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ABSTRACT

The human brain is the most complex organ con-
sisting of billions of neuronal and non-neuronal cells
that are organized into distinct anatomical and func-
tional regions. Elucidating the cellular and transcrip-
tome architecture underlying the brain is crucial for
understanding brain functions and brain disorders.
Thanks to the single-cell RNA sequencing technolo-
gies, it is becoming possible to dissect the cellular
compositions of the brain. Although great effort has
been made to explore the transcriptome architecture
of the human brain, a comprehensive database with
dynamic cellular compositions and molecular char-
acteristics of the human brain during the lifespan is
still not available. Here, we present STAB (a Spatio-
Temporal cell Atlas of the human Brain), a database
consists of single-cell transcriptomes across multi-
ple brain regions and developmental periods. Right
now, STAB contains single-cell gene expression pro-
filing of 42 cell subtypes across 20 brain regions and
11 developmental periods. With STAB, the landscape
of cell types and their regional heterogeneity and
temporal dynamics across the human brain can be
clearly seen, which can help to understand both the
development of the normal human brain and the etiol-
ogy of neuropsychiatric disorders. STAB is available
at http://stab.comp-sysbio.org.

INTRODUCTION

The brain is functionally divided into distinct regions that
are composed of diverse molecularly defined cell types (1),
where different regions are found to have specific cellular
compositions (2,3). It has also been found that through-
out the lifespan, the brain demonstrates dynamic cellular

compositions and transcriptomic states (4–7). For example,
during the development of human neocortex, the inter-area
and inter-stage differentially expressed genes exhibit hour-
glass and twin-peak patterns, respectively (7,8). The abnor-
mal transcriptional regulations within certain cells or cellu-
lar compositions have been implicated in neuropsychiatric
diseases (9–11). For example, genes in upper layer excitatory
neurons and microglia are recurrently affected in autism
(12), and the ratio between excitation and inhibition neu-
rons is increased as well (10,13). Therefore, the spatiotem-
poral landscape of cellular compositions as well as the un-
derlying transcriptional regulations across the brain devel-
opment will facilitate the understanding of brain functions
and cellular mechanisms that underlie brain diseases (14).

Recently, with the advance in single-cell RNA sequencing
(scRNA-seq) (15–19), it is becoming possible to explore the
cellular compositions and characterize the gene expression
dynamics of the human brain at single-cell resolution (3,20–
25). For instance, Darmanis et al. identified major cell types
of the human brain and characterized subtypes of neu-
ronal cells, and observed dynamic transcriptomic changes
between fetal and adult neurons (26). Lake et al. performed
single-nucleus sequencing on cells from six brain areas of
an adult human, and defined neuronal subtypes and found
different cellular compositions within distinct regions (3).
Accordingly, several public scRNA-seq databases have been
constructed for the brain. For example, Polioudakis et al.
have built a single-cell catalog of cell types for the mid-
gestation human neocortex (14). The Allen Brain Cell Types
Database contains single-nucleus sequencing data for mid-
dle temporal gyrus (MTG), anterior cingulate cortex (ACC)
and primary visual cortex (V1C) of the adult human brain
from 24 to 66 years (27). Despite those efforts for dissecting
the cellular compositions of the human brain, most studies
only focus on certain brain regions at specific stages dur-
ing the lifespan (28). Considering the dynamic procedure of
brain development and the heterogeneity of brain regions,
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a comprehensive spatio-temporal cell atlas of the human
brain is highly demanded, which is important for better un-
derstanding the dynamic cellular compositions and molec-
ular characteristics of the human brain during the lifespan.

Here, we present STAB, a Spatio-Temporal cell Atlas of
the human Brain. By collecting single-cell transcriptome
data from publicly available human scRNA-seq datasets
and performing analyses with a unified protocol, STAB de-
fines 42 cell subtypes across 20 brain regions and 11 devel-
opmental periods. With a user-friendly interface of STAB,
the users could easily explore the cell subtype distribu-
tions across brain regions, the dynamic cellular composi-
tions with development and the gene expression profiling in
each cell subtype. The associations among certain genes, cell
subtypes and brain disorders are also presented in STAB.
This cell atlas presents a comprehensive cellular landscape
of the human brain and provides insights into regional cel-
lular heterogeneity and transcriptome dynamics along with
development as well as cellular mechanisms underlying neu-
ropsychiatric diseases.

