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Abstract

Background

Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and

migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clari-

fied and it is unknown to what extent CGRP modulates nociceptive processing in the brain.

To elucidate this we recorded blood-oxygenation-level-dependent (BOLD) signals in the

brain by functional MRI after infusion of CGRP in a double-blind placebo-controlled cross-

over study of 27 healthy volunteers. BOLD-signals were recorded in response to noxious

heat stimuli in the V1-area of the trigeminal nerve. In addition, we measured BOLD-signals

after injection of sumatriptan (5-HT1B/1D antagonist).

Results

Brain activation to noxious heat stimuli following CGRP infusion compared to baseline resulted

in increased BOLD-signal in insula and brainstem, and decreased BOLD-signal in the caudate

nuclei, thalamus and cingulate cortex. Sumatriptan injection reversed these changes.

Conclusion

The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic

CGRPmodulates nociceptive transmission in the trigeminal pain pathways in response to

noxious heat stimuli.

Introduction
Calcitonin-gene-related-peptide (CGRP) belongs to a family of peptides including adrenome-
dullin, amylin and calcitonin with diverse biological functions in the peripheral and in the
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central nervous system [1, 2] Immunohistochemial studies have demonstrated that CGRP is
present in the trigeminal ganglion and trigeminal nucleus caudalis [3–5] CGRP is also released
into the extracerebral circulation of humans during thermocoagulation of the trigeminal gan-
glion [6]. Furthermore, CGRP is a potent vasodilator of human arteries [7] and mediates relax-
ation of these arteries via activation of the CGRP(1)-type receptor [8]. A dense supply of
CGRP-containing fibers is present around cerebral vessels and is believed to originate in the
trigeminal ganglion [9]. The role of CGRP in neurovascular headache has been extensively
studied in human provocation experiments [10–12]. Intravenous infusion of CGRP causes
headache [10, 13] and dilatation of extracranial arteries [10] in healthy volunteers and
migraine-like attacks in patients with migraine [11, 14, 15]. To what extent intravenous CGRP
modulates nociceptive processing in the brain is unknown.

Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging
(fMRI) is widely used to hemodynamically map responses to pain in humans [16, 17]. A recent
fMRI study showed that CGRP and sumatriptan did not modulate visual processing in humans
and neither systemic CGRP nor sumatriptan has an effect on the BOLD-signal per se [18]. The
latter is an important observation because CGRP is a strong vasodilator while sumatriptan is a
strong vasoconstrictor and thereby theoretically may have an intrinsic effect the hemodynamic
dependent BOLD-signal [10].

To date, no studies have investigated changes in the BOLD-signal in pain related brain-regions
after CGRP infusion. In the present study, we hypothesized that intravenous infusion of CGRP
would cause changes in the modulation of pain processing in the brain in response to noxious
heat stimuli. In addition, we hypothesized that sumatriptan, a 5HT1B/1D antagonist, would reverse
these changes. To test this we conducted a double-blind placebo-controlled randomized crossover
BOLD-fMRI study in healthy volunteers. We applied noxious heat stimuli to the trigeminal area
of V1 and recorded BOLD-signals in the brain before and after drug administration.

Material and Design

Volunteers
Thirty-one healthy volunteers were recruited to the study. We recruited participants via an
announcement on a Danish website for recruitment of volunteers to health research (www.
forsoegsperson.dk) and though a magazine for university students (MedicinerOrganisationernes
Kommunikationsorgan (MOK)). Healthy volunteers between ages 18–55 years were eligible for
inclusion in the study. Exclusion criteria were: history of a medical disorder; migraine or any
other type of headache (except episodic tension-type headache less than once a month); daily
intake of any medication except contraceptive; pregnant or nursing women, contraindications
for MRI scans (e.g., metal fragments, claustrophobia), cardiovascular or cerebrovascular disease,
or uncontrolled psychiatric disease or drug misuse. Heavy smokers and caffeine users were like-
wise not included in the study. All female participants used safe contraceptive methods. Enrol-
ment was performed at Glostrup Hospital, Glostrup, University of Copenhagen; Denmark.

The Ethical Committee of Copenhagen (H-KA-20060083) approved the study. All partici-
pants gave written consent after receiving detailed oral and written information and the study
was conducted in accordance with the Helsinki II Declaration of 1964, as reversed in Edin-
burgh in 2000. The study was in addition registered in clinicaltrails.gov (NCT00363532).

Pharmacological Interventions
All participants were investigated twice and received infusion of 1.5 μg/min h-αCGRP (Calbio-
chem–Merck4Biosciences) at one investigation day and placebo (isotonic saline) at the other
investigation day, the order being randomized. Simple randomization was applied. The
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medicine (active and placebo) was delivered in sequentially numbered containers for each study
day. The randomization code was kept separate and remained sealed until end of the trail. The
randomization and packing was preformed by the hospital pharmacy. Infusion took 20 min.
Infusion of 1.5 μg/min of CGRP over 20 min reaches its maximum vascular effects after 30 to 45
min. Vascular changes can be measured already after 15 min and lasts between 90–180 min[12].
The two investigation days were separated by at least one week. On both experimental days the
participants received 6 mg subcutaneous injection of sumatriptan (Imigrain1 injection, Glaxo-
Wellcome Operations, Bernard Castle, UK) 40 min after start of h-αCGRP or placebo infusion.

