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Abstract: Nanoporous metals, with their complex microstructure, represent an ideal candidate for
the development of methods that combine physics, data, and machine learning. The preparation of
nanporous metals via dealloying allows for tuning of the microstructure and macroscopic mechanical
properties within a large design space, dependent on the chosen dealloying conditions. Specifically,
it is possible to define the solid fraction, ligament size, and connectivity density within a large range.
These microstructural parameters have a large impact on the macroscopic mechanical behavior. This
makes this class of materials an ideal science case for the development of strategies for dimensionality
reduction, supporting the analysis and visualization of the underlying structure–property relation-
ships. Efficient finite element beam modeling techniques were used to generate ~200 data sets for
macroscopic compression and nanoindentation of open pore nanofoams. A strategy consisting of
dimensional analysis, principal component analysis, and machine learning allowed for data mining
of the microstructure–property relationships. It turned out that the scaling law of the work hardening
rate has the same exponent as the Young’s modulus. Simple linear relationships are derived for the
normalized work hardening rate and hardness. The hardness to yield stress ratio is not limited to 1,
as commonly assumed for foams, but spreads over a large range of values from 0.5 to 3.

Keywords: nanoporous metals; open-pore foams; FE-beam model; data mining; mechanical prop-
erties; hardness; machine learning; principal component analysis; structure–property relationship;
microcompression; nanoindentation

1. Introduction

Nanoporous gold (np-Au) made by dealloying can be produced as macroscopic objects
that exhibit a bi-continuous network of nanoscale pores and solid “ligaments” connected
in nodes. An overview of the fascinating morphologies and mechanical properties of this
material is provided in [1–3]. The skeleton of the structure is formed by ligaments, which
can be controlled in their average diameter by altering the dealloying conditions, thus
allowing one to examine the impact of the ligament size on the macroscopic mechanical
properties [4,5]. It has been recently demonstrated that the dealloying process can be
applied sequentially and allows one to produce hierarchically organized nanoporous
metals with superior macroscopic properties compared to similar materials with only one
hierarchy level [6].

So far, even for one hierarchy level, no model exists that allows for the prediction
of the macroscopic mechanical properties based on the parameters used in the sample
preparation. Recently, the evolution of the ligament size and the network connectivity
during thermal treatment was modeled with kinetic Monte Carlo simulations [7] for a large
range of solid fractions, but the connection to the macroscopic mechanical properties is still
missing. For a selected microstructure, this is realized by conventional meshing and finite
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element (FE) simulation, e.g., as shown in [8], but from this point, it is still a long way to go
towards an all-inclusive process–microstructure–property model that handles all required
steps along a fully automated work flow and at the required efficiency. An overview of the
elements needed for such a work flow based on efficient simulation models, data mining,
and AI is presented in [9].

A key element represents the relationship that efficiently translates a set of microstruc-
tural parameters and material properties of the solid phase into macroscopic properties.
Together with the structural information from, e.g., high-resolution 3D tomography and
image analysis [10,11], all relevant aspects are currently under development. As pointed
out in [9], they altogether will allow for an efficient scan of large multidimensional parame-
ter spaces of descriptors and reliably predict the macroscopic mechanical properties for
any assumed constitutive law on the level of a single ligament. Moving from scarce data
to rich data allows for data mining of the fundamental structure–property relationships.
The objective is to derive robust approximations that generalize the available data and sup-
port our understanding of the underlying physics well beyond the application of machine
learning as a black box method.

In this work, we concentrate on the relationship that allows predicting mechanical
properties based on microstructural information or, formulated as an inverse problem,
enables us to determine microstructural descriptors from macroscopic test data. Due to
the complex morphology of this material, FE modeling of np-Au with all its structural
complexity is highly challenging. Two general paths exist, which are summarized in [9].
One route uses random structures (spinodal decomposition, leveled waves); the second
is based on unit cells (Gibson–Ashby, gyroid, diamond). The mechanical behavior of
random structures is usually predicted with molecular dynamics (MD) simulations [12–14]
or with continuum mechanics using FE-solid or voxel models [8,15,16]. In combination
with plasticity, also the FE-models lead to large computing times and allow only for a very
limited number of simulations. Furthermore, the limited model size makes it extremely
difficult to simulate a nanoindentation test that averages over sufficient features, such that
it can be analyzed like an experiment. One of the rare examples that goes in this direction
is the work of Farkas et al. [14], which presents a MD simulation of nanoindentation in a
single crystal with a relative density of 0.67 and ligament diameter of 2 nm.

As pointed out in [9], FE-beam models provide the efficiency and flexibility needed for
the generation of larger data sets and, at the same time, allow for an independent variation
of all structural and material parameters of interest. This modeling technique has been
successfully applied in studying the mechanical behavior of foams [17–22] and nanporous
metals [10,23–27]. Research in this field concentrated mainly on the anisotropy of the
macroscopic elastic properties as well as aspects of the structure–property relationships for
elastic–plastic macroscopic compression. Until recently, the quantitative correct prediction
of materials with relative densities >10% was limited to cylindrical ligament shapes [26].
The nodal correction proposed by Odermatt et al. enables us to expand FE simulations
towards variations of the ligament shape from concave to convex [27]. The advantage of
this approach is that the computational efficiency of FE-beam models is maintained. This
paves the way for handling hundreds of simulations with a predictive model that is at the
same time large enough for the simulation of nanoindentation.

The scope of this work is to study the influence of microstructure and material param-
eters on the macroscopic response of a porous metal. We will investigate the macroscopic
behavior under compression as well as nanoindentation. For scanning the multidimen-
sional parameter space, a highly efficient simulation model is required. Furthermore,
the model set-up should allow for the independent variation of all important structural
inputs. To this end, we use a representative volume element (RVE) that approximates
the complex morphology of an open pore material by a diamond structure [23,24]. Using
this unit cell, it is possible to define the degree of randomization and connectivity of the
structure [28]. Together with the material parameters defining the mechanical behavior of
the solid phase, this generates a highly dimensional parameter space that is hard to scan in
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a dense manner by numerical simulations. The dimensionality of the problem and limited
number of simulations makes analysis of the underlying structure–property relationships
very challenging. If we limit the number of parameters to five (two material and three
microstructural parameters) and the number of variations per parameter to three, a sys-
tematic variation with one parameter at a time would end up with 243 simulations, which
is already at the limit of the computer’s capacity. Adding more parameters or increasing
the number of increments is almost impossible. Therefore, this investigation requires a
strategy that exploits all available methods that contribute to reduce the dimensionality of
the problem.

