campylobacter infection by highlighting: i) induction of signalling 
pathways in intestinal mucosa for pathogen recognition; ii) influx of professional phagocytes 
into intestinal submucosa for bacterial clearance; iii) activation of adaptive immunity 
for persistent infection; iv) activation of serum proteins for persistent infection; and v) 
networking between human cells during Campylobacter infection.

INDUCTION OF SIGNALLING PATHWAYS IN INTESTINAL 
MUCOSA FOR PATHOGEN RECOGNITION
Campylobacter cells colonise the crypts in high numbers, rather than the intestinal lumen, due 
to the low concentration of oxygen and nutrients availability for maximal growth in crypts 
(17,31). The pathogen recognition receptors (PRRs) of IECs become activated to recognise 
the pathogen-associated molecular patterns (PAMPs) when pathogens develop interaction 
with IECs extracellularly or survive intracellularly after invasion. The signalling pathways 
downstream the PRRs produce inflammatory and anti-inflammatory cytokines to regulate 
the immune responses during infection (32-34). In addition to the activation of PRRs of 
IECs, increase in the number of mast cells and eosinophils has also been observed in lamina 
propria because they sense the Campylobacter cells as danger signals (35,36).
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Figure 1. An illustration of interactions of anti-LOS Abs with human neuronal cells, likely to cause GBS in humans 
post Campylobacter infection. 
Cross-reactivity of anti-LOS Abs occurs due to the mimicry between Campylobacter cell surface LOS core 
structures and human neuronal (node of ranvier) gangliosides and it develops a GBS subtype, AMAN. In some 
cases, anti-LOS Abs non-specifically bind to the Schwann cells to develop another type of GBS known as AIDP. 
AIDP, acute inflammatory demyelinating polyneuropathy; AMAN, acute motor axonal neuropathy.
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Stimulation of cell-surface receptors in IECs
TLRs are the cell membrane bound PRRs which recognise the PAMPs during Campylobacter 
infection and consequently, induce the secretion of different interleukins and chemokines 
from IECs (32). Different cellular constituents of Campylobacter such as lipoproteins (bind 
TLR-1/2/6), LOS (bind TLR4), DNA (bind TLR9), capsule, cell wall polysaccharides, flagella, 
and toxins can bind to TLRs in human IECs to activate them (37-45). The signalling pathway 
activates due to PAMPs binding to TLRs which recruits an adaptor protein, MyD88, to interact 
with IL-1 receptor-associated kinase complex and TNF receptor-associated factor 6 (TRAF6) 
(46,47). This interaction induces the mitogen activated protein kinase kinase kinase (MAP3K) 
which further stimulates the MAPK including ERK and p38 induction. These MAPK translocate 
to the nucleus, act as transcription factors, and regulate the transcription of NF-κB as well 
as synthesis of pro-inflammatory cytokines (IL-8 and TNFα) in IECs (37,41,48-51). The IECs 
TLRs (mainly TLR2) also involve the MyD88-independent signalling where they interact with 
adaptor proteins, Toll/IL-1 receptor (TIR)-domain-containing adapter-inducing interferon-β 
(TRIF) and TRIF-related adaptor molecule (TRAM), and activate the IFN regulatory factor 3 
(IRF-3) (52-54). IRF-3 accumulates in the nuclei and stimulates the synthesis of ILs (e.g. IL-1α 
and IL-6) via coordination with NF-κB (32,52). During infection with Campylobacter, IECs also 
secrete chemokines including growth related oncogene alpha (GROα), MIP-1, MCP-1, and 
IFN-γ-inducible protein 10 (IP-10). This is also known to occur by the regulation of NF-κB 
transcription (55-57); however, the role of specific TLRs in the induction of chemokines in IECs 
following infection with Campylobacter has not been yet investigated. Campylobacter jejuni (C. jejuni) 
can activate NF-κB independently of TLR signalling pathway (58), which might be linked to the 
chemokines production in Campylobacter infected IECs.