Experimental procedures
All participants reporting to the laboratory were headache free. Coffee, tea, cocoa or other meth-
ylxanthine-containing foods, beverages, and tobacco was not allowed for at least 12 h before start
of the study. Subjects were placed in the supine position in the MRI room and a venous catheter
(Venflon1) was inserted in to the left antecubital vein for infusion. We collected blood samples
to determine the baseline hematocrit, potassium and sodium levels. The subjects were monitored
with ECG, end-tidal CO2 (capnograph, Datex, Finland), blood oxygen saturation, blood pressure
and heart rate (Veris monitor, Medrad, USA). MR imaging was performed on a 3.0 Tesla Philips
Achieva Scanner (Philips Medical Systems, Best, The Netherlands) using a one-element phased-
array receive head coil. We first obtained a reference anatomical whole-brain image and then
repeatedly measured the BOLD-signal after noxious heat stimulation.

We defined time of drug administration as T0. All variables were recorded at fixed time
points on both study days (See Fig 1). The anatomical image was recorded at T-15min. BOLD-
signal was recorded at baseline (T-5), after infusion of CGRP or Placebo (T40) and 15 min after
sumatriptan injection (T60). Subcutaneous injection of sumatriptan has a T1/2 of 2h with a
maximum serum concentration 10 min after injection and a bioavailability of 96% [19, 20].

Headache. Headache intensity was recorded at 0, 5, 10, 15, 25, 35, 45, 55, 65 min on a ver-
bal rating scale (VRS) from 0 to 10 [0, no headache; 1, a very mild headache (including a feeling
of pressing or throbbing); 10, worst imaginable headache] [21].

Evoked Pain. Noxious heat stimuli were delivered to the dominant side of the forehead
(V1 branch of the trigeminal nerve) on both study days using a MRI compatible 1.6 x 1.6 cm
contact Thermode (TSA-II with filter, Medoc Advanced Medical Systems, Ramat Yishai,
Israel). The thermode permits a temporal and temperature controlled heat pain stimulation.
The temperature applied for the pain stimulation was determined individually for each subject

Fig 1. Study design: All variables were recorded at fixed time points throughout the study. The
anatomical image was recorded at T-15. BOLD-fMRI scan after noxious heat stimulation with the thermode
was recorded at T-5 (baseline), at T40 and T60 (15 min after sumatriptan injection). Start of infusion was
defined at T0. According to the randomization code CGRP (1.5 μg/min) or placebo was infused over 20 min.
Intervention with subcutaneous injection of sumatriptan was performed at T45..Hemodynamic variables,
adverse event and headache intensity on the verbal rating scale (VRS) was recorded at 0, 5, 10, 15, 25, 35,
45, 55 and 65 min.

doi:10.1371/journal.pone.0150334.g001
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before the start of the study, as the temperature that resulted in a pain response of 5 on the
Numerical Rating Scale (NRS) [0, no pain; 10, Worst imaginable pain][22]. This pre-defined
temperature was then applied throughout both study days (For study setup see Fig 2).

During functional imaging, blocks of noxious heat stimulation (pain) with the pre-deter-
mined temperature were delivered from baseline blocks (no pain) at 35°C (See Fig 3).

Data acquisition and Imaging protocols
Anatomical Images: Anatomical images were acquired using a T1-weighted 3D turbo field echo
sequence (128 sagittal slices 1.2 mm thick; in-plane resolution 2.4 x 2 mm: repetition time 9.7 s;
echo time 4.6 ms; flip angle 8, scan duration of 491 s).

BOLD-signal: BOLD functional imaging utilized a gradient echo EPI sequence (39 slices 3.0
mm thick; slice gap 0.06 mm; field of view 192 x 192 mm; in-plane acquired resolution 3 x 3 mm;
repetition time 3.0 s; echo time 35 ms, flip angle 90°. 96 volumes per 4 min 48 sec scan session.

Fig 2. Study Setup: Reconstruction of the study setup. The subjects would be placed in the supine
position inside the MRI scanner. The upper boarder of the eyebrows was used to centralize the subjects
position in the scanner. The thermode was fitted in between the bars of the coil and then attached to the V1
area of the forehead. A custom build MRI compatible carrying arm and adhesive tape was used to ensure that
only the heating element of the thermode came in contact with the skin. The subjects would be wearing ear
protection under the whole duration of the MRI scans.

doi:10.1371/journal.pone.0150334.g002

Fig 3. Stimulation paradigm: During functional imaging, blocks of noxious heat stimulation (pain)
were delivered from baseline blocks (no pain) at 35°C. For noxious heat we chose the pre-determined
individual temperature that corresponded to 5 on the numeric rating scale (NRS). One scan session thus
consisted of 6 baseline blocks (30 s/block) that was interleaved by 5 noxious heat blocks (25 s/blocks), not
including the ramp periods. The rate of temperature change was 4°C/s. The ramps were modeled in defining
the explanatory variables (EVs) for fMRI data analysis.

doi:10.1371/journal.pone.0150334.g003
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Slices were oriented coronally, parallel to the posterior border of the medulla oblongata,
covering all structures between the brain cortex and the brainstem. The brainstem was centered
in the middle of the functional scans.

fMRI Analysis
Functional images were analyzed using FMRIB Software Library (FSL) (www.fmrib.ox.ac.uk/
fsl). The first two volumes of each functional scan were removed to allow equilibration of
image intensities. The images from subjects who had received stimulation on the left side (8
subjects) of their face were flipped along the sagittal axis (left/right) so they could be compared
to those who received stimulation to the right side of their face (19 subjects). Additional pre-
processing steps included, motion-correction, brain extraction, spatial smoothing (5 mm) and
temporal filtering (high pass 100 s).