MATERIALS AND METHODS

Data collection

We collected publicly available human scRNA-seq data as
well as their metadata by searching PubMed and pub-
lic databases, such as Gene Expression Omnibus (GEO)
(29,30), Single Cell Portal of Broad Institute (https://
singlecell.broadinstitute.org/single cell) and scRNASeqDB
(31). The single-cell or single-nucleus RNA sequencing
datasets were retrieved with the following keywords: (i)
scRNA, scRNA-seq, single-cell RNA seq, single-cell tran-
scriptome and single-nucleus seq, in combination with (ii)
brain, neural system and the name of specific brain re-
gions. The datasets were further required to be generated
from normal brain tissues without considering cell lines or
brain organoids. As a result, 154 938 cells of 13 scRNA-seq
datasets (4,7,21–23,26,27,32–36) were considered as shown
in Table 1. To investigate the dynamics of brain cellular
compositions and gene expression from embryonic to ag-
ing, we further assigned samples to distinct developmental
periods (Supplementary Table S1) as described by Kang et
al. (6). As a result, 20 human brain regions and 11 develop-
mental periods (Supplementary Figure S1) were considered
in STAB.

Processing of scRNA-seq datasets

To integrate the 13 scRNA-seq datasets collected above and
remove batch effects of multiple datasets, the R package
Seurat (v3.0.1) was employed here (37). In each dataset, we
first removed cells without information about brain regions
or developmental periods. To remove low-quality cells,
empty droplets, cell doublets and multiplets, we checked the
number of unique genes detected in each cell (Supplemen-
tary Figure S2) and discarded those cells that have extremely
higher or lower unique gene counts (details can be found
in Supplementary Table S2). For each gene in a cell, its ex-
pression level was normalized and defined as the ratio be-
tween its counts and the total counts of genes expressed in
the cell, which was then multiplied by a scale factor (10 000

by default) and log-transformed. Given a dataset, the top
2000 genes with the highest expression variance across cells
were determined for downstream analysis. Then, the an-
chors representing pairwise cell correspondences between
single cells across datasets were identified, which enabled us
to transform distinct datasets into a shared space and con-
struct a harmoniously integrated scRNA-seq dataset.

Definition of cell subtypes

For each cell of the integrated scRNA-seq dataset, the ex-
pression level of highly variable genes in the cell was scaled
along each gene, and principal component analysis (PCA)
was then used for dimensionality reduction. Subsequently,
the cells were grouped into 56 clusters with ‘FindCluster’
function using the first 30 PCs with a resolution of 2.

With the utilization of classical marker genes (i.e. SOX2,
SLC17A7, GAD1, MBP, PCDH15, APBB1IP, AQP4,
FLT1 and PDGFRB) (21,38), the 56 clusters were first
assigned to major cell types, including neural progenitor
cells (NPC), excitatory neurons (ExN), inhibitory neurons
(InN), oligodendrocytes (Olig), oligodendrocyte progenitor
cells (OPC), microglia (Micro), astrocytes (Astro), endothe-
lial cells (Endo) and pericytes (Perc) (Supplementary Fig-
ure S3A and S3B). In particular, the clusters with high ex-
pression of both neuronal and non-neuronal marker genes
were excluded from consideration. Compared with the cell
type labels described in the original studies from which the
datasets were retrieved, the cell types defined by our cellular
clusters had a concordance rate of 92.3% (Supplementary
Figure S3C), indicating the confidence of our cell types de-
fined here. With differentially expressed genes (DEGs) de-
tected with the Wilcoxon test (adjusted P value < 0.05),
two clusters were merged if the number of DEGs between
the two clusters was <3 with >2-fold change and <10 with
>1.5-fold change. Finally, 42 cellular clusters (subtypes) of
144 047 cells were kept for further analysis and deposited in
STAB (Figure 2A and Table 1).

Identification of marker genes for cell subtypes

Given the list of DEGs (adjusted P value < 0.05) in a
cell subtype, the genes that were expressed at least 1.5-fold
higher than the average of their expression in other subtypes
were considered as marker genes of the cell subtype, where
the genes were required to be expressed at least in 10% cells
of the subtype. In addition, the marker genes defined for >4
subtypes were filtered out.

