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Abstract: The magnetorheological response for magnetic elastomers containing carbonyl iron (CI)
particles with a diameter of 6.7 µm coated with poly(methyl methacrylate) (PMMA) was investigated
to estimate the diameter of secondary particles from the amplitude of magnetorheological response.
Fourier-transformed infrared spectroscopy revealed that the CI particles were coated with PMMA,
and the thickness of the PMMA layer was determined to be 71 nm by density measurement. The
change in the storage modulus for magnetic elastomers decreased by coating and it was scaled by
the number density of CI particles as ∆G~N2.8. The diameter of secondary particle of CI particles
coated with PMMA was calculated to be 8.4 µm. SEM images revealed that the CI particles coated
with PMMA aggregated in the polyurethane matrix.

Keywords: soft material; stimuli-responsive gel; magnetic elastomer

1. Introduction

Magnetic elastomers are stimuli-responsive, soft materials [1–5], and their physi-
cal properties alter in response to magnetic fields. The magnetic response for a mag-
netic elastomer is in general drastic; therefore, the materials attract considerable atten-
tion as actuators in the next generation [6–10]. A magnetic elastomer consists of poly-
meric matrices such as polyurethane, and magnetic particles nanometers or microme-
ters in diameter. When a magnetic field is applied to magnetic elastomer, the elastic-
ity increases due to the chain structure formation (restructuring) of magnetic particles,
which is called the magnetorheological (MR) effect. We have investigated so far the
methodology for an efficient MR effect by weak magnetic field to use magnetic soft
materials practically [11–15].

In general, it is necessary to obtain an efficient MR effect such that magnetic particles
are highly dispersed in the polymer matrix [16–19]. That is because that the MR amplitude
is reduced by the formation of secondary particles of magnetic particles. Hence, avoiding
the occurrence of secondary particles leads to an increase in the MR amplitude. There is
a variety of methods to determine the diameter of secondary particles in the polymeric
matrix—e.g., optical microscopy, confocal laser microscopy, particle-size analysis, etc.
However, only few methods, such as X-ray CT and particle size analysis by ultrasound,
can be used for magnetic elastomers, since they are not transparent optically. Ikeda et al.
proposed a simple method to determine the diameter of secondary particles of magnetic
particles in magnetic elastomers [20]. The change in storage modulus exhibited a power
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dependency against the number of magnetic particles, which was nearly independent of the
magnetic particles. The change in storage modulus was successfully scaled by the reduced
number of magnetic particles using the diameter of secondary particles. Microphotographs
revealed that the diameter of secondary particles was similar to that determined from the
reduced number of magnetic particles.

In this study, the relationship between the change in storage modulus and the reduced
number of magnetic particles was examined using carbonyl iron particles with and without
a coating of poly(methyl metacrylate) (PMMA). Through the coating, the chemical affinity
between carbonyl iron particles and polyurethane matrix is changed. Choi et al. has been
widely and systematically investigating the effect of coating on the magnetic response
for magnetic soft materials, e.g., PMMA/carbonyl iron and PS/carbonyl iron [21–25]. It
was found that the synthesized core–shell structured CI particles possess better dispersion
stability in suspending oil than bare CI particle suspension, due to the density reduction
of the particles [22]. This report tells us that the dispersibility of CI particles coated with
PMMA in a matrix of polyurethane decreases compared to bare CI particles. Since the
coating layer is very thin, one can easily find the differences in the particle dispersibility
and MR response for these particles. Motivated by this, we prepared magnetic elastomers
embedded with CI particles having thin layers of PMMA and investigated the effect of
coating on the magnetorheological response.

2. Experimental procedures
2.1. Synthesis of Magnetic Elastomers and Gels

Polypropylene glycols (P2000, G3000B, Adeka Co., Tokyo, Japan) with molecular
weights of Mw = 2000 and 3000 were used for the matrix of magnetic elastomers. Tolyrene
diisocyanate (Wako Pure Chemical Industries. Ltd., Osaka, Japan) and dioctyl phthalate
(DOP, Wako Pure Chemical Industries. Ltd., Osaka, Japan) were used for a crosslinker and
plasticizer, respectively. Carbonyl iron with a median diameter of 6.7 µm (CS Grade BASF
SE., Ludwigshafen am Rhein, Germany) was used for magnetic particles. The saturation
magnetization of CI particles was 190 emu/g measured by SQUID magnetometer (MPMS,
Quantum Design Inc., San Diego, CA, USA).

