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Abstract

In microbiome research, metagenomic sequencing generates enormous amounts of data. These data are typically classified into taxa for
taxonomy analysis, or into genes for functional analysis. However, a joint analysis where the reads are classified into taxa-specific genes is
often overlooked. To enable the analysis of this biologically meaningful feature, we developed a novel bioinformatic toolkit, MetaPrism,
which can analyze sequence reads for a set of joint taxa/gene analyses to: 1) classify sequence reads and estimate the abundances for
taxa-specific genes; 2) tabularize and visualize taxa-specific gene abundances; 3) compare the abundances between groups; and 4) build
prediction models for clinical outcome. We illustrated these functions using a published microbiome metagenomics dataset from patients
treated with immune checkpoint inhibitor therapy and showed the joint features can serve as potential biomarkers to predict therapeutic
responses. MetaPrism is a toolkit for joint taxa and gene analysis. It offers biological insights on the taxa-specific genes on top of the
taxa-alone or gene-alone analysis.

MetaPrism is open-source software and freely available at https://github.com/jiwoongbio/MetaPrism. The example script to reproduce
the manuscript is also provided in the above code repository.
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Introduction
The human microbiome consists of �39 trillion bacteria and
influences host health (Sender et al. 2016). Recently, the use of
metagenomic sequencing has become increasingly popular as a
more unbiased approach to gut microbiome profiling as com-
pared to 16S rRNA sequencing. A common approach to compar-
ing differences in the gut microbiome between groups (cases and
controls) is to identify significant differences in either taxa or
microbial genes. Several popular bioinformatic tools have been
developed for this purpose, including MetaPhlAn2 (Truong et al.
2015), Kraken (Wood and Salzberg 2014), HUMAnN2 (Franzosa
et al. 2018), and FMAP (Kim et al. 2016b) (Table S1). However, these
tools analyze either taxonomic abundances (taxonomic profiling)
or gene abundances (function profiling) separately. As each mi-
croorganism carries its own genes, taxonomic and functional
profiling results are not intrinsically independent. In fact, recent
discoveries demonstrated that taxon-specific genes have a

causative role in disease progression and treatment responses.
For example, Duan et al. found that a specific Enterococcus faeclis
carrying the cytolysin gene promotes alcoholic liver disease
(Duan et al. 2019). Simms-Waldrip et al. found that the antibiotic
resistance genes in the graft-versus-host-disease patients are
enriched for Klebsiella (Simms-Waldrip et al. 2017). Therefore, a
joint analysis, where taxonomy and functional features are ana-
lyzed together, could provide useful biological and clinical
insights (Langille 2018). However, bioinformatics tools for joint
analyses are lacking.

Our innovation in this manuscript is to define and utilize joint
taxa/gene features via bioinformatics approach, with the goal
of offering biologically interpretable findings. For example, our
method characterizes the genes discovered for each species. This
facilitates quantitative analysis of gene abundances in a species-
specific manner, which is usually not readily available. Our ap-
proach is initiated from de novo assembled contigs, which are
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both taxonomically and functionally annotated. Our simulations
showed this method could accurately detect bacterial species
and their carried genes. In a recent review article (Langille 2018),
Langille prompted that understanding the gene contents at
species level can offer better interpretation than using the taxon
or gene content alone, and potentially improve outcome predic-
tions. This confirmed that the joint feature is useful for general
microbiome studies. Our tool provided these joint features as
the first step for a wide range of downstream analysis tasks. For
example, we demonstrated that the quantity of taxa-specific
gene abundances is a potentially useful biomarker to predict the
immunotherapy responses.

To facilitate joint analysis, we developed MetaPrism, a novel
bioinformatics tool to (1) classify metagenomic sequence reads
into both taxa and gene level, (2) normalize the taxa-specific gene
abundances within samples, (3) tabularize or visualize these joint
features, (4) perform comparative microbiome studies, and (5)
build prediction models for clinical outcomes. Using simulated
sequence reads, we validated that the performance of MetaPrism
is accurate. We further applied the MetaPrism analysis to an im-
mune checkpoint therapy and detected novel joint features as
potential biomarkers.