Database construction and implementation

STAB was implemented in Java with SpringBoot, Ngnix,
Tomcat, Mybatis and MySQL for back-end data interac-
tion, and React for the front-end display. Both visualization
and statistical analyses were performed with R, where the
gene expression profiles were visualized with the R-package
‘plotly’. The association of a query gene list with a cer-
tain cell subtype was performed with enrichment analysis
of the cell type marker genes over the query gene set, where
one-tailed Fisher’s exact test was adopted here with genes
expressed in >10% cells as background. The interactive

https://singlecell.broadinstitute.org/single_cell
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Table 1. Statistics of datasets used in STAB

Dataset #Cells #Filtered cells Brain region Age
Developmental

period
Sequencing

platform Reference

h1 4261 1611 PFC, MGE PCW11–37 P3, P4, P5, P6, P7 Fluidigm C1 Nowakowski et al.,
2017 (23)

h2 466 416 ITC, CTX PCW16–18,
21–63Y

P5, P13, P14, P15 Fluidigm C1 Darmanis et al., 2015
(26)

h3 2394 2005 PFC PCW8–26 P2, P3, P4, P5,
P6, P7

Smartseq2 Zhong et al., 2018 (4)

h4 4664 3916 TC, FC, IG, PC,
OC, MDL, pons

PCW22, 23 P6 STRT-seq Fan et al., 2018 (32)

h5 1512 701 DFC, CTX, NCX PCW5–20 P1, P2, P5, P6 Fluidigm C1 Li et al., 2018 (7)
h5 a 17093 16840 DFC 19–64Y P12, P13, P15 10X Li et al., 2018 (7)
h7 36166 33862 CBC, FC, V1C 20–49Y P13, P14 SNdrop-seq Lake et al., 2017 (21)
h8 1977 1869 VMB PCW6–11 P1, P2, P3 Fluidigm C1 La Manno et al., 2016

(33)
h10 11859 10747 HIP, PFC 40–65Y P14 DroNc-seq Habib et al., 2017 (34)
h11 40453 39447 SN Adult P14 10X Welch et al., (35)
h12 276 252 NCX PCW16–23.5 P5, P6 Fluidigm C1 Liu et al., 2016 (22)
h13 1608 476 DFC PCW16–20 P5, P6 Fluidigm C1 Onorati et al., 2016 (36)
h14 32209 31905 ACC, MTG, V1C 22–66Y P13, P14, P15 Smartseq Hodge et al., 2019 (27)

ACC, anterior cingulate cortex; CBC, cerebellar cortex; CTX, cortex; DFC, dorsolateral prefrontal cortex; FC, frontal cortex; HIP, hippocampus; IG,
insular gyris; ITC, inferior temporal cortex; MDL, medulla; MGE, medial ganglionic eminence; MTG, middle temporal gyrus; NCX, neocortex; OC,
occipital cortex; PC, parietal cortex; PFC, prefrontal cortex; SN, substantia nigra; TC, temporal cortex; V1C, primary visual cortex; VMB, ventral midbrain;
PCW, postconceptional weeks; Y, years; P1, 4 < = Age < 8 PCW; P2, 8 < = Age < 10 PCW; P3, 10 < = Age < 13 PCW; P4, 13 < = Age < 16 PCW; P5,
16 < = Age < 19 PCW; P6, 19 < = Age < 24 PCW; P7, 24 < = Age < 38 PCW; P12, 12 < = Age < 20 Years; P13, 20 < = Age < 40 Years; P14, 40 < =
Age < 60 Years; P15, > 60 Years.

browser of individual cell subtypes was accomplished with
the UCSC cell browser (https://cells.ucsc.edu). With a user-
friendly interactive interface, the users can easily browse
and query cell subtypes and their gene expression profiling
across brain regions and developmental periods.

RESULTS

Overview of STAB

STAB is built to present the distribution of cell subtypes
across brain regions and their temporal dynamics during
the lifespan. Figure 1 shows the functionalities provided by
STAB. The ‘Cell subtype’ page presents the spatial and tem-
poral distribution as well as the expression profiles of rep-
resentative marker genes of a certain cell subtype. The rel-
ative composition proportion of distinct cellular subtypes
is approximately obtained by assuming the same number
of cells in each brain region and each period. The marker
genes include classical marker genes of major cell types and
those defined above. The ‘Brain region’ and ‘Developmen-
tal period’ pages show the compositions of different cell
subtypes across periods/brain regions for the selected brain
region/period. Moreover, given a gene, the expression dy-
namics of the gene for each cell subtype across brain re-
gions in a certain developmental period and that across dis-
tinct developmental periods in a selected brain region will
be shown. The ‘Cell browser’ page shows the metadata of
each individual cell and marker genes of the clusters with
the utility of the UCSC Cell Browser. For better visualiza-
tion, at most 500 cells are randomly shown for each com-
bination of a period and a region. Given a list of genes of
interest, the ‘Query’ page can present the expression levels
of those genes across cell subtypes and help identify which
cell subtypes these genes are most enriched in.