The PMMA (Wako Pure Chemical Industries. Ltd., Osaka, Japan) coating on the CI
surface was carried out by the following procedure. A 10 wt% of PMMA solution was
prepared by dissolving PMMA in tetrahydrofuran (THF). CI particles were dispersed in
THF (Wako Pure Chemical Industries. Ltd., Osaka, Japan); then the dispersion was poured
in the PMMA solution with stirring. The powder of PMMA/CI was obtained by vacuum
filtration and the residue was dried at 50 ◦C for 12 hours.

Magnetic elastomers were synthesized using a prepolymer method. Polypropylene
glycols were crosslinked with tolyrene diisocyanate. The molar ratio of –NCO to –OH
group for the prepolymer was constant at 2.01 (=[NCO]/[OH]). CI particles were mixed
with prepolymer, linear polymer, plasticizer and catalysis. The mixed liquid was poured
into a silicon mold and cured for 30 min at 100 ◦C. The weight concentration of CI particles
was varied up to 85 wt%, and the weight concentration of DOP to the matrix without CI
particles was fixed at 60 wt%. The density of CI particles was 7.57 g/cm3.

A pre-gel solution of the magnetic hydrogel was prepared by mixing 1 wt% car-
rageenan (Mw = 857 kDa, CS-530, San-Ei Gen F.F.I., Osaka, Japan) aqueous solution and
magnetic particles at 100 ◦C using a vortex mixer for approximately 1 min. The weight
concentration of magnetic particles was kept at 70 wt%.

2.2. Dynamic Viscoelastic Measurement

Dynamic viscoelastic measurement was carried out for magnetic elastomers using a
rheometer (MCR301, Anton Paar Pty. Ltd., Graz, Austria) at 20 ◦C. The strain was varied
from 10−5 to 1 and the frequency was kept at 1 Hz. The sample was a disk 20 mm in
diameter and 1.5 mm in thickness. The normal force initially applied to the magnetic
elastomer was approximately 0.3 N.
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2.3. SEM Observation

The shape of CI particles coated with PMMA and the dispersibility of CI particles in
the magnetic elastomer were observed using scanning electron microscopy (SEM, JCM-
6000 Neoscope JEOL Ltd. Tokyo, Japan) with an accelerating voltage of 15 kV without
Au coating. SEM photographs for CI particles with and without coatings are presented in
Figure 1a,b, respectively.

Figure 1. SEM photographs for CI particles (a) without and (b) with PMMA coating. (c) FT-IR spectra
for CI particles without and with PMMA coating. (d) Bulk density of magnetic elastomers containing
CI and PMMA/CI particles with various volume fractions of CI particles.

2.4. FT-IR Spectroscopy

Fourier-transformed infrared (FT-IR) spectra for CI particles with and without coatings
were measured in a wavenumber range of 600–4000 cm−1 at room temperature, using a
FT-IR spectrometer (Spectrum One spectrometer, Perkin-Elmer, Waltham, MA, USA) with
diamond attenuated total reflection (ATR) accessories. The IR spectra are presented in
Figure 1c.

2.5. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was performed on a thermogravimetric analyzer
(STA 7200, Hitachi Hi-Tech. Sci. Co., Tokyo, Japan). The samples were preheated to
eliminate the moisture at 100 ◦C for 1 h before TGA. TGA was measured under a nitro-
gen atmosphere in the temperature range of 25–500 ◦C, and the heating rate was set to
10 ◦C/min with a 10 min holding time.

3. Results and Discussion

Figure 1d exhibits the relationships between bulk density and the weight fraction for
CI particles with and without coatings. The bulk density ρbulk increased with the weight
fraction of CI particles satisfying the following equation,

1
ρbulk

=
∅p

ρp
+

1−∅p

ρm
(1)

where the φp represents the volume fraction of CI particles and the ρp and ρm are the
densities of polymer matrix and CI particles, respectively. The experimental data of ρbulk
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were fitted by the above equation using a value of ρp = 1.060 g/cm3. The values of ρm before
and after coating were determined to be 7.700 and 7.325 g/cm3, respectively. The volume
fraction of PMMA φPMMA for the CI particle with PMMA coating was calculated to be
0.0576 using a value of ρPMMA = 1.188 g/cm3. The result of TGA revealed that a decrease in
weight of 0.9898% was observed at 450 ◦C for PMMA/CI particles; meanwhile, no weight
change was observed for CI particles at temperatures below 500.0 ◦C. The φPMMA for the
CI particles with PMMA coatings was calculated to be 0.060, which coincided with the data
obtained from the density measurement. The thickness of PMMA layer surrounding a CI
particle δr can be estimated by the following equation.