MetaPrism is open-sourced and is available at https://github.
com/jiwoongbio/MetaPrism. Given the advantages of joint analy-
sis, MetaPrism is a useful tool for a wide range of microbiome-
metagenomic sequence studies.

Materials and Methods
Analysis workflow
MetaPrism is a toolkit for joint analysis tasks. At its core,
MetaPrism will infer the taxa and gene for each metagenome se-
quence read. One approach is to align each read to bacterial nu-
cleotide reference genomes to obtain its taxonomy and align it to
a protein database to obtain its gene functions. However, this ap-
proach is technically challenging: due to the short lengths of
Illumina sequence reads and the high sequence similarities be-
tween bacteria genomes, alignment of short reads is not feasible.
We thus developed a novel algorithm (Figure 1A) in an integrated
toolkit (Figure 1B) to tackle this challenge.

First, we perform de novo assembly for each sample using
metaSPAdes (Nurk et al. 2017) with all metagenomic sequence
reads to obtain long contigs. These contigs are much longer than
sequence reads, which allows for accurate taxonomical and func-
tional profiling.

Second, we identify the taxonomy of these contigs. All the
contigs are aligned to a large reference database of more than
4,000 bacterial genomes using centrifuge (Kim et al. 2016a).
Ambiguous alignments will be filtered out from the subsequent
analysis.

Third, we identify genes and their locations from the contigs.
We detect the open reading frames from the contigs, translate
the nucleotide bases to amino acids, and align them using
DIAMOND (Buchfink et al. 2015) to a protein database. To compre-
hensively investigate all bacteria genes, either KEGG protein
databases that include protein sequences from KEGG orthologue
genes (Kanehisa et al. 2012) or KFU (KEGG orthology with UniProt
protein sequences) (Kim et al. 2016b), can be utilized. By default,
we require minimum coverage of 0.8 to ensure good protein
alignments.

Lastly, we calculate and normalize gene abundance within-
sample. We align metagenomic sequence reads to the contigs

using BWA (Li and Durbin), and count the number of aligned
reads located in the genes of interest. We calculate the read
depth normalized by contig length, and this quantity is denoted
as mean depth to represent the gene abundances. Larger num-
bers often indicate higher gene abundance. Other abundance sta-
tistics, such as FPKM (Fragment Per Kilobase of transcript per
Million reads) or depth per genome (normalized read depth per
taxa genome length), are also provided.

Through the above steps, we obtain the joint feature where
the gene abundances are associated with taxonomy information.
These features can be viewed as novel microbiome measure-
ments, which provide more information that taxonomic abun-
dances or gene abundances alone. To utilize these features,
MetaPrism provides four downstream analysis modules (Figure
1B): (1) tabularization module allows to export the joint features
such as the mean depth of genes per contig at the genus level; (2)
visualization module allows to visualize the abundances of the
joint features in an HTML webpage; (3) differential abundances
analysis modules can calculate the fold change of the gene abun-
dances for two groups of samples along with statistical signifi-
cances in terms of p-values; and (4) prediction module can
construct a random forest model or extreme gradient boosting
model to detect joint abundance features as potential biomarkers
(Breiman 2001; Chen and Guestrin 2016). In all, these modules
provide a common set of functions for the typical analysis of joint
features. Meanwhile, users are in full control to utilize the
exported tabular data for their customized analysis. A list of
available functions, command line, and major customization
options in MetaPrism are listed in Table S2.

Simulation setting
To assess the accuracy of the joint features estimated by
MetaPrism, we conducted a simulation study using simulated se-
quence reads from a collection of bacteria species. First, we se-
lected all 118 bacterial species with complete reference genomes
where the latest genome collected from June 8, 2018 (Table S3).
Then, we downloaded their sequences from NCBI FTP (http://
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria). These
sequences include 229 contigs including both bacterial chromo-
somes and plasmids. Their lengths range from 1,308 bp to
10,236,715 bp (mean length is 1,969,971 bp). Finally, we simulated
shotgun metagenomic sequencing reads and generated at 10X
coverage to resemble typical read lengths from the Illumina
using ART (Huang et al. 2012). Specifically, we set read length
to be 100 base pair and the mean and standard deviation of the
fragment size to be 200 bp and 50 bp, respectively.

