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Background: Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous disease,
and about 30%–40% of patients will develop relapsed/refractory DLBCL. In this study, we
aimed to develop a gene signature to predict survival outcomes of DLBCL patients based
on the autophagy-related genes (ARGs).

Methods: We sequentially used the univariate, least absolute shrinkage and selector
operation (LASSO), and multivariate Cox regression analyses to build a gene signature.
The Kaplan–Meier curve and the area under the receiver operating characteristic curve
(AUC) were performed to estimate the prognostic capability of the gene signature. GSEA
analysis, ESTIMATE and ssGSEA algorithms, and one-class logistic regression were
performed to analyze differences in pathways, immune response, and tumor stemness
between the high- and low-risk groups.

Results: Both in the training cohort and validation cohorts, high-risk patients had inferior
overall survival compared with low-risk patients. The nomogram consisted of the
autophagy-related gene signature, and clinical factors had better discrimination of
survival outcomes, and it also had a favorable consistency between the predicted and
actual survival. GSEA analysis found that patients in the high-risk group were associated
with the activation of doxorubicin resistance, NF-κB, cell cycle, and DNA replication
pathways. The results of ESTIMATE, ssGSEA, and mRNAsi showed that the high-risk
group exhibited lower immune cell infiltration and immune activation responses and had
higher similarity to cancer stem cells.

Conclusion: We proposed a novel and reliable autophagy-related gene signature that
was capable of predicting the survival and resistance of patients with DLBCL and could
guide individualized treatment in future.

Keywords: diffuse large B-cell lymphoma, autophagy-related genes, gene signature, prognosis, autophagy
inhibitors

Edited by:
Jian-Guo Zhou,

University of Erlangen Nuremberg,
Germany

Reviewed by:
Jian Yu,

Beihang University, China
Xin Wang,

Shandong Provincial Hospital, China

*Correspondence:
Rui Huang

rachelchn@163.com
Liang Wang

wangliangtrhos@126.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 25 January 2022
Accepted: 12 May 2022
Published: 30 June 2022

Citation:
Zhou X, He Y-Z, Liu D, Lin C-R,

Liang D, Huang R and Wang L (2022)
An Autophagy-Related Gene

Signature can Better Predict Prognosis
and Resistance in Diffuse Large B-

Cell Lymphoma.
Front. Genet. 13:862179.

doi: 10.3389/fgene.2022.862179

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8621791

ORIGINAL RESEARCH
published: 30 June 2022

doi: 10.3389/fgene.2022.862179

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.862179&domain=pdf&date_stamp=2022-06-30
https://www.frontiersin.org/articles/10.3389/fgene.2022.862179/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.862179/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.862179/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.862179/full
http://creativecommons.org/licenses/by/4.0/
mailto:rachelchn@163.com
mailto:wangliangtrhos@126.com
https://doi.org/10.3389/fgene.2022.862179
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.862179


INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) accounts for 30% of cases
of non-Hodgkin lymphoma (NHL), making it the most common
subtype of NHL among adults worldwide (Zhou et al., 2017).
Evidence frombiological and clinical studies has revealed that there
is a striking degree of clinical, phenotypic, and molecular
heterogeneity in DLBCL (Reddy et al., 2017). With the advent
of the rituximab era, the treatment efficacy and survival status of
DLBCL patients have been dramatically improved, and about 2/3
of DLBCL patients could achieve long-term survival. However, the
majority of the remaining patients died of disease relapse or drug
resistance (Coccaro et al., 2020). To date, the prognostic prediction
of DLBCL patients mainly relies on the International Prognostic
Index (IPI) and National Comprehensive Cancer Network-
International Prognostic Index (NCCN-IPI) (Zhou et al., 2014).
As there is lack of information about genes, patients with the same
IPI score may still have different prognosis, and the IPI score
cannot identify patients with a 5-year overall survival rate of less
than 50% (Ruppert et al., 2020). In addition to the commonly used
IPI score, the cell of origin according to the Hans model can also
predict the patient’s prognosis to a certain extent. Most studies

have shown that the prognosis of patients with the germinal center
B-cell subtype is better than that of the non-germinal center B-cell
subtype (Hans et al., 2004). However, some research results are
inconsistent with this conclusion, suggesting that the prognostic
stratification ability of the Hans model needs to be further verified
(Coutinho et al., 2013). With the rapid development of molecular
biology in recent years, researchers have been trying to use
sequencing and chip technology to stratify risks and optimize
chemotherapy strategies for patients with different types of cancer
(Tian et al., 2020).

Meanwhile, autophagy is also one of the breakthrough
findings in the field of tumors. It is reported that autophagy is
involved in several biological functions, such as apoptosis,
immune response, maintenance of cancer stem cell, and drug
resistance (Cufí et al., 2011; Sun et al., 2011; Jiang et al., 2019). On
one hand, autophagy helps tumor cells to sustain cellular growth
by degrading and recycling components of damaged or aged
organelles (Katheder et al., 2017). On the other hand, autophagy
can maintain the normal cell structure and metabolic stability by
removing damaged organelles and DNA in the early stage of
tumor, thus suppressing tumor development (Hönscheid et al.,
2014). Several studies also showed that antitumor drugs can kill

FIGURE 1 | Summary of the process of autophagy.
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FIGURE 2 | Study flowchart.

TABLE 1 | Summary of DLBCL patients clinical characteristics.

GSE10846 (n = 412) GSE31312 (n = 470) NCICCR(n = 234)

Gender
Male 222 (53.9%) 271 (57.7%) 139 (59.4%)
Female 172 (41.7%) 199 (42.3%) 95 (40.6%)
Unknown 18 (4.4%) − −

Age (years)
≤60 188 (45.6%) 200 (42.6%) 116 (49.6%)
>60 224 (54.4%) 270 (57.4%) 118 (50.4%)

Ann Arbor Stage
I/II 188 (45.6%) 220 (46.8%) 109 (46.6%)
III/IV 217 (52.7%) 250 (53.2%) 121 (51.7%)
Unknown 7 (1.7%) − 4 (1.7%)

ECOG
<2 295 (71.6%) 374 (79.6%) −

≥2 93 (22.6%) 96 (20.4%) −

Unknown 24 (5.8%) − −

Subtype
GCB 182 (44.2%) 248 (52.8%) −

Non-GCB 230 (55.8%) 222 (47.2%) −

N_extra
<2 351 (85.2%) 366 (77.8%) −

≥2 30 (7.3%) 104 (22.1%) −

Unknown 31 (7.5%) − −

IPI
≤2 − 274 (58.3%) 126 (53.9%)
>2 − 150 (31.9%) 67 (28.6%)
Unknown − 46 (9.8%) 41 (17.5%)

Regimen
RCHOP 232 (56.3%) 470 (100%) −

CHOP 180 (43.7%) − −

Therapy response
CR − 354 (75.3%) −

PR − 72 (15.3%) −

SD − 20 (4.3%) −

PD − 24 (5.1%) −
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tumor cells by inducing autophagy (Akar et al., 2008; Chiu et al.,
2011). As the link between autophagy and tumor prognosis was
strengthened, increasing studies have demonstrated the
implication of autophagy in DLBCL. Zhang et al. (2020) found
that miR-449a downregulated the expression of ATG4B by
binding to the 3′UTR of its mRNA, which subsequently
reduced the autophagy of T-cell lymphoma cells and
promoted tumor apoptosis. Li et al. (2019) showed that

CUL4B activated the protective autophagy to promote the
growth of DLBCL cells through the JNK signaling pathway,
and interfering with the expression of CUL4B could inhibit
autophagy by regulating the JNK signaling pathway, thereby
decreasing cell proliferation. These findings indicated that
autophagy was tightly associated with the progression of
DLBCL, and the autophagy-related genes (ARGs) could serve
as promising therapeutic targets for DLBCL patients.