In this sense, the present work also serves as a guide, demonstrating how such a
problem can be tackled systematically by means of a dimensional analysis, inclusion of a
priori knowledge about the physical problem at hand, data generation strategies, princi-
pal component analysis, machine learning, and visualization. Along this path, Section 2
describes the FE-beam models used for generation of the data for macroscopic compres-
sion and nanoindentation. Sections 3 and 4 deal with dimensionality reduction of the
macroscopic compression and nanoindentation problem, respectively, where both sections
follow the same methodology. Finally, it is shown that for important dependencies, simple
mathematical formulations can be derived that relate the major influences of microstructure
and mechanical properties to the macroscopic response.

2. FE-Model and Data Generation

FE-beam modeling is used to predict the macroscopic response of nanoporous metals
during macroscopic compression and nanoindentation. The generation of the representa-
tive volume element (RVE) is established in the literature and is described only briefly in
Section 2.1. In contrast, the simulation of nanoindentation is novel. The incorporation of a
conical indenter and strategies for achieving an efficient simulation model that copes with
the nonlinearities arising from the contact problem is described in Section 2.2.

2.1. Macroscopic Compression

The FE software Abaqus was used for the numerical simulation of the RVE [29].
The model generation for macroscopic compression followed [23,24,27,28] and was or-
ganized hierarchically along the workflow presented in Figure 1. This workflow was
programmed object oriented in Python with classes for the different hierarchy levels,
allowing for scripting of the RVE generation and job submission within loops for the
variation of input parameters. A postprocessing script handled the simulation analysis and
database generation.

The model generation started at the ligament level, where the ligament axis is dis-
cretized in Nelem FE beam elements with circular cross-section and variable radius r. The lig-
ament shape is defined along the axis according to [10,11] by r∗sym = rmid/rend and rend/l,
where rmid and rend denote the ligament radius in the middle and at the ends, respectively,
and l is the ligament length in a diamond unit cell. Together with the topology, the set of liga-
ment geometry parameters rmid, rend, and l define the solid fraction ϕ0 before randomization.

Odermatt et al. [27] developed nodal corrections for 16 ligament shapes that allow
for a quantitative prediction of the elastic–plastic response of the RVE up to macroscopic
strains of 20%. Details about the ligament geometries, initial solid fractions, and the
nodal correction approach can be found in [27]. The extension of the nodal corrected
zones is visible in the second column of Figure 1, where nodal corrected elements in
the diamond unit cell are displayed in orange. With the nodal correction set “on”, their
material parameters were modified such that the deformation behavior of the unit cell
corresponded to that of an FE solid model of the same ligament shape. Preliminary
simulations for decreasing number of elements using a unit cell with periodic boundary
conditions confirmed that the nodal correction by [27] performed well in the range from
20 down to 6 FE elements per ligament for both geometries listed in Table 1. Therefore,
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6 elements per ligament were chosen in this work for which the relative error in macroscopic
stiffness and strength was within 15% error relative to the results of the FE solid model.
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Table 1. Ligament shapes used for the generation of two data sets in the low and a high solid fraction
regime, respectively.

Shape r*
sym rend/l ϕ0

G21 0.5 0.289 0.1232

G33 1.0 0.346 0.3574

For generating an RVE of size N, the unit cell is copied N + 2 times (origin at
[−1,−1,−1]) in each coordinate direction, followed by the randomization of the structure.
The degree of randomization is defined by the parameter A, which corresponds to a
random displacement in space applied to the connecting nodes by an amplitude A, which
is given as a fraction of the unit cell size a [23,24]. Alternatively, one can also choose to
displace an FE node in the mid-section of the ligaments by this magnitude normal to the
ligament axis [27]. The randomization can be calibrated via the elastic Poisson’s ratio and
is typically A = 0.23 [24].

Because the coordination of the diamond structure of z = 4 is too high in comparison
to experimental observations [10,30,31], the connectivity can be reduced by random cutting
of a fraction ζ of the ligaments [28]. For diamond, the percolation threshold is reached
for sufficiently large RVEs at a cut fraction of ζ → 0.5 , where the average coordination
number approaches z→ 2 . For models of smaller size the percolation threshold is reached
at lower values and is sensitive to the random realization. In combination with randomly
cut ligaments, the randomization A can be reduced to values close to 0 to reach the elastic
Poisson’s ratio measured in experiments [28]. Therefore, we chose these two parameters
independent of each other and within comparably large ranges of 0 ≤ A ≤ 0.3 and
0 ≤ ζ ≤ 0.3.

The resulting RAW model of size 10× 10× 10 unit cells is randomly distorted and can
contain free floating ligaments due to random cuts. A cleaned RVE is generated by cutting
the RAW model to a cubic volume of size N = 8 (origin at [0, 0, 0]) by removing all elements
outside of this volume. Free floating ligaments are removed by two subsequent cleaning
cycles that eliminate dangling ligaments and then re-attach element by element those



Materials 2021, 14, 1822 5 of 23

ligaments that are connected to the residual core of the ligament network. For more details,
the reader is referred to the supplementary material that is provided in [28]. The result
of the preprocessing is an RVE of dimensions 8× 8× 8 unit cells with plane boundaries,
consisting of 512 diamond unit cells with a total of 8192 ligaments and 49,152 FE-elements
(A = 0, ζ = 0). Symmetry boundary conditions are applied to FE-nodes in the planes
x = 0, y = 0, and z = 0, while macroscopic compression is applied at the top face at the
position z = N.

For simplicity, the model was generated such that the unit cell size corresponds to
a unit size of 1 mm. Realistic microstructural dimensions of the ligament and the pore
size can be achieved by self-similar scaling of the model to a desired characteristic size,
e.g., a ligament diameter of 20–150 nm [5]. Because the material law does not account for
size effects, the resulting macroscopic behavior is not affected by such a scaling. However,
when the effect of the surface energy is included, the ligament size is important; then
also the applied electrode potential must be defined [32]. These two parameters allow for
switching of the strength and the plastic Poisson’s ratio during macroscopic deformation
of the material.

A and ζ are dimensionless structural parameters describing the random distortion
of the connecting nodes as fraction of the unit cell size and the fraction of randomly cut
ligaments, respectively. Both parameters modify the solid fraction relative to the initial
solid fraction ϕ0. According to Roschning et al. [24], we should account for the distortion
of the ligament axis by A by an increase in solid fraction by using

ϕA
ϕ0

= 1 + 0.15A + 2.91A2, (1)

whereas the random cutting ζ removes a fraction of ligaments and, therefore, mass from
the model [28]

ϕζ

ϕ0
= 1− ζ. (2)

If the RVE is large enough, Equations (1) and (2) can be combined as

ϕ

ϕ0
= (1− ζ)

(
1 + 0.15A + 2.91A2). (3)

It should be noted that the random cutting ζ can lead to a mechanical deactivation of
whole regions that are still part of the model. Therefore, ϕζ should not be interpreted as
effective solid fraction ϕeff that represents the load bearing mass [33].