Stimulation of intracellular receptors in IECs
Campylobacter maintain their survival within the vacuoles (distinct from canonical endocytic 
vacuoles) inside of IECs (19). Direct invasion and subsequent intracellular survival of 
Campylobacter into IECs as well as the release of outer membrane vesicles (OMV) from 
extracellular Campylobacter cells cause delivery of the cellular constituents of Campylobacter 
into cytosol of host cells (18,59,60). The nucleotide-binding oligomerisation domain 
(NOD) are the intracellular PRRs in IECs which directly recognise the microbe-associated 
molecular patterns (MAMPs; Campylobacter toxins, flagella, muramyl dipeptides, and 
adhesins) of Campylobacter into cytosol and induce the release of antimicrobial peptides, 
particularly human β-defensins (hBD)-2 (61-64). The hBD-2 are bactericidal as they disrupt 
the Campylobacter cell wall integrity (65). In addition, NOD1 binding to Campylobacter 
MAMPs also promotes the secretion of IL-8 from human IECs (37,38,61) by activating the 
MAPK (19,51). The OMV enclosed LOS, toxins, and N-linked glycoproteins, after their 
delivery into host cells, can also activate MAPK, particularly p38, to induce the secretion 
of IL-8, IL-6, TNF-α, and hBD-3 from IECs (59). IL-8 subsequent to its release recruits the 
innate immune cells including neutrophils, macrophages, and dendritic cells at the site 
of infection (34,37,41,48,50,66). Inflammasome, a type of NOD-like receptor, is known to 
induce the pro-inflammatory cytokines (IL-1β and IL-18) in human cells (67). A recent study 
has demonstrated that inflammasome play a significant role in clearing the intracellular 
Campylobacter cells from human IECs (68), however, inflammasomes dependent specific 
mechanisms or signalling pathways involved in bacterial clearance are yet unknown.
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INFLUX OF PROFESSIONAL PHAGOCYTES INTO 
SUBMUCOSA FOR BACTERIAL CLEARANCE
The intestinal crypts and IECs undergo the inflammation and severe damage during 
Campylobacter infection. In response to the inflammation and damage, IECs secrete cytokines 
and chemokines, which further recruit the professional mononuclear phagocytes including 
macrophages, neutrophils, NK cells and dendritic cells into the intestinal submucosa. These 
immune cells infiltrate the submucosal lining, interact with each other through cytokines, 
and help in clearing the bacterial cells from epithelium (23,25,66,69). A complex network of 
cytokines, linking IECs-to-immune cells and immune cells-to-each other, is presented in Fig. 2 
together with key immune responses important for defense against Campylobacter.

Neutrophils
The IECs-derived IL-8 is a neutrophil chemotactic factor, which induces the influx of 
neutrophils into the intestinal submucosa and infiltration of these neutrophils to the site of 
inflammation. In Campylobacter, methionyl-tRNA formyltransferase (encoded by fmt gene) 
is involved in the production of n-formyl peptides. These Campylobacter n-formyl peptides 
along with a host cell enzyme, 12-lipoxygenase, direct the migration of neutrophils from 
the basolateral to apical surface of the epithelium (66). A recent study demonstrates that 
the secretion of IL-10 downstream of the PI3Kγ signalling pathway in IECs can also play 
an important role in the infiltration of neutrophils into intestinal crypts and submucosa 
(70). The accumulated neutrophils present CD11b (cell-surface markers), which is a sign of 
initiation of phagocytosis process (71). They phagocytose complement-opsonised bacteria 
more efficiently rather than the non-opsonised bacteria (72-74). They release toxic radicals 
or ROS (superoxide and hydrogen peroxide) for oxidative killing of bacteria and various 
inflammatory molecules including cationic antimicrobial peptides (CAPs), defensins, 
cathelicidins, bactericidal permeability increasing (BPI) protein (55 kDa), and leukotriene 
B4 (LTB4) for non-oxidative killing of bacteria (71,75,76). The production of ROS and 
inflammatory molecules from neutrophils damage IECs structurally and contribute to the 
abscesses formation and loss of function in crypts (71,77). This indicates that neutrophils 
are critical for the development of diarrhoea during Campylobacter infection. It is suggested 
that the non-invasion strains of Campylobacter can induce less concentration of IL-8 to further 
produce neutrophils and LTB4 in lesser amounts, which can lead to the development of non-
inflammatory diarrhoea in humans rather than the inflammatory diarrhoea (78).