FIGURE 3 | Construction of the gene signature. (A) Overlapped genes generated by autophagy-related genes and prognosis-related genes of GSE10846 and
NCICCR datasets. (B) LASSO coefficient profiles of the 25 overlapped genes. (C) Nine genes are selected by LASSO Cox regression analysis. Two dotted vertical lines
are drawn at the value of minimum criteria and 1-s.e criteria of cross-validation, respectively. (D) Five genes that make up the gene signature and their corresponding
hazard ratios resulting from multivariable Cox regression. (E) Principal component analysis of the five autophagy-related genes between high-risk and low-risk
patients. Low-risk samples are marked in blue, and high-risk samples are marked in yellow.
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The aim of the present study was to construct an autophagy-
related gene signature to predict the prognosis of DLBCL patients
and explore the differences in pathways, immune response, and
tumor stemness between high-risk and low-risk patients.

MATERIALS AND METHODS

Selection of Autophagy-Related Genes
To find genes linked to autophagy, we examined the Human
Autophagy Database (http://autophagy.lu/index.html) which
included 231 genes reported to be involved in the autophagy

process (Moussay et al., 2011). In addition, the term “autophagy”
was also searched on the GeneCards website (https://www.
genecards.org/) to identify genes that are associated with the
autophagy activity. In this study, we defined an association score
higher than 7 as autophagy-related genes. After eliminating
overlapped genes in the two databases, a total of 309 genes
were finally selected for our study.

Patients’ Samples
Raw data and corresponding clinical information of the
GSE31312 and GSE10846 datasets were retrieved from the
Gene Expression Omnibus (GEO) database. Transcriptome

FIGURE 4 | Verification of the efficacy and accuracy of the gene signature. (A) Kaplan–Meier analysis of OS for low-risk and high-risk patients in the training cohort.
(B) Kaplan–Meier analysis of OS for low-risk and high-risk patients in the GSE31312 cohort. (C) Kaplan–Meier analysis of OS for low-risk and high-risk patients in the
NCICCR cohort. (D) Area under the ROC curve at 3 and 5 years to evaluate the accuracy of OS prediction in the training cohort. (E) Area under the ROC curve at 3 and
5 years to evaluate the accuracy of OS prediction in the GSE31312 cohort. (F) Area under the ROC curve at 3 and 5 years to evaluate the accuracy of OS prediction
in the NCICCR cohort. (G) Kaplan–Meier curves showing progression-free survival of high-risk and low-risk patients based on the GSE31312 cohort. (H) Area under the
ROC curve at 3 and 5 years to evaluate the accuracy of PFS prediction in the GSE31312 cohort. (I) Difference in the therapy response between high-risk and low-risk
patients in the GSE31312 cohort.
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RNA-sequencing and clinical data on 481 DLBCL samples were
obtained from the TCGA database (https://cancergenome.nih.
gov/). Patients without clinical survival information or with a
follow-up time <0 days were removed from the study. Finally, 234
patients from the TCGA-NCICCR dataset and 412 and 470
patients from the GSE10846 and GSE31312 datasets were
included in our study. Among them, GSE10846 served as the
training cohort, and GSE31312 and NCICCR were used as the
validation cohorts.

Data Processing
For GSE10846 and GSE31312 datasets, the robust multi-array
average (RMA) algorithm in the “affy” package in Bioconductor
was used to perform background correction, quantile
normalization, and final summarization of oligonucleotides
per transcript using the median polish algorithm for the raw
data (Zeng et al., 2019). In addition, the probes were annotated
according to the “hgu133plus2.db” package. If multiple probes
corresponded to the same gene, the largest average value was
calculated as the expression value of this gene. Finally, K Nearest
Neighbor (KNN) imputation was used to impute missing
expression values in the gene expression profiles (Yasrebi,
2015). For the NCICCR dataset, the IDs were annotated
based on the human genome reference (Hg38). In the event
of multiple IDs matching to the same gene, the genes with the
largest average value were served. Then, the voom algorithm
from the “limma” package was used for data normalization
(Ducie et al., 2017).

Construction of a Gene Signature
Associated With Survival of Diffuse Large
B-Cell Lymphoma Patients
Univariate Cox proportional hazard regression analysis was first
conducted to screen the genes associated with overall survival
(OS). Genes with p < 0.05 were considered statistically significant.
Then, the intersection of prognosis-related genes and autophagy-
related genes was taken to obtain prognostic-related autophagy
genes. These genes were further screened by LASSO regression
analysis and multivariate Cox regression analysis. We calculated
the riskscore for each patient by using the regression coefficients
of the individual genes obtained from the multivariate Cox
regression model and the expression value of each of the
selected genes. The formula was as follows:
Riskscore � ∑n

i�1expipβi. Patients in each cohort were
classified into high-risk and low-risk groups by using the
median riskscore.

Development of a Nomogram
A nomogramwas constructed based on the results of multivariate
analysis. The performance of the nomogram was measured by
area under the ROC curve and the calibration curve, and its
predictive ability was further verified in the validation cohort.
X-tile software was used to find the best cutoff value of the
nomogram score, according to the highest χ2-value defined by the

Kaplan–Meier survival analysis and log-rank test (Camp et al.,
2004).

Functional and Pathway Analysis
The correlation test was used to identify genes correlated with the
autophagy-related genes of the gene signature under the cutoff
value of the absolute value of the correlation coefficient which was
higher than 0.4, and the p value was lower than 0.05. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were then performed with
these hooked genes by the “clusterProfiler” package to further
explore the function of the autophagy-related genes of the gene
signature. In addition, we performed Gene Set Enrichment
Analysis (GSEA) to uncover the difference in signaling
pathways between high-risk and low-risk groups.

Estimation of TME Cell Infiltration
The ESTIMATE algorithm was performed to quantify the tumor
microenvironment, including the immune score and stroma
score. Moreover, we obtained gene sets of each TME
infiltrating immune cell type from the study of Charoentong
et al. (2017), which included activated dendritic cells,
macrophages, activated CD8+ T cells, regulatory T Cells, and
natural killer T cells. Subsequently, ssGSEA in the “GSVA”
package based on the deconvolution algorithm was used to
estimate the relative infiltration level of each cell population in
each DLBCL sample with gene expression data.

Correlation Between the Gene Signature
and Immune Activation-Related Genes and
Immune Activation Pathways
In order to explore a potential relationship between the gene
signature and immune response, we first selected TNF, IFNG,
TBX2, GZMB, CD8A, PRF1, GZMA, CXCL9, and CXCL10 that
were extracted from the published literature and considered to be
associated with immune activation. We further downloaded
immune activation gene sets from KEGG, which included
antigen processing and presentation, NOD-like receptor, T-cell
receptor, and Toll-like receptor (Zeng et al., 2019).