In view of the number of parameters that may play a role, we limited the structural
variation to the randomization A and the cut fraction ζ and kept all other structural
parameters within each data set constant (ligament aspect ratio rend/l, ligament shape
r∗sym). Two data sets for ligament shapes G21 and G33 (see Table 1) were created, covering a
large range from very low ( ϕ0 ∼ 12%) to very high ( ϕ0 ∼ 36%) solid fractions. Because
the porosity was computed from 1− ϕ0, the porosity ranged from ∼ 64% to ∼ 88%.

We used nanoporous gold (np-Au) as model material, because in terms of microstruc-
ture and mechanical properties this is the best investigated material of a variety of nanoporous
metals reported in the literature. The chosen material behavior is plasticity with linear
isotropic hardening [23]. This adds two material parameters denoted as yield stress σy,s
and work hardening rate ET,s; the subscript s denotes that both parameters are a property
of the solid phase, which makes up the 3D network. Both depend on the ligament diameter,
which can be manipulated during the sample preparation of the material via the Au/Ag
ratio, dealloying conditions, and heat treatment, as demonstrated in [5,32]. The elastic
constants for gold are known and were kept constant for all simulations: Young’s mod-
ulus Es = 80 GPa, Poisson’s ratio νs = 0.42. An example of a deformed RVE (A = 18%,
ζ = 26%) is shown in Figure 2a. The stress is evenly distributed over the length of the RVE,
which indicates that the overall deformation is homogeneous despite the local structural
variations due to the randomization of the ligament network.
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Figure 2. (a) RVE consisting of 8 × 8 × 8 unit cells with A = 18% and ζ = 26% after compression with 20% strain in
the negative z-direction. The purple dashed curves in the magnified image shown on the right side indicate the axis of
some cut ligaments. Due to the missing load transmission, the remaining dangling parts show zero stress (blue color).
(b) Simulation output in the form of stress–strain and stress–plastic strain curves from which the macroscopic yield stress
and work hardening rate are determined.

This model makes up a set of variable inputs consisting of 5 independent parameters:

X =
(

ϕ0, A, ζ, σy,s, ET,s
)
. (4)

For each initial solid fraction, the remaining parameters are randomly set for each
simulation within the ranges 0 ≤ A ≤ 0.3, 0 ≤ ζ ≤ 0.3, 20 MPa ≤ σy,s ≤ 1000 MPa,
and 1 GPa ≤ ET,s ≤ 10 GPa, which cover the known range of experimental data. The ran-
dom distribution of the parameters is uniform for A, ζ, log σy,s, and log ET,s. Each param-
eter set is stored together with the job number, which uniquely connects microscopic to
macroscopic compression as well as nanoindentation properties in the data processing
in Sections 3 and 4. The random choice of the parameter sets has the advantage that the
parameter space is evenly filled while no parameter is computed more than once. This
avoids patterns that might be unwantedly recognized by the machine learning algorithms.
Furthermore, the parameter space can continued to be filled if it turns out that the number
of patterns is not sufficient for the analysis. This is particularly useful when the simu-
lations are computationally expensive. For an example where this strategy is applied
in combination with artificial neural networks for solving a complex inverse problem in
nanoindentation, the reader is referred to [34].

The resulting compression behavior of each pattern is represented by 5 dependent prop-
erties:

Y =
(
E, ν, νp, σy, ET

)
, (5)

where E, ν, σy, and ET denote the macroscopic Young’s modulus, elastic Poisson’s ratio,
yield stress, and work hardening rate, respectively. The computation of the plastic Poisson’s
ratio νp follows [32]

νp = − δε⊥
δε‖

, (6)

where δε⊥ and δε‖ are increments of true strain normal and parallel to the loading direction,
respectively. Because νp changes during plastic compression, it is measured at 10% plastic
compression strain. As demonstrated in Figure 2b, the predicted stress–plastic strain data
is linearly fitted for plastic strains > 1% for obtaining the macroscopic yield stress σy and
work hardening rate ET .
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2.2. Nanoindentation

For the simulation of nanoindentation, the model described in Section 2.1 is extended
by adding a conical indenter with an angle of 140.6◦. For this angle, the volume-to-depth
ratio of the conical indenter corresponds to that of a Berkovich tip. Details on the simulation
of nanoindentation for solids and thin films can be found, e.g., in [34]. Due to the numerous
ligaments that get in contact during the indentation process, an explicit dynamic analysis
was required for achieving convergence. A robust load signal was produced by attaching
dashpots at the free boundaries (see Figure 3) to damp elastic waves induced by the
multiple contact events during the dynamic indentation process.
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Figure 3. Nanoindentation model with a conical indenter displaced by 2 unit cells at a speed of 20 mm/s. Dashpots
are attached at FE nodes located at free boundaries to stabilize oscillations in the dynamic simulation. Images show the
deformation of the RVE at the end of the loading phase, where the color corresponds to (a) von Mises stress, and (b)
displacement magnitude.

It can be seen from Figure 3 that the contact of the indenter, modeled as a rigid body,
is established with the axis of the beam elements. Therefore, the upper half of the ligaments
in contact peek out on the upper side of the indenter surface. Contact among the ligaments
is not considered. In principle, this is possible in Abaqus Explicit, but the contact is limited
to a pair of a rendered element surface and the axis of a second element. Preliminary studies
with this indentation model revealed that such events happen rarely and at a very late
stage of the indentation and, therefore, can be neglected in the total force on the indenter.
It should be noted that this situation can change once we work with real microstructures
and with a contact formulation that accounts for the surface of both contacting ligaments.

The calibration of the indenter velocity and the dashpot parameter is presented in
Figure 4 for ligament geometry G21 (ϕ0 = 0.12) with σy,s = 200 MPa, ET,s = 6 GPa, and a
randomization A = 0.23 [32]. For simplicity, effects of the surface energy are not included,
and the cut fraction is set to ζ = 0. For uniaxial compression, the predicted stress–strain
curve yields the following macroscopic mechanical properties: E = 1.9 GPa, ν = 0.178,
σy = 17.8 MPa, and ET = 108 MPa.
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Figure 4. Parametric study for adjustment of (a) indenter velocity with smooth step function for a dashpot parameter of
10−3 Ns/mm and (b) dashpot parameter at fixed indenter velocity of 20 mm/s.