Whole brain analysis was performed on the data. A full quality assurance was performed
prior to the statistical analysis. All scans that passed quality assurance parameters for motion
correction (< 3 mm), registration to a standard space, and visual inspection of brain extraction
and were included in the following statistical analysis. Statistical results were registered to a
standard atlas (MNI-152 atlas). Results were visually inspected and it was individually ensured
that there was a full set of scans during noxious heat stimulation (baseline, during CGRP/Pla-
cebo infusion and after sumatriptan injection).

Individual generalized linear model (GLM) results were then fed into a fixed effects analysis
model using FLAME (FMRIB's Local Analysis of Mixed Effects). The output of this was
checked for outliers using regression diagnostics.

Comparisons were made between the following BOLD scans for each study day: i. T40 (during
infusion) vs. T-5 (baseline); ii. T60 (after sumatriptan injection) vs T-5 (baseline), and iii. T60 (after
sumatriptan injection) vs. T40 (during infusion/pre-sumatriptan). Thresholds for the comparisons
were determined using a mixture modeling approach [23]. The mixture modeling approach
assigns a posterior probability to each voxel according to a classification of active, de-active or null
class [23]. Based on that classification, we assign a voxel as active if it has more then 50% change
of belonging (posterior probability> 0.5) to the class activation. Based on the thresholding we
performed an analysis of clusters of activation to determine localized activity and its extent.

Statistical Analysis
Headache- and pain scores are presented as median and range. All remaining values are pre-
sented as mean ± SD. The area under the response curve (AUC) for headache score was calcu-
lated according to the trapezium rule.

The primary endpoints were differences in BOLD-signal: i) at T40 (during infusion) com-
pared to T-5 (baseline); ii) at T60 (after sumatriptan injection) compared to T-5 (baseline); iii) at
T60 (after sumatriptan injection) compared to T40 (during infusion/pre-sumatriptan) on the
CGRP day and placebo respectively; iv) BOLD-signal at baseline on the placebo day compared
to baseline on the CGRP day.

It was predetermined that direct comparison between the CGRP and placebo scans would
only be performed if there were either differences in baseline BOLD-signal between the two
study days or differences in BOLD-signal at T-5 (baseline) and T40 on the placebo day.

In addition, we tested for difference in AUC for headache score in the period 0 to 45 min
between the two experimental days. We also tested for differences in headache score after
sumatriptan on both experimental days.

Differences in physiological variables were tested using two-way ANOVA. Headache- and
pain scores were tested using Wilcoxon signed rank test. Regarding the remaining non-imaging

Pain Modulation by CGRP

PLOSONE | DOI:10.1371/journal.pone.0150334 March 18, 2016 5 / 20

http://www.fmrib.ox.ac.uk/fsl
http://www.fmrib.ox.ac.uk/fsl


data we tested the difference between two experimental conditions using a paired, two-way
Students t test.

Five percent (p< 0.05) was accepted as the level of significance. All analysis was performed
using SPSS for Mac 16.0 (SPSS Inc., Chicago, IL). For imaging data group contrast statistical
maps were analyzed with a modified false-discovery rate (FDR) method [23] that uses mixture
model to determine the null component. FDR is a statistical method used to correct for multi-
ple comparisons and is the method preferred when performing BOLD-fMRI analysis by FSL
[23, 24]. Thresholds of activation/deactivation were then used to determine clusters of activa-
tion (peak and volume) using in-house matlab programs (Mathworks Inc Natick, MA USA).

Results

Subjects
Of the 31 participants enrolled, 27 completed the study (10 M, 17F, Ratio: 1:1.7), with a mean
age of 24.7 years (range 19 to 37 years). Two participants were excluded due to claustrophobia.
One participant did not report for the second study day and we lost contact. One participant
did not complete the second study day due to technical problems with thermode. No functional
scan was removed due to excessive movement or movement artifacts.

Physiological Measures
Baseline blood samples showed normal hematocrit, potassium- and sodium levels. Blood pres-
sure, heart rate, oxygen saturation, end-tidal PCO2 are shown in Table 1. No statistical signifi-
cant differences were recorded between time points within each study day or between study
days (P> 0.05).