Correlation Between the Gene Signature
and Tumor Stemness
To explore the relationship between the gene signature and tumor
stemness, we used one-class logistic regression (OCLR) algorithm
to calculate the gene expression-based stemness index (mRNAsi)
of DLBCL patients, andmRNAsi was thenmapped to the range of
0–1, utilizing a linear transformation that was subtracted by the
minimum and divided by the maximum (Malta et al., 2018).
MRNAsi could describe the similarity between tumor cells and
stem cells, and it might be considered a quantitative form of
CSCs. Those patients with high mRNAsi scores were associated
with active biological processes and a higher level of tumor
dedifferentiation.
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Statistical Analysis
All analyses were carried out by R version 3.6.1 and
corresponding packages. We applied the Wilcoxon test for
continuous variables to compare the differences between high-
risk and low-risk groups. The Coxph function in the “survival”
package was used for univariate and multivariate Cox
regression analyses, and the “glmnet” package was
performed for Lasso regression analysis. Kaplan–Meier
curves were plotted by the “survival” package, and the log-
rank test was used to analyze the significant difference in
overall survival and progression-free survival of high-risk
and low-risk DLBCL patients. The area under the curve
(AUC) of the ROC curve was calculated by the “survival
ROC” package to evaluate the accuracy of the gene
signature. The “rms” package was used to generate a

nomogram. A normalized enrichment (NES) and p-adjusted
were used to determine the statistical significance of GSEA
analysis.

RESULTS

Construction and Validation of the Gene
Signature
Figure 1 summarizes the process of autophagy, the key pathways,
and autophagy-related genes involved. Figure 2 showed the study
flowchart. The clinical information of DLBCL patients from the
GSE31312, GSE10846, and NCICCR datasets is shown inTable 1.
In order to identify prognosis-related genes, we respectively
performed univariate Cox regression analysis in NCICCR and

FIGURE 5 |Comparison of 3-year ROC curves with other common clinical characteristics showed the superiority of the gene signature. (A)GSE10846 dataset. (B)
GSE31312 dataset. (C) NCICCR dataset.

TABLE 2 | Univariate Cox regression analysis of overall survival in the training and validation cohorts.

Variables Training cohort NCICCR cohort GSE31312 cohort

HR (95%CI) p HR (95%CI) p HR (95%CI) p

Age
(>60 vs. ≤60) 2.015 (1.422–2.855) <0.001 1.963 (1.296–2.972) 0.001 1.850 (1.336–2.560) <0.001

Gender
(Men vs. Women) 0.912 (0.654–1.270) 0.585 1.223 (0.804–1.860) 0.348 0.966 (0.712–1.310) 0.824

Subtype
(Non-GCB vs. GCB) 2.698 (1.858–3.918) <0.001 − − 1.512 (1.117–2.047) 0007

Regimen
(CHOP vs. RCHOP) 1.917 (1.343–2.737) <0.001 − − − −

ECOG
(≥2 vs. <2) 2.884 (2.049–4.058) <0.001 − − 2.037 (1.460–2.841) <0.001

Stage
(III/IV vs. I/II) 1.917 (1.357–2.709) <0.001 1.500 (0.996–2.260) 0.052 2.337 (1.688–3.238) <0.001

N_extra
(≥2 vs. <2) 1.869 (1.089–3.207) 0.023 − − 2.202 (1.597–3.038) <0.001

Riskscore
(High vs. Low) 2.608 (1.824–3.728) <0.001 2.457 (1.616–3.736) <0.001 2.326 (1.680–3.220) <0.001
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GSE10846 datasets. Under the cutoff values of p < 0.05, 8600
genes in GSE10846 and 6294 genes in the NCICCR dataset were
considered as prognosis-related genes. By overlapping the
prognosis-related genes with autophagy-related genes, 25
shared genes were retained (Figure 3A). These significant
genes were afterward entered into LASSO regression analysis
and multivariate Cox regression analysis, and the GSE10846
dataset served as the training cohort (Figures 3B,C). Finally,
TP53INP2, PRKCQ, TUSC1, PRKAB1, and HIF1A were
identified as members of the gene signature (Figure 3D).
TP53INP2 with HR > 1 was regarded as a risk gene, while
remaining genes with HR < 1 as protective genes. According

to the relative expression level of five genes and the corresponding
multivariate Cox regression coefficient, the riskscore of each
sample in the training and validation cohorts could be
calculated easily. The riskscore was calculated as follows:
Riskscore = (0.524 × TP53INP2 expression)—(0.276 ×
PRKCQ expression)—(0.373 × TUSC1 expression)—(0.476 ×
PRKAB1 expression)—(0.689 × HIF1A expression). The
patients in each cohort were classified into high-risk and low-
risk groups according to the median value of the riskscore.
Principal component analysis (PCA) based on the five
autophagy-related genes confirmed the difference between the
two groups (Figure 3E). Kaplan–Meier curves demonstrated that

TABLE 3 | Multivariate Cox regression analysis of overall survival in the training and validation cohorts.

Variable Training cohort NCICCR cohort GSE31312 cohort

HR (95%CI) p HR (95%CI) p HR (95%CI) p

Age
(>60 vs. <=60) 1.801 (1.261–2.573) 0.001 1.945 (1.283–2.949) 0.002 1.496 (1.068–2.096) 0.019
Gender
(Men vs. women) − − − − − −

Subtype
(Non-GCB vs. GCB) 1.785 (1.188–2.682) 0.005 − − 1.361 (0.997–1.856) 0.051
Regimen
(CHOP vs. RCHOP) 1.757 (1.141–2.705) 0.01 − − − −

ECOG
(≥2 vs. < 2) 2.138 (1.486–3.076) <0.001 − − 1.745 (1.233–2.467) 0.001
Stage
(III/IV vs. I/II) 1.436 (0.995–2.072) 0.053 − − 1.725 (1.207–2.463) 0.002
N_extra
(≥2 vs. < 2) 2.293 (1.227–4.286) 0.009 − − 1.623 (1.152–2.285) 0.019
Riskscore
(High vs. low) 1.830 (1.218–2.750) 0.004 2.444 (1.605–3.723) <0.001 1.984 (1.417–2.777) <0.001

TABLE 4 | Stratified analysis for DLBCL patients based on the gene signature.

Events (n)/patients (N) HR (95%CI) p-value

All patients Low risk High risk

Age
≤60 52/188 13/98 39/90 2.8 (1.8–4.3) p < 0.0001
>60 111/224 35/108 76/116 2.7 (2.0–3.5) p < 0.0001

Subgroup
GCB 48/182 20/123 28/59 3.9 (2.4–6.4) p < 0.0001
Non_GCB 115/230 28/83 87/147 2.1 (1.5–2.8) p = 0.0002

Stage
I/II 57/188 18/102 39/86 3.0 (1.9–4.5) p = 0.0264
III/IV 102/217 28/99 74/118 2.6 (1.9–3.4) p < 0.0001

Regimen
RCHOP 59/232 30/152 29/80 2.6 (1.7–3.9) p = 0.0008
CHOP 104/170 18/54 86/126 2.6 (1.9–3.7) p < 0.0001

ECOG
<2 97/295 30/151 67/144 2.5 (1.9–3.4) p < 0.0001
≥2 60/93 16/40 44/53 3.1 (2.0–4.8) p < 0.0001

N_extra
<2 139/351 41/175 98/176 2.9 (2.2–3.8) p < 0.0001
≥2 16/30 5/14 11/16 1.7 (0.8–3.3) p = 0.1272

IPI
≤2 70/274 16/142 54/132 1.7 (1.4–2.2) p < 0.0001
>2 85/150 26/61 59/89 1.4 (1.2–1.7) p = 0.0146
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the patients in the high-risk group had shorter overall survival
(OS) than those in the low-risk group (HR: 2.7, 95%CI: 2.1–3.5,
and p < 0.001; Figure 4A). The finding was further validated in
external cohorts to evaluate the reproducibility and validity of this
gene signature (GSE31312: HR: 1.6, 95% CI: 1.4–1.8, and p < 0.001;
NCICCR: HR: 1.5, 95% CI: 1.2–1.8, and p < 0.001; Figures 4B,C).
In predicting the 3-year and 5-year OS rate of DLBCL patients, the
gene signature achieved AUC values of 0.735 and 0.706 in the
GSE10846 cohort, 0.676 and 0.673 in the GSE31312 cohort, and
0.666 and 0.686 in the NCICCR cohort, respectively, showing a
substantially effective performance for overall survival prediction
(Figures 4D–F). In addition, shorter progressive-free survival
(PFS) was found in the high-risk patients of the GSE31312
cohort (HR: 1.5, 95%CI: 1.3–1.7; Figure 4G). The gene
signature also showed good performance in predicting PFS with
3-year AUC and 5-year AUC of 0.677 and 0.678 (Figure 4H). In
addition, patients with low-risk in the GSE31312 cohort showed a
higher rate of remission rate (Figure 4I).