For a conical or pyramidal indenter, the load P always increases with the square of the
indentation depth h [34], as soon as the indented material acts like a continuum. Therefore,
a plot of P/h2 vs. h should tend towards a constant value. This is reached for h > 1 mm
(~1 unit cell), indicating that at this depth value, a sufficient number of ligaments are in
contact, and the solution homogenizes over enough microstructural elements. It can be
seen from Figure 4 that the results show large scatter for high loading rates and for a
low dashpot constant. The load–depth curves converged into a sufficiently steady state
solution for an indenter velocity of 20 mm/s, combined with a smooth step function
and a dashpot parameter of 10−3 Ns/mm. These settings were used for all following
simulations, including those shown in Figure 3. The displacement magnitude in Figure
3b shows negligible deformation at the free boundaries, which suggests that the RVE is
sufficiently large. With this model and parameter setting, the total CPU time per simulation
is ~60 CPUh. Generating a data set with 100 simulations for a selected ligament shape
requires ~1 week in real time by parallel computing on 16 CPUs.

For h > 1 mm, Pi/h2
i values are averaged to compute the leading constant C describing

the loading curve P = Ch2. A robust hardness value can be computed by H = Pt/Ac,
where Pt = Ch2

t is the load at maximum indentation depth, Ac = πa2
c is the contact area,

and ac is the contact radius at this depth. For the example shown in Figures 3 and 4,
we obtain ac = 5.3 mm and a hardness of H = 2.79 MPa. Thus, the hardness value is
significantly lower than the macroscopic yield stress, which is σy = 17.8 MPa, whereas
the common assumption for foams is that H = σy [35–38]. This motivates a detailed
investigation of the dependence of H/σy with respect to possible effects caused by the
network geometry (randomness, connectivity) and elastic–plastic material properties of the
ligaments, which is presented in Section 4. The data generation for the nanoindentation
simulations uses the same parameter sets as those used for the simulation of macroscopic
compression in Section 3, i.e., for each solid fraction, we performed 100 simulations for
macroscopic compression and another 100 simulations for nanoindentation. In a few
cases, the simulations of the macroscopic compression did not converge. These parameter
sets were removed from both databases to avoid confusion in the analysis that combines
macroscopic compression with nanoindentation data.

3. Macroscopic Compression

In the following sections, we reduced the dimensionality of the problem to extract
relationships from our data that can be visualized, discussed, and, in the best case, modeled
with simple mathematical functions. Our strategy consisted of three steps: (i) dimensional
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analysis, (ii) principal component analysis, and (iii) visualization and modeling of the
relationship with a minimum number of inputs. The dimensional analysis [39] makes use
of the physics background and the Buckingham π theorem to reduce the problem without
loss of accuracy. This turned out to be a useful approach that should always be placed as a
first step of feature engineering, because it ensures that the basic physics is incorporated
in the input and output data, while at the same time the machine learning algorithms are
relieved and their generalization capability is substantially increased [34,40,41].

Principal component analysis (PCA) was applied in conjunction with a multi-layer
perceptron (MLP) algorithm using the scikit-learn package [42]. The MLP, also known
as artificial neural networks, allows for the analysis of patterns consisting of multiple
inputs and outputs with respect to underlying nonlinear dependencies. For details and
applications, the reader is referred to [43–45]. After the dimensionality of the problem was
reduced, comparably compact MLPs consisting of two hidden layers with 3 and 2 neurons
were used for approximation and visualization of the data. This is possible, when the
relationship of interest is sufficiently represented by the selected inputs.

3.1. Dimensional Analysis

The mechanical behavior of the RVE can written in form of dependencies for the
elastic and plastic macroscopic properties

(E, ν) = fe

(
rmid
rend

,
rend

l
, Es, νs, A, ζ

)
(7)

and (
σy, ET , νp

)
= fp

(
rmid
rend

,
rend

l
, Es, νs, σy,s, ET,s, A, ζ

)
, (8)

respectively. Assuming that the ligament shape is sufficiently represented by the initial
solid fraction, Equations (7) and (8) simplify to

(E, ν) = ge(ϕ0, Es, νs, A, ζ), (9)(
σy, ET , νp

)
= gp

(
ϕ0, Es, νs, σy,s, ET,s, A, ζ

)
. (10)

First, we used a priori knowledge in form of the Gibson–Ashby scaling law E/Es =
CE ϕ2[35]. The leading constant CE depends on the unit cell geometry, which in our case
was defined by the diamond structure and the chosen ligament shape. To simplify Equation
(9) with respect to the Young’s modulus, we can assume that the Poisson’s ratio of the
ligaments has no effect on the macroscopic deformation of the RVE, which results mainly
from bending of the ligaments [23]. Combining both aspects and include Equation (3) for
computing the solid fraction, we can reduce Equation (9) to a dependence of only two
microstructural descriptors,

E
Es ϕ2 = g∗E(A, ζ), (11)

which can be evaluated easily by visualization of the data in a 3D plot. If such a plot
confirms Equation (11), the varying ligament shape is sufficiently represented in the solid
fraction ϕ. Furthermore, g∗E represents a generalized Gibson–Ashby law that considers the
dependence from the degree of randomization and cuts of the 3D network, which is not
captured simply by the solid fraction. It also extends the master curve proposed in [28],
which was produced using perfectly ordered RVEs, a single solid fraction, and constant
material behavior.

Along the same line of thinking, it follows for the simplification of Equation (9) with
respect to Poisson’s ratio that a dimensionless macroscopic property can only depend on
dimensionless microscopic quantities, i.e., the Young’s modulus Es plays no role. In the
same way as before, we can remove a dependence of νs. The macroscopic Poission’s ratio
can be understood as the result of the translation of the vertical compression deformation
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into a lateral expansion by the architecture of the deforming 3D network, defined by A and
ζ. This argument is in line with Gibson and Ashby, who stated that the Poisson’s ratio is
expected to be independent of the relative density [46]. Thus, we get

ν = g∗ν(A, ζ). (12)

Concerning the increased number of independent parameters in Equation (10), di-
mensionality reduction would support both their understanding and modeling of their
relationships responsible for the plastic response. Before going into the analysis of the data,
it is useful to rewrite this equation in dimensionless form. Again, we can assume that Es
and νs have no effect. For plasticity, this can only be assumed as long as σy,s � Es and
ET,s � Es. Otherwise, we would combine comparable contributions of elastic and plastic
deformation in the macroscopic response of the RVE, which requires the consideration of
two dimensionless parameters for describing the elastic plastic behavior, namely σy,s/Es
and ET,s/Es. Using the Buckingham π theorem [39], we can eliminate one more argument
without loss of generality. One way is to normalize the macroscopic properties on the left
side by their respective solid properties in the form(

σy

σy,s
,

ET
ET,s

, νp

)
= ĝp

(
ϕ,

ET,s

σy,s
, A, ζ

)
. (13)

Again, we can incorporate the Gibson–Ashby scaling law for the yield stress
σy/σy,s = Cσy ϕ3/2 [35], which yields for the first output

σy

σy,s ϕ3/2 = ĝ∗σy

(
ET,s

σy,s
, A, ζ

)
. (14)

Concerning the second output of Equation (13), it is unknown which scaling is ap-
propriate, because the work hardening rate is a slope in the stress–plastic strain diagram.
Intuitively, one would follow Equation (14) in favor of an exponent of 3/2. We can answer
this question together with PCA and keep the exponent β in the scaling flexible, such that

ET

ET,s ϕβ
= ĝ∗ET

(
ET,s

σy,s
, A, ζ

)
. (15)

Alternatively to Equation (13), only dependent variables are used for normalization of
the output (

ET
σy

, νp

)
= g̃p

(
ϕ,

ET,s

σy,s
, A, ζ

)
. (16)

The choice between the two methods of normalization depends on the potential
application. Equation (16) has the advantage that all quantities on the left side are experi-
mentally accessible, such that it could be possible to invert g̃p and to obtain some insight
into material or structural properties of the nanoporous metal based on macroscopic
compression testing.