Psychometric Measures
Headache. 21 (~78%) out of 27 participants reported immediate headache during CGRP

infusion compared to seven (~26%) participants who reported headache during placebo
(P< 0.001). The AUC for headache score (0–45 min) was larger on the CGRP day (median
70.0; Range 0–155), than on the placebo day (median 25.0; Range 0–95), (P = 0.001) (Fig 4).
On the CGRP day sumatriptan did not significantly reduce median headache score although a
tendency was recorded (P = 0.099) (See Fig 5).

Evoked Pain: Pain scores after heat stimulus. Amean temperature of 47.2°C ± 0.56
(Range 46°C–48°C) resulted in a pain score of 5 on the NRS scale at baseline. There was no dif-
ference in baseline NRS score between the two experimental days (P = 1.0). Median pain score
increased from NRS 5 (pre-treatment) to NRS 6 (post-treatment) on both study days, and
there were no differences between study days (Z = -0.095, P = 0.92). Sumatriptan injection did
not change the pain score on either experimental day (CGRP day; Z = -1.44 P = 0.15, Placebo
day; Z -0.062 P = 0.951) (See Fig 6).

Functional Imaging Results
Baseline. Table 2 shows the z-stats scores and coordinates for neuronal activation at base-

line (before start of infusion). There was no difference in activation at baseline between the two
study days.

CGRP infusion. At 40 min after of start of CGRP infusion we recorded bilateral signifi-
cantly increased BOLD-signal in the brainstem and unilateral increased BOLD-signal in the
insula while decreased BOLD-signal was recorded in the caudate nuclei, thalamus and cingu-
late cortex (see Fig 7, Table 3).
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Table 1. Physiological data. Blood pressure, heart rate and End Tidal CO2 in 27 healthy volunteers. No statistical significant differences were recorded
between time points within each study day or between study days (P > 0.05).

CGRP Day

Blood Pressure

Time Systolic (±SD) Diastolic (±SD) Heart rate (±SD) End Tidal CO2

(min) (mm Hg) (mm Hg) (/min) (mm Hg)

Baseline 109.9 (±23.5) 66.9 (±8.4) 63.3 (±11.3) 5.0 (±0.58)

T5 114.6 (±8.6) 64.7 (±6.7) 64.4 (±10.4) 5.1 (±0.56)

T10 114.6 (±10.2) 65.0 (±8.2) 65.0 (±11.1) 5.1 (±0.53)

T15 114.3 (±11.3) 63.1 (±7.4) 68.7 (±10.2) 5.0 (±0.57)

T25 115.5 (±10.4) 64.9 (±9.5) 71.8 (±12.0) 5.0 (±0.53)

T35 116.5 (±11.0) 64.5 (±8.6) 68.8 (±14.7) 5.1 (±0.46)

T45 116.7 (±10.3) 63.2 (±8.5) 66.0 (±13.5) 5.0 (±0.53)

T55 119.5 (±24.2) 76.3 (±8.6) 66.9 (±0.6) 5.0 (±0.49)

T65 121.8 (±9.8) 74.9 (±6.8) 64.6 (±11.0) 4.9 (±0.59)

Placebo Day

Blood Pressure

Time Systolic (±SD) Diastolic (±SD) Heart rate (±SD) End Tidal CO2

(min) (mm Hg) (mm Hg) (/min) (mm Hg)

Baseline 116.9 (±11.4) 67.3 (±8.3) 64.9 (±11.8) 5.1 (±0.48)

T5 117.0 (±11.7) 66.7 (±7.9) 63.6 (±11.9) 5.2 (±0.50)

T10 117.6 (±11.3) 67.7 (±8.3) 65.4 (±10.9) 5.2 (±0.47)

T15 116.9 (±11.5) 67.7 (±8.2) 65.5 (±10.9) 5.2 (±0.50)

T25 118.0 (±11.9) 67.4 (±7.6) 66.3 (±12.3) 5.1 (±0.51)

T35 117.9 (±9.6) 68.1 (±6.6) 67.1 (±11.8) 5.1 (±0.55)

T45 118.4 (±9.8) 69.5 (±9.5) 64.2 (±10.8) 5.0 (±0.52)

T55 127.1 (±11.2) 80.5 (±7.3) 67.7 (±9.7) 5.1 (±0.54)

T65 127.1 (±9.7) 77.7 (±8.3) 64.9 (±11.9) 5.1 (±0.51)

doi:10.1371/journal.pone.0150334.t001

Fig 4. Headache score: Median headache score on the verbal rating scale (VRS) in 27 healthy
volunteers. Black line with squares is the headache score on the CGRP day while gray line with triangles is
headache score on the placebo day.

doi:10.1371/journal.pone.0150334.g004
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Injection of sumatriptan reversed CGRP induced changes compared to baseline (T-5). Com-
parison between the BOLD scan before and after sumatriptan (T40 compared to T60) revealed
increased BOLD-signal in the cingulate cortex (See Fig 8, Table 4).

Placebo infusion. At 40 min after start of placebo infusion we recorded no statistically sig-
nificant changes in BOLD-signal compared to baseline.

Injection of sumatriptan induced significantly increased BOLD-signal in the supplementary
motor area and decreased BOLD-signal in the inferior frontal cortex, post-central cortex, ante-
rior insula, thalamus and cerebellum compared to both baseline (T-5) and to the pre-sumatrip-
tan (T40) measurements. (See Fig 9).