After removing patients with incomplete clinical information,
we analyzed the correlation between gene signature and clinical
factors. The results suggested that the gene signature was related
to the ECOG score and subtype, but there was no obvious
correlation with other clinical factors (Supplementary Figure
S1). In addition, the multi-index ROC curve indicated that the
predictive accuracy of the gene signature was higher than that of
the clinicopathological factors, even higher than the IPI score in
the GSE31312 cohort (Figure 5).

Gene Signature Is Independent of Other
Clinicopathological Factors
We further evaluated the prognostic value of the gene
signature and other clinicopathological factors by using

univariate and multivariate Cox regression analyses. It
suggested that the gene signature may serve as a valuable
prognostic parameter, independent of other clinical factors
(GSE10846: HR: 1.830, 95% CI: 1.218–2.750, p = 0.004;
NCICCR: HR: 2.444, 95% CI: 1.605–3.723, p < 0.001; GSE
31312: HR: 1.984, 95% I: 1.417–2.777, p < 0.001; Table 2 and
Table 3). When stratified by age, subtype, stage, regimen,
ECOG, and IPI score, the gene signature was still a
clinically and statistically significant prognostic model
(Table 4).

In addition, we further examined the effect of treatment
response on survival. The response to treatment was found to
be significantly correlated with the survival rate (Supplementary
Figure S2A). The median OS time was not yet reached in patients
with complete response, and the median OS time was 1.429,
0.936, and 0.341 years in patients with partial response, stable
disease, and progressive disease, respectively. We also found that
the gene signature could divide patients achieving complete
response into two groups with significant differences in
survival (Supplementary Figure S2B). This result indicated
that achieving CR did not always mean a favorable prognosis.
However, the gene signature did not have the ability to further
distinguish the prognosis of patients with partial response, stable
disease, and progressive disease (Supplementary Figure S2C–E).

Personalized Prognostic Prediction
Nomogram
We generated a nomogram to predict the probability of 3-year
and 5-year OS by integrating the gene signature and clinical
factors (Figure 6). In order to better conduct external verification,
we converted the gene signature into a binary variable. The AUC
at 3 years of the nomogram in the training cohort was 0.771, and

FIGURE 6 | Predictive nomogram was constructed using clinical risk factors and the gene signature.
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the AUC of the gene signature was 0.658 (Figure 7A). The
GSE31312 cohort was used to validate the predictive accuracy
of the nomogram, and the AUC at 3 years of the nomogram in the
GSE31312 cohort was 0.735, which is higher than that of the gene
signature and IPI score (Figure 7B). In addition, despite the
training cohort or the validation cohorts, the calibration plot had
a favorable agreement between the prediction by the nomogram
and ideal model in the probability of 3-year and 5-year survival
(Figures 7C–F).

We defined the optimal cutoff value of the nomogram score
based on the X-tile plots, and patients in both the training and
validation cohort were separately stratified into three subgroups
according to the cutoff value (0–143, 144–309, and ≥310). In the
training cohort, the 5-year OS rate of the nomogram model was
83.1, 47.9, and 13.6%, respectively, while the 5-year OS rate of the
Ann arbor stage I–II and III–IV was 67.6 and 47.6%, respectively
(Figures 7G,H). In the validation cohort, the 5-year OS rates of
the nomogram model were 83.2, 50.7, and 22.5%, respectively,
while the 5-year OS rates of the IPI score 0–2 and 3–5 were 72.8
and 36.4%, respectively, and those of Ann arbor stage I–II and
III–IV were 74 and 48%, respectively. Therefore, the nomogram
displayed better prognostic stratification ability than the IPI score
and Ann Arbor staging system (Figures 7I–K).

Identification of Involved Functions and
Signaling Pathways
To investigate the potential functions and signaling pathways
related to the gene signature in DLBCL, we used the five genes as
baits to hook 501 highly relevant genes by the correlation test. GO
analysis indicated that these genes were associated with cell
adhesion, immune cell activation, and differentiation, as well
as cytokine and growth factor-binding reaction (Figure 8A).
KEGG analysis indicated that the 501 genes were involved in
protein digestion and absorption, focal adhesion, and ECM-
receptor interaction (Figure 8B). In addition, the differentially
expressed genes between low-risk and high-risk groups were
mainly enriched in the PI3K-AKT signaling pathway, focal
adhesion, protein digestion and absorption, ECM-receptor
interaction, and other pathways (Supplementary Figure S3).
In the GSEA analysis between low-risk and high-risk groups,
we found that the high-risk group was significantly associated
with doxorubicin resistance (NES = 2.507 and p.adjust = 0.0064),
NF-κB pathway (NES = 1.726 and p.adjust = 0.0145), cell cycle
(NES = 2.052 and p.adjust = 0.0157), and DNA replication
pathway (NES = 2.446 and p.adjust = 0.0134)(Figures
9A,B,D,E), while the low-risk group was associated with the
activation of the PI3K-AKT pathway (NES = −1.793 and p.adjust
= 0.0101) and adaptive immune response (NES = −1.683 and
p.adjust = 0.0262) (Figures 9C,F).

Infiltration Characteristics of TME Cells and
Immune Response in the High-Risk and
Low-Risk Groups
We used the ESTIMATE algorithm to quantify the overall
infiltration of immune and stromal cells between high-risk and

low-risk patients. The results obtained indicated that there was
significant higher immune and stroma cell infiltration in the
low-risk patients (Figure 10A). To better elaborate the
aforementioned findings, subsequent analysis of ssGSEA
indicated that the low-risk group was rich in not only
innate immune cell infiltration (e.g., dendritic cells,
myeloid-derived suppressor cells, macrophages, mast cells,
and natural killer cells) but also adaptive immune cell
infiltration (e.g., activated CD4 T cells, activated CD8
T cells, gamma delta T cells, regulatory T cells, T follicular
helper cells, type 1 T helper cells, type 17 T helper cells, and
type 2 T helper cells) (Figure 10B). As expected, the low-risk
group showed higher expression of mRNA related to immune
activation and more obvious activation of immune pathways,
including antigen processing and presentation pathways,
NOD-like receptors, T-cell receptors, and Toll-like receptor
pathways (Figures 10C,D). In summary, there was a higher
degree of immune cell infiltration and immune activation
response in the low-risk group.

Difference in Tumor Stemness Between
High-Risk and Low-Risk Groups
We implemented the OCLR algorithm to obtain the mRNAsi of
DLBCL. As shown in Figure 11A, patients in the high-risk group
were more likely to have higher mRNAsi, suggesting that patients
in the high-risk group had higher similarity to cancer stem cells,
presenting more active biological processes and higher tumor
dedifferentiation degree. In addition, the high-mRNAsi group
showed a worse prognosis than the low-mRNAsi group
(Figure 11B).