3.2. Principal Component Analysis

At first glance, principal component analysis (PCA) [47,48] appears to be meaningless
for our case, because there are no linear dependencies among the inputs that could be
easily eliminated. PCA of linearly independent inputs simply translates the original inputs
into a smaller number of components by linear combination. In case that each original
input carries important information, this leads to a loss of information and to an increase in
the predicted error in a subsequent MLP regression. In contrast, a successful reduction to a
fewer number of components without a substantial increase in the prediction uncertainty
shows that there is a potential for the reduction of the dimensionality of the problem
and, furthermore, it delivers a feeling for the number of inputs that can be removed.



Materials 2021, 14, 1822 11 of 23

The advantage of PCA is that the data can be quickly analyzed, and it becomes clear which
elements of a relationship are the promising candidates for a deeper analysis.

Because the equations for elasticity can be easily visualized, Equations (11) and (12)
are omitted here. The mapping of PCA with an MLP regression of Equation (14) is shown
in Figure 5a. For these regressions, consistently 10 neurons in a single hidden layer
were used. The results for 3 components corresponded to the dimensionality of the raw
input data and reproduced the accuracy of the MLP prediction without PCA, validating
that no information was lost by the transformation. With reduction of the components,
computed mean values of the absolute prediction error were 0.121, 0.221, and 0.342 for 3, 2,
and 1 components, respectively. As can be seen from the inserted plot (orange), the error
doubled with each component that was reduced. The scatter plot in Figure 5a suggests
to visualize the data in form of a 3D plot, where a parametrization with one of the three
inputs is required, which is presented in Section 3.4.
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components: (a) scaled yield stress, Equation (14); (b) scaled work hardening rate, Equation (15).

A first investigation of Equation (15) with 3 components and an exponent β = 3/2
similar to Equation (14) led to two main groups in the scatter plot (not shown), which could
be combined in a narrow scatter band by changing the exponent to β = 2 (black open boxes
in Figure 5b. Thus, the data suggested that the work hardening rate should be scaled in the
same way as the Young’s modulus. Using this exponent, we obtained mean values of the
absolute error of 0.070, 0.177, and 0.317 for 3, 2, and 1 components, respectively.

Next, it was of interest to quantify the highest possible reduction of arguments of
g̃p in Equation (16). The more significant the outcome is, the better are the chances for
deriving a relationship that can potentially also be solved with respect to one of the
arguments. This would be a valuable aid in accessing local structural or mechanical
properties from comparably simple macroscopic tests. Figure 6 presents the outcome of a
PCA of g̃p followed by MLP. The PCA was first applied simultaneously to both ligament
shapes G21 and G33. Each dimensionless parameter on the left side of Equation (16) is
individually evaluated.
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The importance of the correct scaling was demonstrated for the analysis of Equation (16).
The results for an output in the form of the ratio ET/σy, shown in Figure 6a, revealed that
the argument of Equation (16) could not be easily reduced without adding considerable
error. The reduction from 3 to 2 components led to a separation into two branches (reddish
colors) that resulted from the two solid fractions. Further reduction did not change the
result much.

However, dividing Equation (15) by Equation (14) for β = 2 yields

ET ϕ3/2

σy ϕ2
σy,s

ET,s
= g̃∗p

(
ET,s

σy,s
, A, ζ

)
, (17)

which can be rewritten as
ET

σy ϕ1/2 = ĝ∗p

(
ET,s

σy,s
, A, ζ

)
. (18)

For this type of scaling, shown in Figure 6b, PCA delivered almost a perfect match,
independent of the number of components, suggesting that the argument of Equation (18)
can be reduced to a single component. Because the output of Equation (18) can be expected
to mainly depend on the corresponding ratio ET,s/σy,s, the visualization can right away
move to a 2D scatter plot of ET/(σy ϕ1/2) versus this quantity.

In contrast to the output ET/σy, the plastic Poisson’s ratio νp showed a large scatter
that is almost invariant to the number of components (not shown). Therefore, no further
reduction of the dimensionality is possible for this parameter. This is further discussed
along with the visualization of the data in Section 3.4.

3.3. Macroscopic Elastic Properties

The dependencies for the elastic properties according to Equations (11) and (12) are
visualized in Figures 7a and 8. In these Figures, the randomly distributed simulation data
are shown as spheres, and the predictions of the MLP regressions are shown as 3D contour
plots. As can be seen from Figure 7, the scaling of Young’s modulus removes most of
the effect stemming from the solid fraction, such that g∗E can be written as dependence of
only two structural parameters A and ζ. The surfaces approximating the individual solid
fractions are slightly shifted in the lower regions and intersect at E/(Es ϕ2) ∼ 1.5.
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Figure 8. Visualization of the simulation results for the macroscopic Poisson’s ratio. Black and red
spheres represent data for ligament shapes G21 and G33, respectively. MLP regressions of both data
sets are shown as contour plots.

Overall, the contour plot in Figure 7a confirms the existing understanding about the
effect of A and ζ, which both lower the macroscopic Young’s modulus of the ligament
network [28]. Additionally, with ζ approaching the percolation threshold, one observes a
smooth transition into a horizontal tangent with the x-axis. Interestingly, after considering
both parameters in the computation of the solid fraction, the remaining effect is almost
identical, as can be seen from the horizontal isolines in Figure 7a. Combining them in
the x-axis in Figure 7b reveals where the two data sets start to separate. The dashed line
indicates that up to a value of A + ζ = 0.3 the data can be fitted by

E
Es ϕ2 ≈ 2.5− 5(A + ζ). (19)

The macroscopic Poisson’s ratio shown in Figure 8 behaves differently. Again, the ef-
fect of the randomization A is at least as strong as the effect of the cut fraction ζ. However,
in agreement to the findings in [28], the cut fraction of ζ has no effect for A ∼ 0.25, while
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it is large for lower values of A and of opposite sign for A = 0.3. The Poisson’s ratio
is only slightly sensitive to ϕ in the regime of low values of ζ, i.e., for fully connected
networks. In summary, as suggested by the PCA, the visualization in Figure 8 confirms
that the dimensionality of this relationship cannot be further reduced.