Landscape of cell subtypes across the human brain

With the integrative analysis of 13 scRNA-seq datasets, 42
cell subtypes were identified as shown in Figure 2A, includ-
ing 1 neural progenitor cell cluster, 15 excitatory neuron
subtypes, 10 inhibitory neuron subtypes, 1 granule, 1 Purk-
inje cell type and 14 non-neuronal subtypes. We noticed that
the majority of our defined cell subtypes were evenly dis-
tributed among developmental periods, brain regions and
datasets (Supplementary Figures S4 and S5), indicating that
the batch effects and bias have been well controlled.

We resolved neuronal cells into 15 ExN and 10 InN neu-
ronal subtypes with the utility of classical marker genes
SLC17A7 and GAD, respectively (Figure 2B). The neuronal
subtypes were further annotated based on the expression
of subtype marker genes identified from a previous single-
nucleus RNA-seq dataset of six cortical regions (39) (Sup-
plementary Figure S6). Among the 25 neuronal subtypes,
22 subtypes were consistent with previously defined ones. In
addition to the high correspondence, STAB provides a finer
resolution of these into subpopulations (e.g., ExN1 subtype
was resolved into ExN1a, 1b and 1c). Besides, 3 novel sub-
types (e.g., ExNs 9–11) showing lower expression levels of
all those marker genes were identified.

It has been found that most neurons can be catego-
rized by their cortical layer position (3,40). Consistent
with these findings, we noticed that most of our de-
fined neuronal subtypes showed layer-specific patterns with
higher expression of layer-specific marker genes (Figure
2C). For example, ExNs 1–3 and InNs 1–3 mainly lo-
cated in the upper layer, ExNs 4–6 and InNs 4–6 in the
middle layer, and ExNs 7–8 and InNs 7–8 in layer 6.
The cell subtypes of ExNs 9–11 without showing any
layer specificity, mainly consisted of cells from embry-
onic or a mixture of embryonic and adult samples (Sup-

https://cells.ucsc.edu
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Figure 1. Schematic overview of functionalities provided by STAB.

plementary Figure S7), indicating layer-specific transcrip-
tional patterns might emerge at the later maturing stage.
We further explored the developmental origin and the
expressed neurotransmitter of neurons with the mark-
ers. For example, the somatostatin-expressing (SST+) neu-
rons (InN4b, InN7 8) and parvalbumin-positive (PVALB+)
subtypes (InN5 6, InN6) mainly originated from medial
ganglionic eminence (MGE), while vasoactive intestinal
peptide-expressing (VIP+) cells (InN3) originated from
caudal ganglionic eminence (CGE). The composition and
developmental origin of inhibitory neurons cell subtypes
coincide with previously reported GABAergic cell type tax-
onomy (38).

Except for neuronal cells, STAB also provides a com-
prehensive cellular landscape of non-neuronal cell sub-
types. Here, we resolved 14 non-neuronal subtypes, in-
cluding 4 astrocytes and 4 oligodendrocytes (Supplemen-

tary Figures S8 and S9) and 3 oligodendrocyte progenitor
cells subtypes, and microglia, endothelial and pericytes cell-
subtypes. These cell subtypes showed significant regional
specificity. For instance, we noticed that Astro1 and Astro2
had higher abundance in the cerebellar cortex and dorsolat-
eral prefrontal cortex, Astro3 and Astro4 were mainly dis-
tributed in the pons (Supplementary Figure S8B–E), and
Olig2 cells were more specific in the cerebellar cortex (Sup-
plementary Figure S9C).

Spatial specificity and heterogeneity of cell subtypes

With STAB, one can easily explore the distribution of cell
subtypes within each brain region and the heterogeneity
of cell subtypes across brain regions for a certain develop-
ment period (Supplementary Figure S10). For example, at
the late mid-fetal period (P6), the four cortex regions (FC,
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Figure 2. Landscape of cell subtypes with their marker genes. (A) The identified cell subtypes. (B) The expression of classical marker genes for major
cell types. (C) Expression of layer-specific marker genes in excitatory (left) and inhibitory (right) neuron subtypes. The size and color of the dot denote
the percentage of cells expressing corresponding layer-specific marker genes and the expression value of the gene averaged over a certain cell subtype,
respectively. (D) Heatmap of expression levels for marker genes associated with sub-pallial origins (MGE, CGE) and neurotransmitter for inhibitory
neuron cell subtypes.