Monocytes/macrophages
Human monocytes with a range of cell-surface markers (CD14, CD11a) can be found in the 
intestinal mucosa following infection with Campylobacter for phagocytosis of Campylobacter 
cells (50,79). Human macrophages (differentiated monocytes) are more important than 
the complement system for Campylobacter infection (79) and have ability to phagocytose 
the whole-bacterial cells, unlikely to neutrophils (72-74). Monocytes undergo apoptosis 
following infection with Campylobacter, however, macrophages rapidly kill Campylobacter 
cells subsequent to their internalisation (19,73,80,81). Campylobacter cells in coccal or 
degenerative form can be observed in macrophages after 4–8 hours of infection (72). Human 
macrophages generally possess cell membrane bound receptors (TLR and lectin receptors 
[LRs]) and cytosolic receptors (inflammasomes) (33,44,82), which become activated to 
recognise the PAMPs when Campylobacter cell develops interaction with a macrophage or 
survive intramacrophage subsequent to the phagocytosis (33,83). Campylobacter LOS, cell 
wall polysaccharides, lipoproteins, and N-linked glycosylated proteins have been reported 
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as ligands of macrophage TLR4, sialoadhesin (Sn; a type of LRs), and galactose-type lectin 
receptors (another type of LRs) (14,44,81,82,84,85). These cellular components detached 
from killed Campylobacter cells as well as viable cells of Campylobacter can bind to macrophage 
(specifically M1) receptors and induce TLR-MyD88 dependent signalling pathway in order 
to secrete the pro-inflammatory cytokines (IL-1α, TNF-α, pro-IL-1β, and IL-6) and proteins 
(such as NOD-like receptors with pyrin domain-containing 3 [NLRP3] proteins). M1-derived 
IL-6 helps in the activation of complement system while other cytokines recruit more innate 
immune cells to the site of inflammation. The NLRP3 proteins, after release into cytosol, 
combine with apoptosis-associated speck-like protein containing a caspase recruitment 
domain (ASC) and pro-caspase1 to assemble NLRP3-inflammasomes (protein complexes). 
Upon a second signal, NLRP3-inflammasomes activate caspase-1 to catalyse the 31 kDa 
pro-IL-1β (already located into cytosol) into mature, biologically functional 17 kDa IL-1β. 
The cleaved IL-1β is then secreted outside the cell to mediate the inflammatory responses 
(14,33,44,50,81,85). Further, IFN-γ (which is released from IECs and T-cells during actual 
infection) leads to the production of nitric oxide synthase 2 and reactive nitrogen species 
(RNS) in M1 macrophages, which are potent and effective towards killing of Campylobacter 
cells (34,86,87). During Helicobacter pylori infection, M2 macrophages and cytokines (IL-10, 
IL-12, and TGFβ) production from these M2 cells can be stimulated by T-cells derived anti-
inflammatory cytokines (such as IL-4, IL-10, and IL-13) in order to suppress further activation 
of immune cells and inflammation (88,89). In the same way, M2 macrophage polarisation 
can play its role in immunity and inflammation suppression during Campylobacter infection, 
however, it needs to be confirmed by further research.

NK cells
NK cells could be a source of cytokines, such as IFN-γ, but its association to Campylobacter 
cells has not been yet investigated. Siglec 7 present on the cell surface of NK cells could be 
potential receptors involved in the development of pathogen-host cell interaction (74).