3.4. Macroscopic Plastic Properties

With the outcome of the PCA in mind, Equation (14) is visualized in Figure 9a. Each
pair of contour plots correspond to the two solid fractions, the effect of which is captured by
the scaling with ϕ3/2. In addition to uncertainties and numerical errors, the remaining gap
within each pair could be a result, e.g., of torsion that scales with ϕ and can have some 10%
contribution to the deformation as soon as the ligaments are randomized [25]. The effect of
log(ET,s/σy,s) is remarkable in all regions of the plot and is around a factor of 2, but also
the dependencies of A and ζ are significant. This explains why all three parameters need
to be kept for a good representation of Equation (14), as indicated by the PCA. The proper
scaling of the work hardening rate with an exponent of β = 2 is confirmed with Figure 9b,
which is in appearance and range of values very close to that of the Young’s modulus
shown in Figure 7a.
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work hardening rate after Equation (15) with an exponent β = 2, where the inputs for the MLP regression are reduced to A
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For obtaining a first impression on the dependence of ET/σy according to Equation (16),
the data is visualized in Figure 10. The dependence of log(ET/σy) is clearly the strongest
and nicely correlated with log(ET,s/σy,s), whereas A and ζ have no or only a small effect,
respectively. Therefore, the data can be plotted as log(ET/σy) versus log(ET,s/σy,s) in a
2D scatter plot. The correlation shown in Figure 11 is linear over the whole range from
0.5 ≤ log(ET,s/σy,s) ≤ 2.5, i.e., from almost perfectly plastic to strongly work hardening
materials. The slope is positive, i.e., an increase in the ratio ET,s/σy,s increases the corre-
sponding ratio ET/σy in the macroscopic behavior, which is expected. The scatter around
the linear fit is, with few exceptions, ±0.1, which corresponds to 25% in a linear scaling.
This scatter results in part from the additional dependence of ζ, which is visible in a tilt of
the contour plots in Figure 10.



Materials 2021, 14, 1822 15 of 23

Materials 2021, 14, x FOR PEER REVIEW 15 of 24 
 

 

small effect, respectively. Therefore, the data can be plotted as log (퐸 /휎 )  versus 
log (퐸 , /휎 , ) in a 2D scatter plot. The correlation shown in Figure 11 is linear over the 
whole range from 0.5 ≤ log (퐸 , /휎 , ) ≤ 2.5, i.e., from almost perfectly plastic to strongly 
work hardening materials. The slope is positive, i.e., an increase in the ratio 퐸 , /휎 ,  in-
creases the corresponding ratio 퐸 /휎  in the macroscopic behavior, which is expected. 
The scatter around the linear fit is, with few exceptions, ±0.1, which corresponds to 25% 
in a linear scaling. This scatter results in part from the additional dependence of 휁, which 
is visible in a tilt of the contour plots in Figure 10. 

 
(a) (b) 

Figure 10. Approximation of the simulation results for the macroscopic plastic properties (spheres) by MLP regression 
(shown as contour plot) as functions of randomization 퐴 and cut fraction 휁: (a) 퐺 : 휑 = 0.12, (b) 퐺 : 휑 = 0.35. 

 
(a) (b) 

Figure 11. (a) Scaled work hardening rate to yield stress reduced to 2D plots for 퐸 /휎 —Equation (16) and 퐸 /(휎 휑 / )—
Equation (18) for the two data sets 퐺  (black), 휑 = 0.12 and 퐺  (red), 휑 = 0.35. Linear fits given as 푦 = 푚푥 + 푏; (b) 
plot of 퐸 /휎  for one and two levels of hierarchy according to Equations (21)–(23), respectively, showing the decreasing 
influence of 퐸 , /휎 ,  with increasing hierarchy level. 

The parameters of the linear fits for log (퐸 /휎 ) depend on the solid fraction, which 
could be incorporated, e.g., by linear interpolation between them, because this effect is 
small compared to the range of log (퐸 /휎 ). Alternatively, we can make use of the scaling 
according to Equation (18), which removes the effect of the solid fraction, such that the 
two data sets are merged in the scatter plot in Figure 11a for log (퐸 /(휎 휑 / )). The corre-
lation is again linear in the log–log plot and can be fitted with 

Figure 10. Approximation of the simulation results for the macroscopic plastic properties (spheres) by MLP regression
(shown as contour plot) as functions of randomization A and cut fraction ζ: (a) G21: ϕ = 0.12, (b) G33: ϕ = 0.35.
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The parameters of the linear fits for log(ET/σy) depend on the solid fraction, which
could be incorporated, e.g., by linear interpolation between them, because this effect is
small compared to the range of log(ET/σy). Alternatively, we can make use of the scaling
according to Equation (18), which removes the effect of the solid fraction, such that the two
data sets are merged in the scatter plot in Figure 11a for log

(
ET/(σy ϕ1/2

)
). The correlation

is again linear in the log–log plot and can be fitted with

log(ET/(σy ϕ
1
2 )) = 0.18 + 0.7 log(ET,s/σy,s). (20)

Equation (20) can be rewritten as

ET
σy

= b
√

ϕ

(
ET,s

σy,s

)γ

, (21)

with b = 1.514 and γ = 0.7.
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Shi et al. [6] developed scaling laws for the macroscopic Young’s modulus and yield
stress (in general denoted as property P) for a hierarchically nested network of n levels
of the form Pnet = bnPs ϕ̃nβ. This results from the recursive application of the Gibson–
Ashby scaling law Peff = bPs ϕβ under the assumption of a strong self-similarity ϕnet = ϕ̃n.
Here, Ps is the mechanical property of the solid phase, Peff is the effective (homogenized)
value, and Pnet is the result of the net value of P. For the work hardening to yield stress
ratio as given by Equation (21), the property itself scales with an exponent Pγ, such that
the effective properties on the next hierarchy level are Peff,j = bϕ̃βPγ

eff,j−1 with β = 0.5.
Therefore, ET/σy for a material with two and three levels of hierarchy is given by

ET
σy

= b1+γ
√

ϕ̃1+γ

(
ET,s

σy,s

)γ2

(22)

and
ET
σy

= b1+(1+γ)γ
√

ϕ̃1+(1+γ)γ

(
ET,s

σy,s

)γ3

, (23)

respectively. For two levels, the total solid fraction is ϕ = ϕ̃2, which ranges from 0.119
to 0.165 [6]. In this case, ϕ̃ ranges from 0.345 to 0.406, which changes the leading term in
Equation (22) by 14%. Because of the exponent γ2 = 0.49, a similar effect would require
a variation in the material properties ET,s/σy,s by a factor of 1.33. This trend is shown in
Figure 11b, for a variation of ET,s/σy,s over two orders of magnitude. If we add a third level
of hierarchy, the effect of ET,s/σy,s becomes even smaller

(
γ3 = 0.343

)
. We can therefore

speculate that ET/σy → 1 with increasing number of hierarchy levels and ET/σy reduces
to a function of ϕ̃. Section 4 shows that ET/σy is important in the interpretation of the
measured hardness.