Discussion
The major findings of the present study were that intravenous infusion of CGRP modulated
BOLD-signal in the brain in response to noxious heat stimuli of the trigeminal nerve without

Fig 5. Headache score: Boxplot of median headache on the CGRP day before (T40) and after
sumatriptan injection (T65). Stars (*) symbolize outliers. Before sumatriptan administration there was a
median headache of 1.5 on the verbal rating scale (VRS) (range: 0–4). After treatment with sumatriptan the
median headache intensity dropped to VRS 1.0 (range 0–3) (P = 0.099).

doi:10.1371/journal.pone.0150334.g005

Fig 6. Pain score: Boxplot of pain scores (NRS) after noxious heat stimulation at baseline, before
sumatriptan and after sumatriptan administration. A (left side) show the pain scores on the CGRP days.
B (Right side) show the pain scores on the placebo day. There was no difference in pain score between the
two experimental days at baseline (P = 1.0), before sumatriptan (P = 0.87) and after sumatriptan (P = 0.36)
administration.

doi:10.1371/journal.pone.0150334.g006
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Table 2. Contrast analysis results for painful heat functional MRI activation at baseline (before infusion of CGRP). NOTE: Two ROIs usually active in
pain (anterior cingulate cortex and anterior insula) are not identified due to the distortion of the images.

Brain Region Lat. z-stat X (mm) Y (mm) Z (mm) Vol (cm3)

Positive Activation

Cortical
Frontal

Middle L 02.43 -34 10 42 00.22

Supp Motor Area L 02.97 -12 8 50 00.41

P Parietal

SupraMarginal R 02.31 66 -18 24 00.35

Postcentral L 02.05 -56 -22 26 00.28

SupraMarginal R 02.31 46 -32 38 00.34

Inferior R 03.77 50 -44 52 12.03

Occipital

RolandicOperculum L 02.07 -50 2 6 00.38

R 02.32 40 -18 22 00.29

Temporal

Middle R 02.18 60 -30 -4 00.36

Fusiform L 03.16 -36 -74 -18 07.28

Insular

InsulaPosterior R 02.12 38 -10 22 00.25

InsulaPosterior L 02.84 -44 -10 4 0,057

Brainstem / Cerebellum

Pons R 02.50 6 -18 -20 00.25

Vermis 4 5 02.48 -2 -58 -18 00.58

Cerebellum Crus1 R 03.03 40 -68 -30 01.03

R 02.44 44 -78 -34 01.19

R 02.23 26 -80 -24 00.31

Cerebellum 6 R 02.22 30 -78 -20 00.25

Cerebellum Crus2 R 02.37 36 -80 -42 00.30

Negative Activation

Cortical
Frontal

Superior_Orbital R 03.14 28 -12 66 00.28

Precentral R 02.65 40 -14 62 00.25

R 03.01 28 -20 66 01.04

R 02.08 22 -32 70 0.052

Parietal

Precuneus L 05.35 -2 -40 64 10.53

Temporal

Fusiform L 03.24 -40 -42 -24 00.38

Lingual L 03.62 -12 -46 2 09.13

Middle L 03.24 -40 -50 10 00.34

Cingulum

Middle L 02.53 -6 -40 42 00.29

Parahippocampus

Parahippocampal L 04.07 -24 4 -32 15.33

Sub-Cortical
Caudate L 03.05 -10 20 4 0.088

(Continued)
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changing pain scores. Furthermore, the anti-migraine drug sumatriptan reversed these
changes.

Systemic CGRP: central or peripheral effect?
We found that systemic administration of CGRP was associated with altered functional activa-
tion in the CNS as recorded by BOLD-fMRI. CGRP is widely distributed in the trigeminal pain
pathway at the peripheral and central levels [2, 25–29]. Mechanisms responsible for CGRP
induced head pain or migraine are complex and the question is whether intravenous CGRP: 1)
crosses the blood brain barrier (BBB) and modulates nociception in the CNS; 2) activates and
sensitizes trigeminal sensory afferents. Intravenous infusion of CGRP does not affect hemody-
namics (blood pressure, heart rate, end-tidal CO2) [10, 14, 18], the cerebral blood flow (CBF)
[13, 25] and visual processing [18] in man. Injection of CGRP directly into human skin or tem-
poral muscle (i.e. in the areas of cutaneous and muscle distribution of the trigeminal afferents)
did not elicit pain [30]. Furthermore, CGRP does not activate or sensitize meningeal nocicep-
tors in rodents [31], nor does intra-thecal CGRP administration alone yield any changes [32].
In addition, CGRP reduces the discharge frequency of the wide dynamic range neurons in rats
following electrical stimulation of the hind paw [33, 34], and modulates background activity
and responses to brush, press and pinch to the skin of the hind paw [35, 36]. Pre-treatment

Table 2. (Continued)

Brain Region Lat. z-stat X (mm) Y (mm) Z (mm) Vol (cm3)