DISCUSSION

Diffuse large B-cell lymphoma is a highly heterogeneous tumor
with different biological and clinical characteristics, so there is
a large difference in the survival rate between the high-risk and
low-risk patients (Juskevicius et al., 2016). Due to several limits
in the present prognostic assessment system, it is urgent to
establish a new model containing genetic information to better
predict the prognosis of DLBCL patients (Ruppert et al., 2020).

The study of autophagy is a rapidly evolving field with great
potential for providing new horizons for the treatment of
malignant disease. Autophagy can regulate the components of
the immune system, thereby affecting its homeostasis, survival,
activation, proliferation, and differentiation (Jiang et al., 2019). At
the same time, autophagy is also shown to enhance
chemoresistance and helps in maintaining the stemness of
tumor stem cells (Jang et al., 2017). Xu et al. (2021)uncovered
that ARRDC1-AS1 facilitated the progression of DLBCL and
enhanced autophagy of DLBCL by targeting the miR-2355-5p/
ATG5 axis. Additionally, Amaravadi et al. (2007)found that
inhibition of autophagy with either chloroquine or ATG5
short hairpin RNA (shRNA) enhanced the ability of either p53
activation or alkylating drug therapy to induce lymphoma
cell death.
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In this study, we successively used univariate Cox regression
analysis, LASSO Cox regression analysis, and multivariate Cox
regression analysis to screen autophagy-related prognostic genes
and finally identified five genes to construct gene signature.
However, unlike other research, we used two sources of
autophagy-related genes from Hadb and GeneCards databases,

respectively, to avoid missing some important genes that were
fundamental to the prognosis of DLBCL. Meanwhile, to
incorporate into genes with higher relevance to autophagy, we
defined an association score higher than 7 as autophagy-related
genes. Our results showed that this gene signature could
effectively classify patients into high-risk and low-risk

FIGURE 7 | Verification of the performance of the nomogram model. (A) Area under the ROC curve at 3 years was used to assess the prognostic accuracy of the
nomogram in the GSE10846 dataset. (B) Area under the ROC curve at 3 years was used to assess the prognostic accuracy of the nomogram in the GSE31312 dataset.
(C)Calibration curves of the nomogram in prediction of the 3-year OS in the GSE10846 dataset. (D)Calibration curves of the nomogram in prediction of the 3-year OS in
the GSE31312 dataset. (E) Calibration curves of the nomogram in prediction of the 5-year OS in the GSE10846 dataset. (F) Calibration curves of the nomogram in
prediction of the 5-year OS in the GSE31312 dataset. (G) Kaplan–Meier curves showing the survival difference between different nomogram score groups in the
GSE10846 dataset. (H) Kaplan–Meier curves showing the survival difference between different stages in the GSE10846 dataset. (I) Kaplan–Meier curves showing the
survival difference between different nomogram score groups in the GSE31312 dataset. (J) Kaplan–Meier curves showing the survival difference between different IPI
score groups in the GSE31312 dataset. (K) Kaplan–Meier curves showing the survival difference between different stages in the GSE31312 dataset.
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groups with significant differences in overall survival and
progression-free survival and had favorable prognostic
accuracy. The nomogram consisted of the gene signature
and clinical factors had better discrimination and
prognostic stratification ability than the gene signature and
IPI score alone, and it also had a favorable consistency between
the predicted and actual survival. To the best of our knowledge,
the gene prognostic models have been acknowledged by the

majority of researchers, but there were few studies concerning
DLBCL. Pan et al. constructed a TME-relevant gene signature
that could not only predict prognosis but also explored the
relationship between the TME and DLBCL (Pan et al., 2021).
The autophagy-related gene signature outlined in our study
was the first explanation toward the pathophysiological
process of diffuse large B-cell lymphoma with poor
prognosis from the perspective of autophagy.

FIGURE 8 | Potential functions and signaling pathways related to the autophagy-related genes of the gene signature. (A) GO analysis. (B) KEGG analysis.

FIGURE 9 | Pathway characteristics of gene signature in DLBCL. (A-F) Gene set enrichment analysis revealed pathways enriched in the high-risk group and low-
risk group.
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The results of GSEA analysis revealed the differences in pathways
that might lead to different prognosis in high- and low-risk groups.
Doxorubicin resistance, NF-κB pathway, cell cycle, and DNA
replication pathway were activated in high-risk patients. The
PI3K-AKT signaling pathway and adaptive immune response
pathway were activated in low-risk patients. It is known that the
abnormal regulation of the cell cycle and DNA replication played a
crucial role in promoting tumor growth (Song et al., 2021). The
previous study showed that constitutive activation of NF-κB was
characteristic of most ABC subtypes of DLBCL, and the activation of
the NF-κB pathwaymay be one of the mechanisms resulting in drug
resistance of relapsed/refractory DLBCL (Turturro, 2015). For the
PI3K-AKT signaling pathway enriched in the low-risk group, it
could inhibit the activation of autophagy (M. Martelli et al., 2011).
There was a good consistency with the findings of recent studies. Xie
and his colleagues constructed an RNA binding protein-based
prognostic signature for diffuse large B-cell lymphoma and also

found that the activation of autophagy was associated with high-risk
patients who had poor outcomes (Xie et al., 2021).

In addition, we also found that the low-risk group exhibited
higher immune cell infiltration. The latest research showed that
targeting autophagy pathways could reshape the tumor
microenvironment by improving antigen processing and
presentation to enhance T-cell response or increasing the
production of Th1 chemokines to promote the infiltration of
effector immune cells (Xia et al., 2021). A phase II clinical study
also showed that after hydroxychloroquine was used in combination
with the chemotherapy drugs paclitaxel and gemcitabine, patients
with pancreatic adenocarcinoma showed increased immune cell
infiltration (Zeh et al., 2020). Moreover, there was a higher
degree of autophagy in the high-risk group, and patients in the
high-risk group might have higher mRNAsi, indicating that these
patients were more likely to have characteristics such as
chemotherapy resistance and more invasiveness like CSCs.

FIGURE 10 | Correlation between gene signature and the tumor microenvironment and immune reaction. (A) Differences of immunescore and stromalscore
(calculated by the ESTIMATE algorithm) between high-risk and low-risk patients. (B) Abundance of each TME cell in high-risk and low-risk groups. (C) Difference in the
immune-activation–related gene expression between high-risk and low-risk patients. (D) Differences in immune-activated pathways between high-risk and low-risk
patients. TLR, Toll-like receptor; NLR, NOD-like receptor; TCR, T-cell receptor; APAR, antigen processing and presentation. The statistical difference of two groups
was compared by the Wilcoxon test. *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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Therefore, the application of autophagy inhibitors might be a
potentially important strategy for anti-tumor therapy.