TC, OC and PC) had more neurons, whereas regions in the
inferior surface (IG, MDL and pons) contained more glial
cells (OPC, Olig, Micro and Astro) (Figure 3A and Supple-
mentary Figure S11). Noted that cortex regions tended to
have more cellular diversity and higher neuronal proportion
compared with inferior surface regions, which may help ex-
plain the more complex neural circuits underlying the func-
tions of the cerebral cortex. Especially, Olig4 and Olig3 were
more abundant in the cerebral cortex and inferior surface,
while astrocytes were more abundant in the pons, separately.
Consistent with the cellular distribution differences of the
cerebral cortex (3), we also noticed more inhibitory neurons
in the temporal cortex and more excitatory neurons in the
other three cortex regions. Those emphasized the hetero-
geneity of cellular compositions in various brain regions.

Given cell subtypes showing region-specific expression
patterns (32), the spatially functional specificity could be re-
flected by the different expression levels of related genes in
cells. For example, CD68, a classical gene related to the ac-
tivation state of microglia (41), presented varied expression
levels in brain regions (Figure 3B), suggesting distinct acti-
vated or primed states of microglia among regions. Above
all, the composition and expression data in STAB could
help to explore the anatomical and functional heterogeneity
of cell types in distinct brain regions.

Temporal dynamics of cellular compositions and transcrip-
tome

With STAB, one can observe the dynamic cellular composi-
tions of certain brain regions across the development of hu-
man brains. For example, in the PFC region (Figure 3C and
Supplementary Figure S12), higher cellular diversity could
be observed in adult than fetal periods. The progenitor cells
decreased rapidly during the early to middle fetal period
(P2-P6), while the proportion and diversity of excitatory
and inhibitory neurons increased as expected during those
periods. Astrocytes increased from late mid-fetal (P6) and
late fetal (P7) period, and Olig3 gradually replaced Olig4 in
the fetal development (P2-P7) and became the major oligo-
dendrocyte subtype of adulthood (P14). On the other hand,
the non-neural cells were less dynamic compared with neu-
ral cells.

In addition to exploring the dynamics of cellular compo-
sitions during brain development, one can also gain insight
into neurodevelopment by investigating the expression tra-
jectories of certain genes via STAB. For instance, the expres-
sion of SYP, a synapse development associated gene (42),
increased from middle to late fetal (P5-P6) until adoles-
cence (P12) and then declined with aging (Figure 3D). Like-
wise, the developmental trajectory of cell (sub)types could
be tracked by their marker genes. We noticed that the ex-
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Figure 3. Spatiotemporal heterogeneity of cell (sub)types. (A) The cell type (left) and subtype (right) composition of each brain region at period 6 (late
mid-fetal). (B) Expression of CD68 in different cell types across brain regions at P6. (C) The dynamic cellular compositions with the development of PFC.
(D–E) The expression trajectories of SYP and VIP genes within different cell subtypes along the development of DFC. The shaded bands denote 95%
confidence intervals.

pression of VIP, the marker gene of interneuron 3, increased
from fetal period to adolescence in InN3, but the gene kept
steady low expression levels in other cell subtypes during the
same periods. With the temporal dynamics of cellular com-
positions and transcriptome states across development, we
can better understand brain development.

The aberrant cell subtypes in brain disorders

It has been found that some brain disorders are related
to certain cell types, which can help understand the cel-
lular mechanisms underlying neurodegenerative and neu-
ropsychiatric diseases. For example, autism spectrum dis-
order (ASD) is at least partially due to disorders affecting
glial cells or neuron–glial interaction (43–45). With STAB,
one can explore which cells are related to certain brain
disorders, including Parkinson’s disease (PD), Alzheimer’s
disease (AD), amyotrophic lateral sclerosis (ALS), ASD,
Huntington’s disease (HD) and bipolar disorder (BP).
The genes associated with these disorders (46–51) can be
found in Supplementary Table S3. As a control, the height
phenotype was considered here and the associated genes
were obtained from a previous genome-wide association
study (52).