φPMMA = 1−
(

r
r + δr

)3
(2)

where φPMMA is the volume fraction of PMMA and r is the radius of primary particle of CI
(= 3.35 µm). The thickness of PMMA layer was calculated to be 71 nm, which corresponds
to 1.1% of the diameter of primary particle. Figure 1a,b shows the SEM photographs for
CI particles without and with PMMA coatings. Figure 1b reveals that the CI particle was
coated with PMMA while keeping its spherical shape. Figure 1c exhibits the IR spectra for
CI particles without and with coatings. The spectrum with coating showed the clear peaks
related to the ester groups of PMMA at wavenumbers of 1148 (C–O–C), 1236 (C–C–O) and
1731 (C=O stretching) cm−1; and a peak of main-chain alkyls at 1432 cm−1. The peaks
were relatively weak; however, the spectra strongly indicate that PMMA was coated on CI
particles by self-adhesion. Similarly to the previous literature [26], it can be considered that
hydrogen bonding occurs between PMMA ester groups of –O– and C=O with CI peripheral
OH groups, as schematically illustrated in the inset of Figure 1c.

Figure 2a–d demonstrate the strain dependence of storage modulus at 0 mT and
500 mT for magnetic elastomers without and with coatings. At 0 mT, the storage modulus
for magnetic elastomers was almost independent of the strain, suggesting that an apparent
particle network of CI particles is not formed in the elastomer, which coincides with our
previous studies [16,17]. At 500 mT, the storage modulus at low strains was increased
by the magnetic field, which is a response typically observed for magnetorheological
elastomers or gels. At high strains, the increase in the storage modulus was also seen;
however, the increment in the modulus was small compared to that at low strains, which is
also typical behavior of magnetorheological elastomers. It is worth mentioning that the
linear viscoelastic regime for magnetic elastomers with PMMA/CI was extended to high
strains. For example, the onset strain of nonlinear viscoelasticity at 500 mT for magnetic
elastomers with φ = 0.426 was approximately 5 × 10−4 for PMMA/CI and 2 × 10−4 for CI
particles, respectively. This strongly indicates that the diameter of CI particle increased by
the coating of PMMA.

Figure 3 depicts the storage modulus for magnetic elastomers as a function of the
volume fraction of magnetic particles for magnetic elastomers with and without PMMA
coatings. The storage modulus at 0 mT for magnetic elastomers without coatings obeyed
the following Guth–Gold equation [27]:

G′ = G′0
(

1 + 2.5φ + 14.1φ2
)

(3)

where G0 and φ are the storage modulus for a polyurethane elastomer without CI particles
and the volume fraction of CI particles, respectively. The storage modulus for magnetic
elastomers with coatings was slightly higher than that for magnetic elastomers without
coatings, suggesting the occurrence of the aggregation of CI particles. At 500 mT, the
storage modulus for magnetic elastomers without coatings exceeded 1 MPa, indicating
that CI particles form a well-developed chain structure in the polyurethane network, as
in [28–30]. Meanwhile, for magnetic elastomers with coatings, it significantly leveled off
(1/2 of without coating). This strongly indicates that the number of chains of CI particles
decreased by the coating of PMMA.
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Figure 2. Strain dependence of storage modulus at (a, c) 0 mT and (b, d) 500 mT for magnetic
elastomers containing CI particles without and with PMMA coatings: (a, b) CI, (c, d) PMMA/CI.

Figure 3. Relationship between storage modulus and the volume fraction of CI particles for magnetic
elastomers containing CI particles without and with PMMA coatings. The solid line represents the
Guth–Gold equation.