The five genes identified in our study have previously been
correlated with the prognosis of tumors. PRKCQ is a member of
the novel protein kinase C (PKC) family and has been associated
with many types of cancers, such as chromophobe renal cell
carcinomas, breast cancer, and Notch-driven T-cell leukemia
(Villalba and Altman, 2002; Byerly et al., 2016; Park et al.,
2017). According to the GeneCards database, tumor suppressor
candidate gene 1 (TUSC1) is located on chromosome 9p and is
downregulated in non–small cell lung cancer and small cell lung
cancer cell lines, suggesting that it may play a role in lung
tumorigenesis. Tumor Protein P53 Inducible Nuclear Protein 2
(TP53INP2), which has about 36% homology with the known
tumor protein 53-induced nuclear protein 1, plays a role in
carrying LC3 and its homologous proteins out of the nucleus to
autophagosome and promoting the interaction of LC3 and its
homologous proteins with ATG7 (Liu and Klionsky, 2015).
Current research shows that TP53INP2 either can promote the
development or inhibit the proliferation of tumor cells depending
on the tumor types (He et al., 2015; Hu et al., 2017). AMPK is a
heterotrimer consisting of an alpha catalytic subunit and non-
catalytic beta and gamma subunits. Among them, the beta1 subunit
was encoded by PRKAB1. A finding indicated that the
overexpression of AMPK-β1 inhibited the proliferation,
migration, and invasion of ovarian cancer cells. When siRNA
was used to interfere with AMPK-β1, the invasion ability of tumor
cells would be enhanced (Li et al., 2014). As a protein-coding gene,
HIF-1A encoded the alpha subunit of transcription factor hypoxia-
inducible factor-1 (HIF-1). Overexpression of HIF-1α has been
reported in several solid tumors, and elevatedHIF-1α protein levels
correlate with poor prognosis in majority of tumors (Zhong et al.,
1999). However, Evens et al. (2010)revealed that expression ofHIF-
1α was an independent favorable prognostic factor affecting the
overall survival in DLBCL patients receiving RCHOP regimen.
Nevertheless, despite the proposed functions of these five ARGs in
various types of cancer, the specific role of these genes in patients
with DLBCL remains unclear.

Inevitably, there were still some potential limitations that
could not be neglected in the present study. First, there are
unknown biases because of the retrospective nature of our
data. Second, the information of several clinical data of some
patients was unavailable in these public datasets, and these
patients need to be excluded in some analysis. Third, there
were only autophagy-related genes included in our study,
which did not represent the entire gene transcription profile
associated with DLBCL. Fourth, there was a lack of further
experiments to identify the function of these genes. Hence, the
value of this gene signature is preliminarily demonstrated, and
further verification is expected.

CONCLUSION

Taken together, we identified an autophagy-related gene
signature that could efficiently predict the overall survival of
DLBCL patients and was independent of other clinical factors.
Moreover, the gene signature might serve as a promising marker
of therapeutic resistance in DLBCL patients.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These data
can be found at: https://cancergenome.nih.gov/ https://www.
ncbi.nlm.nih.gov/gds/?term=.

AUTHOR CONTRIBUTIONS

XZ and Y-ZH put forward the concept of the study, designed the
study, processed the data, prepared the manuscript, and
contributed to the statistical analysis. DL and C-RL
contributed to the data acquisition and performed the
literature search for the manuscript. DL contributed to the
quality control of data. LW and RH put forward the concept

FIGURE 11 | Correlation between the gene signature and tumor stemness. (A) Differences of mRNAsi between high-risk and low-risk patients. (B) Survival
difference between high-mRNAsi and low-mRNAsi. p-values were calculated with the log-rank test.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 86217914

Zhou et al. A Prognostic Gene Signature for DLBCL

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/gds/?term=
https://www.ncbi.nlm.nih.gov/gds/?term=
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


of the study, contributed to the data analysis and interpretation,
and reviewed the manuscript. All authors read and approved the
final manuscript.

ACKNOWLEDGMENTS

The authors thank the contributors of TCGA and GEO for
sharing the diffuse large B-cell lymphoma data. This work was

financially supported by the National Natural Science Foundation
of China (81873450).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.862179/
full#supplementary-material

REFERENCES

Akar, U., Chaves-Reyez, A., Barria, M., Tari, A., Sanguino, A., Kondo, Y., et al.
(2008). Silencing of Bcl-2 Expression by Small Interfering RNA Induces
Autophagic Cell Death in MCF-7 Breast Cancer Cells. Autophagy 4 (5),
669–679. doi:10.4161/auto.6083

Amaravadi, R. K., Yu, D., Lum, J. J., Bui, T., Christophorou, M. A., Evan, G. I., et al.
(2007). Autophagy Inhibition Enhances Therapy-Induced Apoptosis in a Myc-
Induced Model of Lymphoma. J. Clin. Invest. 117 (2), 326–336. doi:10.1172/
jci28833

Byerly, J., Halstead-Nussloch, G., Ito, K., Katsyv, I., and Irie, H. Y. (2016). PRKCQ
Promotes Oncogenic Growth and Anoikis Resistance of a Subset of Triple-
Negative Breast Cancer Cells. Breast Cancer Res. 18 (1), 95. doi:10.1186/s13058-
016-0749-6

Camp, R. L., Dolled-Filhart, M., and Rimm, D. L. (2004). X-Tile: A New Bio-
Informatics Tool for Biomarker Assessment and Outcome-Based Cut-point
Optimization. Clin. Cancer Res. 10 (21), 7252–7259. doi:10.1158/1078-0432.
ccr-04-0713

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder,
D., et al. (2017). Pan-Cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of Response to
Checkpoint Blockade. Cell Rep. 18 (1), 248–262. doi:10.1016/j.celrep.
2016.12.019

Chiu, H.-W., Ho, Y.-S., and Wang, Y.-J. (2011). Arsenic Trioxide Induces
Autophagy and Apoptosis in Human Glioma Cells In Vitro and In Vivo
through Downregulation of Survivin. J. Mol. Med. 89 (9), 927–941. doi:10.
1007/s00109-011-0763-1

Coccaro, N., Anelli, L., Zagaria, A., Perrone, T., Specchia, G., and Albano, F. (2020).
Molecular Complexity of Diffuse Large B-Cell Lymphoma: Can it be a
Roadmap for Precision Medicine? Cancers 12 (1), 185. doi:10.3390/
cancers12010185

Coutinho, R., Clear, A. J., Owen, A., Wilson, A., Matthews, J., Lee, A., et al. (2013). Poor
Concordance Among Nine Immunohistochemistry Classifiers of Cell-Of-Origin for
Diffuse Large B-Cell Lymphoma: Implications for Therapeutic Strategies. Clin.
Cancer Res. 19 (24), 6686–6695. doi:10.1158/1078-0432.ccr-13-1482

Cufí, S., Vazquez-Martin, A., Oliveras-Ferraros, C., Martin-Castillo, B., Vellon, L.,
and Menendez, J. A. (2011). Autophagy Positively Regulates the CD44(+)
CD24(-/low) Breast Cancer Stem-Like Phenotype. Cell Cycle 10 (22),
3871–3885. doi:10.4161/cc.10.22.17976

Ducie, J., Dao, F., Considine, M., Olvera, N., Shaw, P. A., Kurman, R. J., et al.
(2017). Molecular Analysis of High-Grade Serous Ovarian Carcinoma with and
without Associated Serous Tubal Intra-Epithelial Carcinoma. Nat. Commun. 8
(1), 990. doi:10.1038/s41467-017-01217-9

Evens, A. M., Sehn, L. H., Farinha, P., Nelson, B. P., Raji, A., Lu, Y., et al. (2010).
Hypoxia-Inducible Factor-1 {alpha} Expression Predicts Superior Survival in
Patients with Diffuse Large B-Cell Lymphoma Treated with R-CHOP. J. Clin.
Oncol. 28 (6), 1017–1024. doi:10.1200/jco.2009.24.1893

Hans, C. P., Weisenburger, D. D., Greiner, T. C., Gascoyne, R. D., Delabie, J., Ott,
G., et al. (2004). Confirmation of the Molecular Classification of Diffuse Large
B-Cell Lymphoma by Immunohistochemistry Using a TissueMicroarray. Blood
103 (1), 275–282. doi:10.1182/blood-2003-05-1545