As a negative control, we found that the genes associ-
ated with human height were not enriched in any of the 42
cell subtypes. On the other hand, the genes associated with

brain disorders tend to be enriched in neuronal cells. We
noticed that the adult-onset neurological diseases (PD, AD,
ALS and HD) were more enriched in ExN11 cells, while the
early-onset psychiatric disorders ASD and BP were more
enriched in ExN9 cells, agreed with the expression profiles
among diseases with the same phenotype are more similar
(53). Besides, specific enriched cell subtypes were also iden-
tified, such as InN5 in ALS, Astro3 and Micro in MS. The
shared and distinct enriched patterns might reflect the com-
mon and specific cellular and developmental context and
etiology of brain disorders underlying phenotypes.

Take ASD as an example, we checked the expression
of highly confident (i.e., category 1) ASD (hcASD) risk
genes from SFARI (https://gene.sfari.org) in STAB (Fig-
ure 4B). Consistent with previous reports that ASD risk
genes were enriched in early glutamatergic neurons (53,54),
several hcASD risk genes were highly expressed in the de-
veloping excitatory neurons (i.e., ExN9 and ExN10). We
found some risk genes (e.g., DSCAM, NRXN1, TRIO and
SETD5) were enriched and showed higher expression in
OPCs, suggesting cell types involved in the maintenance of
the perineural environment may also mediate ASD. More-
over, we further explored the expression of DSCAM, one of
the most highly expressed hcASD risk genes and is known
involved in human central and peripheral nervous system
development (55), across cell subtypes along with develop-
ment in the neocortex regions (Figure 4C and D for PFC

https://gene.sfari.org
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Figure 4. Cell subtypes associated with brain disorders. (A) The distribution of cell types associated with neurodegenerative and neuropsychiatric diseases.
(B) The heatmap of expression of high confident ASD genes across various cell (sub)types. (C and D) The expression dynamics of DSCAM within different
cell subtypes in PFC and DFC along with development.

and DFC, respectively). DSCAM had a higher expression
level in the ASD enriched subtypes (i.e., ExNs9–10 and
OPCs), and increased during early to middle fetal devel-
opment, which was concordant with the expression trend
found in bulk RNA-seq for neocortex (6). This suggested
that middle fetal may be a key developmental period asso-
ciated with the etiology of ASD, consistent with the conclu-
sion from a previous study (56).

In summary, STAB could capture both the enriched (as-
sociated) cell types and the gene expression profiles of the
risk genes for neurodegenerative and neuropsychiatric dis-
eases, highlighting the significance of our brain cell atlas.

DISCUSSION

STAB is a comprehensive cell atlas resource for the human
brain, covering multiple brain regions from early fetal to
adolescence and aging. With cell subtypes and their marker
genes defined by a unified-pipeline, STAB resolves cell types
at a finer resolution and enables one to explore the cellular
compositions and transcriptome states of distinct brain re-
gions across the development in an objective way. Further-
more, the marker genes associated with each cell subtype
and the functional enrichment analysis provided by STAB
make it possible to investigate the associations between cell
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subtypes and phenotypes of interest, e.g., neuropsychiatric
disorders.

We also notice that there is much room for STAB to im-
prove. First, only part of the developmental periods or brain
regions is covered due to the difficulties to obtain brain tis-
sues. With brain organoids available, it is possible to cover
more regions and periods in the future. Second, the big dif-
ference between the number of cells (from 200+ to 30,000+)
and the sequencing depth of distinct datasets makes it chal-
lenging to remove batch effects. Despite the high concor-
dance between cell types defined in STAB with those re-
ported in literatures, it is not guaranteed that all cell types
are correctly defined. Finally, the limited quantity and sam-
pling inhomogeneity of cells make it hard to estimate the
exact proportions among various types of cells.

DATA AVAILABILITY

STAB is publicly available at http://stab.comp-sysbio.org.
The curated expression and metadata and data grouped
by developmental periods, brain regions, and datasets are
available at STAB.

The raw datasets were obtained with the following links:
h1: https://cells.ucsc.edu/cortex-dev/exprMatrix.tsv.gz
h2: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE67835
h3: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE104276
h4: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE103723
h5: http://development.psychencode.org/#
h5 a: http://development.psychencode.org/#
h7: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE97942
h8: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE76381
h10: http://www.gtexportal.org/home/
h11: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE126836
h12: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE71315
h13: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE81475
h14: http://celltypes.brain-map.org/rnaseq
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