Finally, the dependency of the plastic Poisson’s ratio νp in Equation (13) on A, ζ,
and log(ET,s/σy,s) is visualized in Figure 12. The MLP regressions shown in Figure 12a
reveal that the dependence of νp on log(ET,s/σy,s) is significant for low solid fractions, while
the effect of the cut fraction ζ is rather small. This changes for high solid fractions shown
in Figure 12b, where the effect of log(ET,s/σy,s) is small but the effect of the cut fraction ζ
has the same importance as the randomization A. In combination, both parameters can be
used to tune the plastic Poisson’s ratio over a large range from ∼ 0.3 to ∼ 0.1. The complex
dependency indicates that the multiaxial plastic deformation behavior of nanoporous
metals can strongly vary and needs to be determined individually for each microstructure.
Additionally, the ligament diameter and surface energy have an important effect on the
plastic Poisson’s ratio, as shown in [32,49]. These experiments show a comparably large
range of values from 0 to 0.2 for increasing ligament size. This range is included in the
simulation data shown in Figure 12.
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4. Nanoindentation

In this section, the dependence of the hardness was analyzed with respect to the
influence of the underlying structural and mechanical properties of the nanofoam. To this
end, we performed a dimensionality reduction along the same line as in Section 3 with
(i) dimensional analysis, (ii) principal component analysis, and (iii) visualization and
modeling of the relationship with a minimum number of inputs.

4.1. Dimensional Analysis

The major output of a nanoindentation experiment was the hardness H, which can be
written as

H = H
(
rmid, rend, l, Es, νs, σy,s, ET,s, A, ζ

)
. (24)

As in Section 3.1, we represented the ligament shape defined by rmid, rend, and l by
the solid fraction ϕ and, furthermore, assumed that the hardness is governed by plastic
and structural parameters, while the effect of the elastic material parameters of the com-
parably soft solid phase can be neglected, i.e., σy,s � Es and ET,s � Es. This reduces
Equation (24) to

H =
ˆ

H
(

ϕ, σy,s, ET,s, A, ζ
)
. (25)

The hardness mainly scales with the macroscopic yield stress, as this is the case for
bulk materials [50]. Hence, writing Equation (25) in dimensionless form and considering
that ET,s/σy,s can be replaced by a dependence of ET/σy and ϕ using Equation (21), this
leads to a relationship that includes only macroscopic properties and structural parameters:

H
σy

=
ˆ

H
∗(

ϕ,
ET
σy

, A, ζ

)
. (26)

4.2. Principal Component Analysis

For further reduction of Equation (26), we used the hardness results from the indenta-
tion simulations described in Section 2.2 that were carried out with the same parameter
sets as the simulations for uniaxial compression in Section 2.1. A PCA of Equation (26),
shown in Figure 13, suggested that the four arguments could be reduced to one, when
an uncertainty in the predicted H/σy from ±0.1 to ±0.3 is acceptable. A reduction of the
uncertainty to±0.2 would already require at least three components. This potential for sim-
plification is also reflected in the factor by which the absolute mean error is increased due
to the reduction of the number of components, shown in the insert (orange) in Figure 13.
By a reduction to a single component, this error measure is only increased by a factor of
1.3, which is a very low value compared to the results in Section 3.2.
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4.3. Hardness

The quantitative dependence of the normalized hardness H/σy as function of the
structural parameters (A, ζ) and macroscopic material properties log

(
ET/σy

)
is shown in

Figure 14. The MLP regressions are shown as contour plots in Figure 14a,b, confirming that
log
(
ET/σy

)
is the most important parameter, followed by the randomization A, which has

a moderate effect, whereas the effect of the cut fraction ζ can be neglected. In Figure 14c,d,
the axis of the cut fraction ζ is replaced by log

(
ET/σy

)
. A small effect of the randomization

A with a negative slope in the low solid fraction data can be expressed by H/σy ≈
H/σy

∣∣
A=0 − 0.16A. For A = 0.3, this effect is ∆H/σy ≤ 0.05, which corresponds to the

uncertainty when structural effects are not taken into account. For solid fractions of typical
samples with ϕ ≈ 0.32, the effect caused by structural disorder is negligible.
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Figure 14. (a,b) Dependence of the normalized hardness H/σy as function of structural properties (A, ζ ) and macroscopic
material properties log

(
ET/σy

)
; (c,d) reduction of dimensionality by elimination of the cut fraction ζ, confirming that the

simulation data can be represented by a simple dependence H/σy
(
ET/σy

)
. Ligament geometries are (a,c) G21, ϕ = 0.12;

(b,d) G33, ϕ = 0.35.

We could further reduce the relationship to a 2D scatter plot, shown in Figure 15,
which is fitted with a linear relation

H
σy

= H∗0 + mH
ET
σy

, (27)

where for our data, we obtained H∗0 = 0.41 and mH = 0.035. In this Figure, the error bars
correspond to the standard deviation of ±0.11. Both ligament geometries are combined in
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this plot, which indicates that the dependence Equation (27) is applicable for a broad range
of structures and is insensitive to microstructural parameters.
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For confirmation, additional simulations for all 16 ligament geometries G11 to G44 [11,27]
were added. These data points, entered as star symbols, represent the combinations of
rend/l ∈ {0.231, 0.289, 0.346, 0.404} and rmid/rend ∈ {0.5, 0.75, 1.0, 1.25} for two values
ET,s/σy,s ∈ {3.16, 50.0}. This adds 32 simulations that provide an insight into possible
dependencies of the ligament shape and solid fraction. The results are added in Figure 15 as
blue stars, where the blue curves connect simulation results of constant rend/l and the line
thickness increases with the value of rend/l. All results are within the scatter of the random
simulations for geometries G21 and G33, confirming that Equation (27) holds for all ligament
shapes and solid fractions within the given scatter band. While for ET,s/σy,s = 3.16 the
data scatter around a spot in the lower left area of the plot, the results for ET,s/σy,s = 50
show that with increasing rmid/rend and solid fraction ϕ the data points systematically
move towards larger ratios H/σy. The same applies to the random data, when we compare
the range of values for the geometries G21(ϕ0 = 0.12) and G33 (ϕ0 = 0.35) in black and
red, respectively.