He, M., Zhao, Y., Yi, H., Sun, H., Liu, X., and Ma, S. (2015). The Combination of
TP53INP1, TP53INP2 and AXIN2: Potential Biomarkers in Papillary Thyroid
Carcinoma. Endocrine 48 (2), 712–717. doi:10.1007/s12020-014-0341-8

Hönscheid, P., Datta, K., and Muders, M. H. (2014). Autophagy: Detection,
Regulation and its Role in Cancer and Therapy Response. Int. J. Radiat.
Biol. 90 (8), 628–635. doi:10.3109/09553002.2014.907932

Hu, Y., Li, X., Xue, W., Pang, J., Meng, Y., Shen, Y., et al. (2017). TP53INP2-Related
Basal Autophagy is Involved in the Growth and Malignant Progression in
Human Liposarcoma Cells. Biomed. Pharmacother. 88, 562–568. doi:10.1016/j.
biopha.2017.01.110

Jang, J. E., Eom, J.-I., Jeung, H.-K., Cheong, J.-W., Lee, J. Y., Kim, J. S., et al. (2017).
AMPK-ULK1-Mediated Autophagy Confers Resistance to BET Inhibitor JQ1
in Acute Myeloid Leukemia Stem Cells. Clin. Cancer Res. 23 (11), 2781–2794.
doi:10.1158/1078-0432.ccr-16-1903

Jiang, G. M., Tan, Y., Wang, H., Peng, L., Chen, H. T., Meng, X. J., et al. (2019). The
Relationship between Autophagy and the Immune System and its Applications
for Tumor Immunotherapy. Mol. Cancer 18 (1), 17. doi:10.1186/s12943-019-
0944-z

Juskevicius, D., Lorber, T., Gsponer, J., Perrina, V., Ruiz, C., Stenner-Liewen, F.,
et al. (2016). Distinct Genetic Evolution Patterns of Relapsing Diffuse Large
B-Cell Lymphoma Revealed by Genome-Wide Copy Number Aberration and
Targeted Sequencing Analysis. Leukemia 30 (12), 2385–2395. doi:10.1038/leu.
2016.135

Katheder, N. S., Khezri, R., Schultz, F. S. W., Jain, A., Rahman, M.M., Schink, K. O.,
et al. (2017). Microenvironmental Autophagy Promotes Tumour Growth.
Nature 541 (7637), 417–420. doi:10.1038/nature20815

Li, C., Liu, V. W., Chiu, P. M., Yao, K.-M., Ngan, H. Y., and Chan, D. W. (2014).
Reduced Expression of AMPK-β1 during Tumor Progression Enhances the
Oncogenic Capacity of Advanced Ovarian Cancer. Mol. Cancer 13, 49. doi:10.
1186/1476-4598-13-49

Li, Y., Zhou, X., Zhang, Y., Yang, J., Xu, Y., Zhao, Y., et al. (2019). CUL4B Regulates
Autophagy via JNK Signaling in Diffuse Large B-Cell Lymphoma. Cell Cycle 18
(4), 379–394. doi:10.1080/15384101.2018.1560718

Liu, X., and Klionsky, D. J. (2015). TP53INP2/DOR Protein Chaperones
Deacetylated Nuclear LC3 to the Cytoplasm to Promote Macroautophagy.
Autophagy 11 (9), 1441–1442. doi:10.1080/15548627.2015.1074373

Malta, T. M., Sokolov, A., Gentles, A. J., Burzykowski, T., Poisson, L., Weinstein,
J. N., et al. (2018). Machine Learning Identifies Stemness Features Associated
with Oncogenic Dedifferentiation. Cell 173 (2), 338–354. e315. doi:10.1016/j.
cell.2018.03.034

M. Martelli, A., Evangelisti, C., Ramazzotti, M. G., Fini, M., Giardino, R., Manzoli,
L., et al. (2011). Targeting the Phosphatidylinositol 3-kinase/Akt/Mammalian
Target of Rapamycin Signaling Network in Cancer Stem Cells. Curr. Med.
Chem. 18 (18), 2715–2726. doi:10.2174/092986711796011201

Moussay, E., Kaoma, T., Baginska, J., Muller, A., Van Moer, K., Nicot, N., et al.
(2011). The Acquisition of Resistance to TNFα in Breast Cancer Cells Is
Associated with Constitutive Activation of Autophagy as Revealed by a
Transcriptome Analysis Using a Custom Microarray. Autophagy 7 (7),
760–770. doi:10.4161/auto.7.7.15454

Pan, T., He, Y., Chen, H., Pei, J., Li, Y., Zeng, R., et al. (2021). Identification and
Validation of a Prognostic Gene Signature for Diffuse Large B-Cell Lymphoma
Based on Tumor Microenvironment-Related Genes. Front. Oncol. 11, 614211.
doi:10.3389/fonc.2021.614211

Park, C. K., Kim, W. K., and Kim, H. (2017). Clinicopathological
Characteristics of KIT and Protein Kinase C-δ Expression in Adenoid
Cystic Carcinoma: Comparison with Chromophobe Renal Cell Carcinoma
and Gastrointestinal Stromal Tumour. Histopathology 71 (4), 529–542.
doi:10.1111/his.13270

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 86217915

Zhou et al. A Prognostic Gene Signature for DLBCL

https://www.frontiersin.org/articles/10.3389/fgene.2022.862179/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.862179/full#supplementary-material
https://doi.org/10.4161/auto.6083
https://doi.org/10.1172/jci28833
https://doi.org/10.1172/jci28833
https://doi.org/10.1186/s13058-016-0749-6
https://doi.org/10.1186/s13058-016-0749-6
https://doi.org/10.1158/1078-0432.ccr-04-0713
https://doi.org/10.1158/1078-0432.ccr-04-0713
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1007/s00109-011-0763-1
https://doi.org/10.1007/s00109-011-0763-1
https://doi.org/10.3390/cancers12010185
https://doi.org/10.3390/cancers12010185
https://doi.org/10.1158/1078-0432.ccr-13-1482
https://doi.org/10.4161/cc.10.22.17976
https://doi.org/10.1038/s41467-017-01217-9
https://doi.org/10.1200/jco.2009.24.1893
https://doi.org/10.1182/blood-2003-05-1545
https://doi.org/10.1007/s12020-014-0341-8
https://doi.org/10.3109/09553002.2014.907932
https://doi.org/10.1016/j.biopha.2017.01.110
https://doi.org/10.1016/j.biopha.2017.01.110
https://doi.org/10.1158/1078-0432.ccr-16-1903
https://doi.org/10.1186/s12943-019-0944-z
https://doi.org/10.1186/s12943-019-0944-z
https://doi.org/10.1038/leu.2016.135
https://doi.org/10.1038/leu.2016.135
https://doi.org/10.1038/nature20815
https://doi.org/10.1186/1476-4598-13-49
https://doi.org/10.1186/1476-4598-13-49
https://doi.org/10.1080/15384101.2018.1560718
https://doi.org/10.1080/15548627.2015.1074373
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.1016/j.cell.2018.03.034
https://doi.org/10.2174/092986711796011201
https://doi.org/10.4161/auto.7.7.15454
https://doi.org/10.3389/fonc.2021.614211
https://doi.org/10.1111/his.13270
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Reddy, A., Zhang, J., Davis, N. S., Moffitt, A. B., Love, C. L., Waldrop, A., et al.
(2017). Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell
171 (2), 481–494. e415. doi:10.1016/j.cell.2017.09.027