R 05.03 10 18 0 00.49

L 02.89 -6 16 6 00.25

R 05.26 10 14 0 00.06

L 04.34 -6 6 -6 00.66

Nac R 04.45 6 6 -8 00.85

Brainstem/Cerebellum
Cerebellum 4 5 L 03.08 -26 -36 -26 00.27

Cerebellum 8 R 03.13 24 -62 -56 00.51

doi:10.1371/journal.pone.0150334.t002

Fig 7. BOLD-signal during CGRP infusion: Group BOLD-fMRI results for noxious heat simulations to
the V1 area on the CGRP day; differences between neuronal activation at T40 (after CGRP infusion)
and T-5 (baseline). The activated regions-of-interest are shown in three projections. CGRP infusion resulted
in positive activation in insula and bilateral activation in the brainstem, while negative activation was recorded
in the caudate nuclei, thalamus and cingulate cortex.

doi:10.1371/journal.pone.0150334.g007
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Table 3. Contrast analysis results for painful heat functional MRI activation after CGRP infusion.

Brain Region Lat. z-stat X (mm) Y (mm) Z (mm) Vol (cm3)

Positive Activation

Cortical

Frontal

Inferior Operculum L 02.80 -40 12 12 1.52

Inferior Triangular L 02.45 -30 32 4 0.78

Inferior Orbital R 01.27 40 22 -2 1.18

Insular

InsulaAnterior R 03.19 32 22 -2 00.67

L 01.90 -32 0 16 00.66

Brainstem / Cerebellum
Brain Stem / Pons R 02.61 14 -20 -24 00.58

L 02.28 -14 -22 -24 00.58

Negative Activation

Cortical
Frontal

Supp Motor Area R -05.71 6 18 64 01.70

Precentral Lobule L -05.05 -8 -38 62 00.83

Precentral L -05.24 -30 -8 62 01.14

R -05.24 32 -32 54 01.73

L -05.68 -52 0 46 00.85

Middle L -04.65 -30 0 50 02.24

L -05.06 -24 12 44 00.78

L -04.70 -36 16 42 00.78

L -05.30 -24 36 40 01.70

L -04.93 -40 24 34 00.86

L -04.85 -28 34 32 00.82

Inferior Triangular L -05.06 -48 24 22 01.78

L -04.65 -46 32 8 01.16

Inferior Operculum R -04.56 48 6 18 00.70

Inferior Orbital L -04.84 -36 24 -16 00.73

Parietal

Superior R -05.00 34 -46 60 00.86

Inferior R -04.80 30 -50 52 01.08

L -05.01 -46 -36 50 01.31

L -04.96 -40 -36 40 01.23

Postcentral R -05.91 42 -36 56 01.24

R -04.99 38 -34 50 00.86

L -05.48 -34 -34 62 01.22

L -04.85 -42 -42 58 01.05

L -04.72 -24 -46 56 00.70

L -05.61 -54 -12 50 01.74

L -06.06 -34 -24 48 02.35

L -04.65 -58 -14 16 00.82

Supramarginal L -04.82 -60 -24 16 00.96

Precuneus L -04.56 -4 -46 38 01.50

L -05.02 -6 -54 18 01.06

Angular L -05.46 -52 -52 34 02.02

(Continued)
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with CGRP receptor-antagonists reduce capsaisin-evoked sensitization, while post-treatment
with CGRP dose-dependently restores capsaisin-evoked sensitization in rats [37]. Collectively,
these data suggests that CGRP exerts its action outside of the BBB and modulates sensory pro-
cessing, without direct activating or sensitizing effects.

Altered BOLD-signals in the brain after CGRP infusion
In the present study we examined BOLD-signal after noxious stimulation of ophthalmic (V1)
branch of the trigeminal nerve before and after intravenous infusion of CGRP. We used nox-
ious heat stimulation, which is a robust well-validated method that has been applied in several
pain fMRI-studies [16, 38–40]. Stimulation of the ophthalmic nerve was chosen because of the
trigeminal pain pathways importance in the pathophysiology of headaches.

Table 3. (Continued)

Brain Region Lat. z-stat X (mm) Y (mm) Z (mm) Vol (cm3)

L -05.02 -6 -54 18 01.06

Occipital

Cuneus L -04.89 -4 -66 26 02.03

Calcarine R -05.06 10 -70 18 00.89

R -04.54 10 -60 18 02.22

R -04.75 12 -66 10 00.85

L -05.19 -12 -62 14 03.63

Cingulum

Middle L -05.11 0 -40 50 03.21

L -04.67 -2 -40 42 00.86

L -05.61 0 -26 40 03.99

L -04.54 0 28 34 00.70

Posterior L -05.04 0 -48 24 01.42

Sub-Cortical
Caudate L -05.17 -14 14 6 00.90

Thalamus L -04.80 -14 -26 6 00.90

Putamen L -04.85 -24 10 -8 01.09

Amygdala R -05.02 28 2 -12 01.10

Hippocampus R -05.14 32 -6 20 01.10

Brainstem/Cerebellum
Cerebellum Crus 1 R -04.74 30 -80 -44 02.95

Cerebellum Crus 2 L -04.64 -14 -82 -24 01.10

Cerebellum 8 R -04.67 10 -66 -46 00.85

doi:10.1371/journal.pone.0150334.t003

Fig 8. BOLD-signal after sumatriptan administration: Group BOLD-fMRI results for noxious heat
simulations to the V1 area on the CGRP day; differences between neuronal activation at T60 (after
sumatriptan) and T40 (during CGRP infusion/before sumatriptan). The activated regions-of-interest are
shown in three projections. Sumatriptan injection resulted in positive activation of the cingulate cortex.