Figure 4 exhibits the relationship between the amplitude of Payne effect and the
volume fraction of CI particles for magnetic elastomers without and with PMMA coatings.
The ratio of storage moduli at high and low strains G’(γ = 1)/G’(γ = 10−5), which shows
the amplitude of Payne effect, was calculated using the values of storage moduli at strains
of γ = 1 and 10−5. At 0 mT, the values of the ratio for CI particles with coatings were
similar to those with coatings at φ < 0.07, suggesting no clear difference in the particle
dispersibility for these particles. Meanwhile, at φ > 0.17, the values of the ratio for CI
particles with coatings were clearly lower than those without coatings, indicating the
occurrence of the secondary particles of CI. Similarly, at 500 mT, the values of the ratio for
CI particles without coatings were lower than those with coatings at φ > 0.17. This strongly
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indicates that CI particles without coatings have many contacts between the particles in
the chain structure, compared to CI particles with coatings.

Figure 4. Relationship between the ratios between storage moduli at high and low strains G’
(γ = 1)/G’(γ = 10−5) for magnetic elastomers and the volume fractions of CI particles without
and with PMMA coatings.

Figure 5 shows the SEM photographs for magnetic elastomers containing CI par-
ticles without and with PMMA coatings. CI particles without coatings were randomly
dispersed in a matrix of polyurethane as primary particles, which agrees with our previous
reports [16,17]. Most of these photographs showed that CI particles coated with PMMA
aggregated and formed secondary particles in the matrix.

Figure 5. SEM photographs for magnetic elastomers containing CI particles (a–c, A–C) without and (d–f, D–F) with PMMA
coatings. Magnification (a–f): ×400, (A–F): ×1000.

Figure 6a demonstrates the relationship between the change in storage modulus and
the number density of CI particles for magnetic elastomers without and with PMMA
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coatings. The number density of CI particles divided by the sample volume N/V was
calculated from the following equation.

N
V

=
∅

4
3 π

(
Dp
2

)3 (4)

where φ is the volume fraction of CI particles and Dp is the diameter of primary particle
(= 6.7 µm). The slopes for CI particles without and with PMMA coatings were similar,
indicating that the ∆G’ can be scaled by the number density of CI particles.

Figure 6. Changes in storage modulus due to magnetic field as functions of (a) number density of CI particles and (b) reduced
number density of CI particles for magnetic elastomers containing CI particles without and with PMMA coatings.

Similarly to our previous study [20], the diameter of secondary particles was deter-
mined using the reduced number density of CI particles. Figure 6b demonstrates the
relationship between the change in storage modulus and the reduced number density of
CI particles for magnetic elastomers without and with PMMA coatings. The dominant
parameter of the amplitude of MR effect is the reduced number density of CI particles.
The reduced number density of CI particles was calculated from Equation (4) using the
diameter of secondary particles Ds instead of Dp. The ∆G’ for CI particles with and without
coatings was successfully scaled as ∆G’~Nred

2.8 with a correlation coefficient of 0.980, which
is in good agreement with our previous analysis [20]. We hypothesized that the diameter
of CI particle equals the median diameter of primary particle (= 6.7 µm), since the SEM
photographs showed high dispersibility of CI particles. Thus, we obtained the diameter
of secondary particles of CI with coatings as 8.4 µm. The exponent on Nred for magnetic
hydrogels consisting of carrageenan and CI particles was 3.2, which is close to the value
obtained here.

Figure 7 demonstrates the photographs representing the time-deterioration of mag-
netic hydrogels containing CI particles with and without PMMA coatings. As seen in
Figure 7a, the appearance of the magnetic hydrogel containing PMMA/CI particles was the
same as it was immediately after the synthesis, indicating no clear deterioration occurred
two weeks after the synthesis. In Figure 7b, rust due to the oxidation of CI particles can
be clearly observed. It can be considered that the surfaces of CI particles were uniformly
coated by PMMA, as described in Figure 1.
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Figure 7. Photographs showing the time-deterioration of CI particles (a) with and (b) without PMMA
coatings for magnetic hydrogels stored in a room temperature for 2 weeks.

4. Conclusions

The effect of PMMA coating on the magnetorheological response for magnetic elas-
tomers was investigated. The change in the storage modulus due to a magnetic field
decreased thanks to the coating, and it was scaled by the reduced number density of mag-
netic particles as ∆G~Nred

2.8. The diameter of secondary particles of carbonyl iron coated
with PMMA was calculated to be 8.4 µm, which is larger than that of primary particle
(= 6.7 µm). SEM images, the over-deviation from Guth–Gold formula and the amplitude
of Payne effect revealed that the magnetic particles coated with PMMA aggregated in
the polyurethane matrix. We believe that this method would be useful to estimate the
diameters of secondary particles in magnetic elastomers.
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