Despite the common assumption for foams H/σy = 1, it seems reasonable that a
porous material tends towards a bulk solid for a high solid fraction. However, it is difficult
to understand that the hardness can fall below the macroscopic yield stress. This could
be caused by the way the macroscopic stress–strain behavior has been translated into the
material parameters ET and σy, as shown in Figure 2b. The macroscopic yield stress is read
from the linear fit of the stress–strain curve for plastic strains > 1%. This procedure removes
initial nonlinearities that could be interpreted as microplasticity. However, microplasticity
does not exist in our continuum model; therefore, the true yield stress is usually lower than
that determined from the linear fit. In the example shown in Figure 2b, the measured yield
stress determined from the linear hardening model was 7.3 MPa, whereas at 0.2% plastic
strain, the stress reached a value of only 5 MPa. For H = 3.2 MPa, the ratio H/σy then
changed from 0.43 to 0.64, if the yield stress at 0.2% plastic strain was used. This explains
in part why the hardness can be lower than the yield stress.

It could be speculated that another contribution might stem from the reduction of the
connectivity of the ligament network, as shown in Figure 15b. The RVE is characterized by
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a cut fraction of ζ = 0.26, i.e., almost a third of the ligaments in the RVE are broken. This
leads to large pores, which become comparable to the indentation depth and the contact
radius. When a microstructural length and the indentation depth are of the same order,
the simulation shows a size effect. For 3D networks, this problem becomes relevant when
approaching the percolation threshold and is difficult to solve [51]. An increase in the
normalized indentation load P/h2, shown as insert in Figure 15b, apparently confirms
this effect. However, one would then also expect a systematic bias in the data in the form
of a dependence of the cut fraction, i.e., H/σy → 1 for ζ → 0 , but such a trend is not
present in Figure 14a,b. It is therefore possible that values H/σy < 1 exist. Because this
has important implications on the interpretation of hardness data of foams in general,
an in-depth investigation should be the scope of future work.

5. Summary and Conclusions

Nanoporous metals with their complex microstructure represent an ideal candidate
for method developments that combine data and AI. With a few parameters controlling the
sample preparation, it is possible to tune the microstructure and macroscopic mechanical
properties within a large design space. This includes, among others, the solid fraction,
ligament size, and the connectivity density. It has been recently demonstrated that the
versatile dealloying process allows hierarchically organized nanoporous metals with su-
perior macroscopic properties to be produced compared to those with only one hierarchy
level [6]. Via the microstructure, it is possible to tune the macroscopic properties, such as
Young’s modulus, yield strength, elastic and plastic Poisson’s ratio, and hardness in wide
ranges. This makes this class of materials not only attractive for various applications, such
as sensing or actuation in combination with light weighting, but it is also an ideal science
case for the demonstration of the capabilities of dimensionality reduction methods.

To this end, the generation of ~200 data sets for macroscopic compression and nanoin-
dentation was realized with the help of an efficient FE-beam modeling technique. The pa-
rameter space consists of five independent inputs (microstructure, material parameters)
and six dependent outputs (macroscopic compression behavior and hardness). It was sys-
tematically analyzed in three steps by means of a dimensional analysis including a priori
knowledge about the problem at hand, principal component analysis, and visualization.
In the latter two steps, machine learning served as key for analyzing the existence and
quality of approximations on the presented data sets.

From the outcome, we conclude that, independent of the size of the data set, it is
always recommendable to start with a dimensional analysis. This ensures that the analyzed
dependency is formulated in a physically reasonable manner and it allows the dimension-
ality of the problem to be reduced by usually two quantities in quasi static mechanics or by
three for dynamic problems. At this stage, it is advisable to incorporate a priori knowledge
from the literature or by reasoning, which can further simplify the problem considerably.
How well this has been done and by how many components the dependency can be
further reduced can be easily tested by machine learning in combination with principal
component analysis. If no deeper understanding is needed, the outcome in the form of a
black box would already be a sufficient computer model of the relationship hidden in the
presented data.

Deeper insight can be gained by visualization, which is also supported by machine
learning. Here, the multilayer perceptron first approximates the design space from the
randomly distributed data and then is applied for continuous mapping along selected
inputs in the form of contour plots. This serves the validation of the previous steps as
well as for a better understanding of the quantitative dependence of a specific output,
e.g., the hardness to yield stress ratio, of inputs, e.g., the randomization or mechanical
properties. In this way, the major dependences can be identified from a limited number of
data and unimportant inputs can be eliminated. Furthermore, one obtains a measure for
the uncertainty due to ignored inputs that have a non-negligible effect.
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For the scientific case at hand, which is the microstructure–property relationship of
nanoporous metals, there are several important findings, which are applicable not only
to Au but to any metal, as long as it can be described with the chosen elastic–plastic
material behavior and microstructure. Our analysis showed that the ratio of the work
hardening rate to the yield stress ET,s/σy,s represents a key property that can mapped to
the corresponding macroscopic ratio ET/σy in a log–log scaling. It is therefore possible to
invert this relationship for measured macroscopic behavior, which allows one to gain an
important insight in the amount of work hardening present in the solid phase, relative to its
yield stress. Work hardening implies storage of defects in the nanoscaled ligaments, and its
existence has been a matter of debate. The derived relationship can help to quantitatively
underpin speculations that are in favor [52] or contradict [13,23] the mechanistic model of
dislocation starvation in nanosized metallic objects simply by translating the macroscopic
test data into those of the solid phase.

In addition to the known Gibson–Ashby scaling laws for Young’s modulus and yield
strength, one for the work hardening rate is added, which uses the same exponent of 2
as the Young’s modulus. This is unexpected, because the work hardening rate is a slope
defined by two flow stresses at different plastic strains and the yield stress, which is one
of them, scales with an exponent of 1.5. Additionally, the appearance and range of the
relationship as functions of randomization and cut fraction are very similar to that of the
Young’s modulus.

Another important finding is the linear relation between H/σy and ET/σy. The com-
mon assumption that for hardness testing of foams H = σy [35], which is also used in
the interpretation of nanoindentation of np-Au [37,38], turned out to be a special case for
ET/σy ∼ 17. The range of the H/σy data is surprisingly large and exceeds the common
values for porous and bulk solids of 1 and 3, respectively, towards lower values: A large
number of data are within the range 0.5 ≤ H/σy ≤ 1. This can in part be explained by
how the macroscopic stress–plastic strain curve is modeled. Another reason could be
a size effect that results from large pores for samples with very low connectivity, but it
appears that still values of H/σy < 1 exist. Because this has important implications on the
interpretation of hardness data, an in-depth investigation will be the scope of future work.

Finally, for hierarchic materials with a nested network [6], our results suggest that the
effect of ET,s/σy,s becomes small or even negligible with respect to ET/σy. With increasing
levels of hierarchy, it can be expected that the normalized hardness H/σy changes from a
dependence of ET/σy, which holds for a common nanoporous metal, towards a dependence
of the solid fraction ϕ.
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