Dendritic cells
Dendritic cells reside under IECs and can extend themselves between IECs to sample the 
lumen, therefore, they are well positioned to interact with Campylobacter cells present inside of 
intestinal lumen and submucosa (90,91). Dendritic cells form an early line of defense within 
the submucosa against the invasive Campylobacter strains, as well as, in the intestinal lumen 
against the non-invasive Campylobacter strains (12,40,92). Dendritic cells readily internalise 
the Campylobacter cells, express cell surface co-stimulatory molecules (CD14, CD40, CD80, 
and CD86), and become mature (93,94). TLRs in mature dendritic cells (Ag-presenting cells; 
APCs) can become activated as a consequence of their internalisation of whole-bacterial cell 
or their interaction with bacterial cellular components. The MyD88-dependent signalling 
pathway downstream the TLR2 and TLR4 produce different pro-inflammatory cytokines 
including IL-1, IL-6, IL-8, IL-10, IL-12, IFN-γ, and TNF-α, while, the MyD88-independent 
signalling via TLR4-TRIF axis contributes to the production of IFN-β in mature dendritic 
cells (40,87,95). It is proposed that C. jejuni cell-surface sialylated LOS structures intensify the 
production of IFN-β and TNF-α in dendritic cells which further contribute to the proliferation 
of human mucosal B-cells in a T-cell independent manner. It may link the C. jejuni sialylated 
LOS structures with the initiation of B-cells mediated autoimmunity in GBS (93,94). Other 
cell membrane bound receptors, siglec-7, of mature dendritic cells can also interact with 
Campylobacter LOS to increase the cytokines production and uptake of Campylobacter cells into 
dendritic cells (74), but the mechanisms involved downstream of the siglec-7 activation in 
mature dendritic cells are not yet known.
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ACTIVATION OF ADAPTIVE IMMUNITY FOR PERSISTENT 
INFECTION
The adaptive immunity develops typically to eradicate the persistent Campylobacter infection 
as well as to reduce the post-infection severe complications (96). It is supported by the 
presence of high amount of intraepithelial T-lymphocytes in patients with post-dysenteric 
IBS, acute inflammatory demyelinating polyneuropathy (AIDP), and colorectal cancer 
(97-99). The APCs after pathogen recognition migrate to the lymphoid nodules (Peyer's 
patches) where they present Ags via cell-surface molecules (MHC-I and MHC-II) to trigger 
the polarisation of naïve T-cells to CD8+ cytotoxic T (Tc) cells and CD4+ Th cells. Further, 
Campylobacter LOS structures bind with cell-surface siglec-7 receptors of APCs to mediate 
the differentiation of Th cells into the Th1 and Th2 cells (40,87). It has been reported that 
APC-expressed siglec-7 receptors interaction with α2, 8-linked sialylated LOS induces 
the Th1 polarisation, whereas, its interaction with α2, 3-linked sialic acid induces a Th2 
development (87). Moreover, cytokines (IL-12 and IL-10) from APCs also stimulate the 
proliferation of Th1 cells and secretion of IFN-γ, TNF-α, IL-22, and IL-17 from these T-cells. 
Th1 cells activate more Tc cells and macrophages to enhance immunity against the invading 
or intracellular microbes, whereas, Th2 mediate class switching in B-cells to enhance 
immunity against the extracellular microbes. The cytokines from dendritic cells do not only 
induce the activation and proliferation of B-cells in a T-cell dependent manner, but also 
in T-cell independent manner. Hence, dendritic cells act as a bridge between innate and 
adaptive immune systems (40,87,100,101,102). Apart from Th1 and Th2 cells, frequency of 
other types of CD4+ Th cells including Th17, Th22, and Treg and their associated cytokines 
(IL-17, IL-18, IL-22, and IL-23) has also been observed elevated in patients serum following 
infection with Campylobacter (103,104). Subsequently, B-cells after activation produce Abs 
against the Campylobacter toxins, flagella, LOS, CadF, and major outer membrane proteins, 
and secrete them in human serum (7,29,105,106). In the acute phase of infection (7 days 
post-infection), the level of serum Abs, IgA, and IgM, increase in serum (107). In the 
convalescent phase of infection (1 wk to 2 months), IgG also begins to circulate in the blood 
(108,109). These serum Abs are detectable in the serum and faeces of Campylobacter infected 
patients (110). IgA in up to 20 days and IgM in 2 months attain their normal levels back. 
In contrast, IgG present in serum as well as serum IgG expelled into saliva, remain extant 
inside the host for long time period (1 year) and provide protection against subsequent 
Campylobacter infection (108,109).