doi:10.1371/journal.pone.0150334.g008

Pain Modulation by CGRP

PLOSONE | DOI:10.1371/journal.pone.0150334 March 18, 2016 12 / 20



At baseline (before infusion), heat stimulation to the forehead resulted in significant
somatotropic activation of pain-related brain centers similar to previous studies [41–44]. We
observed a dropout artifact in relation to the thermode. Dropout artifacts and distortions are
commonly observed when thermodes are applied to the forehead, close to the brain. To limit
the effects of these distortions the slices were oriented coronally during BOLD-fMRI scans and
a filter was applied to the thermode. We were not able to visualize expected anterior cingulate
cortex (ACC) activation as the area was covered by the thermode (see Table 2 for z-stat scores
at baseline).

Table 4. Contrast analysis results for painful heat functional MRI activation after sumatriptan administration on the CGRP day.

Brain Region Lat. z-stat X (mm) Y (mm) Z (mm) Vol (cm3)

Positive Activation

Cortical

Frontal

Supp Motor Area L 04.23 -4 6 44 00.33

Negative Activation

Cortical

Frontal

Middle L -2.81 -38 34 44 00.27

L -3.11 -22 26 48 01.53

Inf. Triangular L -3.63 -52 22 24 00.38

L -3.59 -52 22 10 0.042

Parietal

Postcentral L -3.31 -50 -18 36 00.38

Postcentral L -3.33 -54 -26 54 00.46

Angular L -3.33 -42 -58 24 00.33

Insular

InsulaAnterior L -3.35 -38 18 -6 00.26

Sub-Cortical
Thalamus L -3.11 -6 -14 14 00.24

Brainstem/Cerebellum
Cerebellum Crus 2 R -3.31 42 -74 -40 00.43

doi:10.1371/journal.pone.0150334.t004

Fig 9. BOLD-signal after sumatriptan administration: Group BOLD-fMRI results for noxious
stimulation to the V1 area on the placebo day. Here differences in neuronal activation between the BOLD-
fMRI scan at T-5 (baseline) and T60 (after sumatriptan) is shown. Sumatriptan injection resulted in positive
activation of the supplementary motor area (sup. motor area) and negative activation in the inferior frontal
cortex (inf. frontal), insula and thalamus.

doi:10.1371/journal.pone.0150334.g009
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After CGRP infusion we recorded changes in brain areas related to ascending pain-path-
ways. Specifically we recorded increased BOLD-signal in the brainstem and insula and
decreased BOLD-signal in the caudate nuclei, thalamus and cingulate cortex. Brainstem activa-
tion is reported during head pain conditions such as tooth pain [44], primary headaches [45–
47] and in other pain conditions such as irritable bowel syndrome [48–50], fibromyalgia [51],
angina pectoris [52] and osteoarthritis [53]. The question is whether the recorded changes are
due to CGRP induced headache or due to modulation of neuronal pain processing in response
to noxious heat stimuli? CGRP is widely distributed in trigeminal nuclei in the brainstem [5,
54–59]. CGRP induced very mild headache (median headache score = 1.5 [which correspond
to pre-pain]). Furthermore the self reported pain scores in response to noxious heat stimuli
after CGRP remained unchanged. In a previous study only increased headache score after high
doses of glyceryl trinitrate (GTN) was associated with changes in mechanical pain thresholds
[60]. While a study of allodynia reported a low consistency between pain-thresholds in differ-
ent stimulation modalities [61]. The lack of change in self-reported pain scores could therefore
both be explained as a dose-response relationship due to low headache score and because of
the pain stimulation modality in question.

This could suggest that the increased BOLD-signal in the brainstem is due to modulation of
nociceptive input by CGRP. We recorded bilateral decreased activation in thalamus after
CGRP infusion. The thalamus plays an important role in acute pain and in development of
sensitivity to pain [43]. Decreased thalamic activation has been associated with modulation of
pain [62] and is furthermore reported in subjects that are highly sensitive to noxious heat pain
[63] or in patients with chronic neuropathic pain [62]. Our finding of decreased thalamic acti-
vation is puzzling and could indicate that CGRP may induce increased sensitivity to pain lead-
ing to reduced inhibition, increased signal transduction or reduced localization and
discrimination of stimuli [64]. With the present imaging resolution we could not localize the
activation to specific nuclei since it was not possible to distinguish between the respective
nuclei with certainty. At baseline noxious heat stimulation resulted in bilateral insula activa-
tion. Insula activation is correlated with the intensity of pain stimulation [65, 66] resulting in
bilateral insula activation after noxious heat stimulation [63, 65, 67]. Interestingly, following
CGRP infusion only unilateral increased activation of insula was recorded while none of the
participants reported unilateral headaches. Unilateral activation of insula has previously been
recorded in pain studies of migraine attacks [45, 68]. Insula is extensively connected both to
pre-frontal cortex and ACC [69]. Co-activation of insula and ACC have previously been
observed [70]. However, the issue is more complex. Brain regions including the ACC and
insula have multiple functions but also share some unusual anatomical features such as von
Economo neurons [71]. For example the insula is involved in pain, autonomic function, intero-
ception, salience, and awareness including detection error [72–74]. Similarly the ACC is also
involved in functions that include emotion, descending analgesia, empathy, attention and
salience [75, 76]. Thus, while anatomical data shows connections between the insula and
numerous brain areas including anterior cingulate [77], specificially the anterior-middle region
of the insula and the dorsal anterior cingulate [78], the functional relationship including co-
activation [79, 80] still remains unclear [81] but clearly can be postulated that different
responses (activations) may take place in these structures [78] as a result of an independent
functional (e.g., the insula may be more ‘sensitive’ to salience processing) processes. The role of
pharmacological agents in altering the interplay between these systems (whether peripherally
or centrally acting) remains unknown.