Ruppert, A. S., Dixon, J. G., Salles, G., Wall, A., Cunningham, D., Poeschel, V., et al.
(2020). International Prognostic Indices in Diffuse Large B-Cell Lymphoma: a
Comparison of IPI, R-IPI, and NCCN-IPI. Blood 135 (23), 2041–2048. doi:10.
1182/blood.2019002729

Song, C., Pan, B., Yang, X., and Tang, W. (2021). Polyphyllin VII Suppresses Cell
Proliferation, the Cell Cycle and Cell Migration in Colorectal Cancer. Oncol.
Lett. 21 (1), 25. doi:10.3892/ol.2020.12286

Sun,W.-L., Chen, J., Wang, Y.-P., and Zheng, H. (2011). Autophagy Protects Breast
Cancer Cells from Epirubicin-Induced Apoptosis and Facilitates Epirubicin-
Resistance Development. Autophagy 7 (9), 1035–1044. doi:10.4161/auto.7.9.
16521

Tian, X. P., Xie, D., Huang, W. J., Ma, S.-Y., Wang, L., Liu, Y.-H., et al. (2020). A
Gene-Expression-Based Signature Predicts Survival in Adults with T-Cell
Lymphoblastic Lymphoma: A Multicenter Study. Leukemia 34 (9),
2392–2404. doi:10.1038/s41375-020-0757-5

Turturro, F. (2015). Constitutive NF- κ B Activation Underlines Major Mechanism
of Drug Resistance in Relapsed Refractory Diffuse Large B Cell Lymphoma.
Biomed. Res. Int. 2015, 484537. doi:10.1155/2015/484537

Villalba, M., and Altman, A. (2002). Protein Kinase C-Theta (PKCtheta), a
Potential Drug Target for Therapeutic Intervention with Human T Cell
Leukemias. Curr. Cancer Drug Targets 2 (2), 125–137. doi:10.2174/
1568009023333908

Xia, H., Green, D. R., and Zou, W. (2021). Autophagy in Tumour Immunity and
Therapy. Nat. Rev. Cancer 21 (5), 281–297. doi:10.1038/s41568-021-00344-2

Xie, Y., Luo, X., He, H., Pan, T., and He, Y. (2021). Identification of an Individualized
RNA Binding Protein-based Prognostic Signature for Diffuse Large B-Cell
Lymphoma. Cancer Med. 10 (8), 2703–2713. doi:10.1002/cam4.3859

Xu, H., Yu, X., Yang, Z., Song, Q., Cheng, S., He, Z., et al. (2021). PAX5-Activated
lncRNA ARRDC1-AS1 Accelerates the Autophagy and Progression of DLBCL
through Sponging miR-2355-5p to Regulate ATG5. Life Sci. 286, 119932. doi:10.
1016/j.lfs.2021.119932

Yasrebi, H. (2015). Comparative Study of Joint Analysis of Microarray Gene
Expression Data in Survival Prediction and Risk Assessment of Breast
Cancer Patients. Brief. Bioinform 17 (5), 771–785. doi:10.1093/bib/
bbv092

Zeh, H. J., Bahary, N., Boone, B. A., Singhi, A. D., Miller-Ocuin, J. L., Normolle, D.
P., et al. (2020). A Randomized Phase II Preoperative Study of Autophagy

Inhibition with High-Dose Hydroxychloroquine and Gemcitabine/Nab-
Paclitaxel in Pancreatic Cancer Patients. Clin. Cancer Res. 26 (13),
3126–3134. doi:10.1158/1078-0432.ccr-19-4042

Zeng, D., Li, M., Zhou, R., Zhang, J., Sun, H., Shi, M., et al. (2019). Tumor
Microenvironment Characterization in Gastric Cancer Identifies Prognostic
and Immunotherapeutically Relevant Gene Signatures. Cancer Immunol. Res. 7
(5), 737–750. doi:10.1158/2326-6066.cir-18-0436

Zhang, N., Qiu, L., Li, T., Wang, X., Deng, R., Yi, H., et al. (2020). MiR-449a
Attenuates Autophagy of T-Cell Lymphoma Cells by Downregulating ATG4B
Expression. BMB Rep. 53 (5), 254–259. doi:10.5483/bmbrep.2020.53.5.219

Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., et al.
(1999). Overexpression of Hypoxia-Inducible Factor 1alpha in Common
Human Cancers and Their Metastases. Cancer Res. 59 (22), 5830–5835.

Zhou, M., Zhao, H., Xu, W., Bao, S., Cheng, L., and Sun, J. (2017). Discovery and
Validation of Immune-Associated Long Non-Coding RNA Biomarkers
Associated with Clinically Molecular Subtype and Prognosis in Diffuse
Large B Cell Lymphoma. Mol. Cancer 16 (1), 16. doi:10.1186/s12943-017-
0580-4

Zhou, Z., Sehn, L. H., Rademaker, A. W., Gordon, L. I., LaCasce, A. S., Crosby-
Thompson, A., et al. (2014). An Enhanced International Prognostic Index
(NCCN-IPI) for Patients with Diffuse Large B-Cell Lymphoma Treated in the
Rituximab Era. Blood 123 (6), 837–842. doi:10.1182/blood-2013-09-524108

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationship that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhou, He, Liu, Lin, Liang, Huang and Wang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 86217916

Zhou et al. A Prognostic Gene Signature for DLBCL

https://doi.org/10.1016/j.cell.2017.09.027
https://doi.org/10.1182/blood.2019002729
https://doi.org/10.1182/blood.2019002729
https://doi.org/10.3892/ol.2020.12286
https://doi.org/10.4161/auto.7.9.16521
https://doi.org/10.4161/auto.7.9.16521
https://doi.org/10.1038/s41375-020-0757-5
https://doi.org/10.1155/2015/484537
https://doi.org/10.2174/1568009023333908
https://doi.org/10.2174/1568009023333908
https://doi.org/10.1038/s41568-021-00344-2
https://doi.org/10.1002/cam4.3859
https://doi.org/10.1016/j.lfs.2021.119932
https://doi.org/10.1016/j.lfs.2021.119932
https://doi.org/10.1093/bib/bbv092
https://doi.org/10.1093/bib/bbv092
https://doi.org/10.1158/1078-0432.ccr-19-4042
https://doi.org/10.1158/2326-6066.cir-18-0436
https://doi.org/10.5483/bmbrep.2020.53.5.219
https://doi.org/10.1186/s12943-017-0580-4
https://doi.org/10.1186/s12943-017-0580-4
https://doi.org/10.1182/blood-2013-09-524108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	An Autophagy-Related Gene Signature can Better Predict Prognosis and Resistance in Diffuse Large B-Cell Lymphoma
	Introduction
	Materials and Methods
	Selection of Autophagy-Related Genes
	Patients’ Samples
	Data Processing
	Construction of a Gene Signature Associated With Survival of Diffuse Large B-Cell Lymphoma Patients
	Development of a Nomogram
	Functional and Pathway Analysis
	Estimation of TME Cell Infiltration
	Correlation Between the Gene Signature and Immune Activation-Related Genes and Immune Activation Pathways
	Correlation Between the Gene Signature and Tumor Stemness
	Statistical Analysis

	Results
	Construction and Validation of the Gene Signature
	Gene Signature Is Independent of Other Clinicopathological Factors
	Personalized Prognostic Prediction Nomogram
	Identification of Involved Functions and Signaling Pathways
	Infiltration Characteristics of TME Cells and Immune Response in the High-Risk and Low-Risk Groups
	Difference in Tumor Stemness Between High-Risk and Low-Risk Groups

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