The LOS-outer core structures (GM1, GM2, GM3, GD3, or GD1-like) present on the cell-
surface of Campylobacter mimic the GM1, GM2, GM3, GD3, and GD1 containing human 
neuronal gangliosides. Campylobacter possess phase variation in LOS biosynthesis genes and 
therefore, can switch the LOS-outer core structures from one form to other (GM1⇔GM2; 
GM2⇔GM3; GD1⇔GD3). The LOS-outer core structures' mimicry with human neuronal 
gangliosides and their switching ability help Campylobacter to escape from the host immune 
system (30,111,112). It has been identified that Campylobacter toxins arrest human T-cells in 
the G2 phase of cell cycle and halt their development (113). The representation of mimics 
of human neuronal gangliosides on cell-surface, ability to vary these mimics, and toxins 
mediated inhibition of T-cells indicate that Campylobacter has evolved strategies to escape from 
the host adaptive immunity.
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ACTIVATION OF SERUM PROTEINS FOR PERSISTENT 
INFECTION
Bacteria opsonised by the professional phagocytes (macrophages, neutrophils, dendritic 
cells) can enter into blood stream and can be circulated back to neutrophils as neutrophils 
mediate killing of opsonised bacteria more efficiently than the non-opsonised ones. Defense 
system in humans involving innate and adaptive immune responses limit the infection to 
the site of inflammation and does not allow live microbes to enter into bloodstream (72,73). 
However, during Campylobacter infection, bacteremia can be developed in those patients 
which are immunocompromised or have persistent post-infection complications. The acute 
phase proteins particularly C-reactive proteins have been found elevated in GBS patients 
and patients with weak immune system (such as Campylobacter infected children), which 
are further likely to activate the complement system (114,115). Serum proteins involved in 
both classical and alternative complement pathways are bactericidal and can facilitate direct 
killing of Campylobacter. Campylobacter capsule can provide protection to Campylobacter against 
killing mediated by serum or complement proteins (76,116-118). Human C3b proteins were 
found unable to bind to the encapsulated Campylobacter fetus previously, supporting the role of 
capsule S-layer proteins in the development of interaction with human serum proteins (119).

NETWORKING BETWEEN HUMAN CELLS DURING 
CAMPYLOBACTER INFECTION
During Campylobacter infection, networking between IECs and immune cells as well as 
among different immune cells occurs with the help of cytokines (Fig. 2). In Fig. 2, it has 
been demonstrated that: i) the Campylobacter infected IECs release IL-8 and IL-10 to recruit 
neutrophils into lamina propria and submucosa; ii) different cytokines including IL-10, 
IL-12, TNF-α, and IFN-β from dendritic cells activate B-cells in both T-cell dependent 
and independent manners; iii) the IFN-γ secretion from Th1 and Tc cells stimulate more 
macrophages during infection; and iv) the production of IL-6 and Abs respectively from 
macrophages and B-cells as well as a high level of acute-phase proteins in serum contribute 
to the activation of complement system (40,66,70,72,86,87,94,105).

The GI tract in humans express hBD-1 constitutively, while, the production of other 
defensins (hBD-2 and hBD-3) involves cell receptors mediated signalling pathways, NF-κB 
transcription, and cytokines secretion (65). During Campylobacter infection, hBD-1 expression 
remains unchanged. However, expression of other defensins increases due to stimulation of 
IECs membrane bound receptors (TLR) and intracellular receptors (NOD1) following their 
interaction with Campylobacter cells or cellular constituents (61,65). The level of β-defensins in 
IECs further rises through networking between different immune cells (dendritic cells, CD14+ 
macrophages, Tc, and NK cells) and IECs (Fig. 3) (100,101).

GAPS IN KNOWLEDGE FOR FUTURE RESEARCH

This review identifies that substantial gaps are present in that knowledge which relates the 
human protective immunity to Campylobacter infection. These knowledge gaps have not so 
far been investigated and can be filled by future research. The association of IECs-derived 
cathelicidins and bactericidal permeability-increasing proteins to Campylobacter infection has 
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not been established to date (12). The IECs cell receptors and signalling pathways, important 
for the induction of chemokines during Campylobacter infection, have not been yet identified. 
The inflammasomes activation in IECs in response to Campylobacter infection as well as their 
functions have been reported previously (68), but further investigations are required to 
identify the stimulatory factors of inflammasomes and mechanisms involved subsequent 
to their stimulation. A link between the Campylobacter OMV and inflammasome induction 
inside of IECs might be present and can be focused in future studies. Similarly, Campylobacter 
OMV might also have implications for other NOD-like intracellular receptors (e.g. NOD1). In 
addition, the activation of siglec-7 receptors in dendritic cell, acute phase proteins in serum, 
and T-cell subsets in lymphoid nodules during Campylobacter infection and their related host 
responses are yet to be explored in detail. Moreover, a possible connection present between 
many acute phase proteins (alpha 1-antitrypsin, mannose-binding lactin, and serum amuloid 
A) and Campylobacter infection has never been investigated. An outer membrane protein of C. 
jejuni, CadF, facilitates interaction between the host cell fibronectin and Campylobacter cells 
(15), which might be a target of serum amyloid A (12). This prediction requires verification 
with further research.
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