Increased activation in caudate nuclei is associated with pain inhibition [82, 83]. Activity in
the caudate nucleus during pain may also correlate to sensory activity [83]. But if this were the
case a decreased activity would indicate decreased sensory integration, which should have
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resulted in concomitant decreased activity in the somatosensory cortex and insula [69, 84].
Since this did not occur it is most likely that the caudate nucleus activation is instead associated
with pain inhibition. There is generally consensus that the cingulate cortex plays a pivotal
region for emotions and for avoidance behavior during pain [85]. The middle cingulate cortex
(MCC) have motor areas that project to both the spinal cord and motor cortex and is involved
in response selection [86]. Decreased activity in MCC in response to heat nociception after
CGRP may reflect functionally impaired or decreased stimulus localization without altering
the pain affect per see [87].

Taken together the recorded functional neuronal changes suggest nociceptive modulation
from the peripheral nerve system (PNS) in response to noxious heat.

Sumatriptan induced changes in BOLD-signal
In the present study the sumatriptan intervention was performed to elucidate possible modula-
tion of central pathways after CGRP infusion. We administered sumatriptan subcutaneously
45 min after intravenous administration of CGRP or placebo. BOLD-signal was then recorded
15 min after sumatriptan injection by application of pain stimulation (noxious heat) to the
forehead (V1 area of the trigeminal nerve).

We found that following sumatriptan administration the subjects experienced a transient
worsening of the headache. This is a well known side-effect to sumatriptan [88]. On the CGRP
day sumatriptan reduced the headache with 0.5 on the VRS scale while amelioration of head-
ache was not achieved. This is probably because the healthy subjects only experienced mild
headache (VRS = 1.5) and because they were only observed for at very short time-period fol-
lowing sumatriptan administration (15 min). Sumatriptan also reversed the CGRP induced
functional changes in response to heat noxious stimuli. Further analysis showed that compared
to the CGRP-induced functional changes, sumatriptan administration resulted in additional
activation of the cingulate cortex.

Even though sumatriptan is a potent vasoconstrictor, studies of healthy subjects [10, 89]
and migraine patients [14, 90] have indicated that sumatriptan does not cross the blood-brain-
barrier (BBB) to a large extend and that its anti-nociceptive mode-of-action is unlikely vaso-
constriction. Instead it is suggested that sumatriptan inhibits neuronal transmission from first
to second order neurons at the trigeminospinal level [31].

Only two previous studies have examined neuronal activation by MRI after sumatriptan
administration. Krämer et al. found that after peripheral stimulation (brush), sumatriptan
administration resulted in decreased activation of posterior insula while increased activation
was recorded in anterior insula, orbito frontal cortex, medial thalamus and ACC [91]. A resent
fMRI study in normal volunteers reported that following electrical stimulation to the leg suma-
triptan administration resulted in increased activation of secondary somatosentory cortex
(SII), Insula, medial thalamus and ACC [92]. Interestingly, here participants also reported
increased head pain after sumatriptan. Sumatriptan is primarily used for treatment of head-
aches. It is therefore remarkable that none of the previous studies have examined the effects of
sumatriptan on headpain (i.e. nociceptive activation of the trigeminal pain pathway and/or
experimental/spontaneous headache). Therefore the previous studies only offer limited insights
into interpretation of the present results.

With respect to the limitations of this study, and given that neither CGRP [10, 12, 13] nor
sumatriptan [10, 89, 93] crosses the BBB or affects the BOLD-signal per see [18] our data sug-
gest that sumatriptan reverses changes in BOLD-signals induced by CGRP by modulation of
sensory afferent transmission to the CNS. This may indirectly affect the cingulate cortex,
which may in turn play an important role in inhibition of head pain.
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Conclusion
We found that intravenous infusion of CGRP in healthy volunteers is associated with mild
headache and increased neuronal activity predominantly in the brainstem and insula;
decreased neuronal activity in the caudate nuclei, thalamus and cingulate cortex. Sumatriptan
reversed these changes probably by inhibiting pain transmission from the periphery to the
brain without amelioration of the headache. We suggest that systemic CGRP modulates noci-
ceptive transmission in the trigeminal pain pathways in response to heat noxious stimuli.
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