Data analysis for the microbiome in an immune
checkpoint therapy
Immune checkpoint therapy is a revolutionary cancer treatment
regime. Researchers realize that the gut microbiome plays an in-
dispensable role in modulating the immune system and boost
the therapy efficacy (Frankel et al. 2017). We demonstrated a joint
analysis using MetaPrism to build a therapy-response prediction
model. We collected stool samples of 12 melanoma patients be-
fore anti-PD1 (pembrolizumab) therapy and performed metage-
nomic sequencing (Frankel et al. 2017). Six patients responded to
the therapy and six did not. We performed quality-control proce-
dures on the metagenomic sequence reads. That included the re-
moval of human contamination as previously described (Frankel
et al. 2017).
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Results
Joint features inferred by MetaPrism are accurate
in simulation
We evaluate the gene abundances calculated by MetaPrism and
other methods to the true abundances. We determined the true
abundances by the multiplication of sequence depth and the
depth of KEGG ortholog (KO) genes in the reference genomes.
Notably, there could be more than one copy of KO genes in one
contig; thus, the true abundance of KO genes can vary from 0 to
1,200. This is also verified by aligning the gene sequences to the
KEGG protein database using DIAMOND (Buchfink et al. 2015).

We use the simulated reads totally 4:2� 109 nucleotide bases.
We ran two programs: MetaPrism and FMAP. The FMAP software
used translation alignment (BLASTX) and our previous bench-
marks showed it can report gene abundances accurately (Kim
et al. 2016b). Another popular approach is HUMAnN2. However,
our simulation showed that its performance to report KO gene
abundances is not accurate (Supplementary: Simulation results
using HUMAnN2). In Figure 2, we visualized the true abundances
(X-axis) and the estimated abundances (Y-axis) for FMAP and
MetaPrism using scatterplots. The correlation coefficient
(q ¼ 1:000) from MetaPrism is higher than that from FMAP
(q ¼ 0:985). In brief, this simulation mimics a metagenomic se-
quence data from known species. We inferred the gene

abundances using FMAP (Kim, et al., 2016b) and MetaPrism, and

the benchmark showed that gene abundances inferred by

MetaPrism were accurate and achieved the highest correlation

between inferred abundances and true abundances (Figure 2).

Joint features can be potential biomarkers in
immune checkpoint therapy
We used MetaPrism on the remaining sequence reads (detailed

data retrieval, analysis steps, and command lines were available

in Supplementary: Discover species-specific biomarker in an
immune checkpoint therapy study). On average, each sample

has 1.2 billion reads. We profiled sequence in MetaPrism and

there are on average 24,532 joint features consisting of 2,058 taxa

and 3,432 KO genes per sample. Next, we used MetaPrism to nor-

malize read counts for each sample by reporting the mean depth

per assembled contig. As demonstrated in previous simulation,

the inferred abundance represents the gene counts of specific

taxa. These taxa-specific gene abundances were ranked using a

random forest model with 500 trees and leave-one-out cross-vali-

dation. This prediction model reached 69% accuracy to predict

the immunotherapy responses. It was higher than the accuracy

using taxa features alone (54%), gene features alone (62%), or just

random guess (50%). The prediction accuracy based on the pro-

posed joint features achieved a 7% lead compared to the second-

Figure 1. A schematic illustration of the algorithm and the functions in MetaPrism. A) Illustration of the MetaPrism algorithm to infer taxa-specific
gene abundances. While function profiling infers that three reads are mapped to a gene, it cannot provide further taxonomic information. Through
joint profiling, MetaPrism can utilize de novo assembled contigs to estimate taxa-specific features: two gene copies are from species A and one copy is
from species B; B) An overview of the joint analysis workflow in MetaPrism. The hexagon shapes represent implemented functions in MetaPrism.
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best model where gene features were used. Furthermore, it
detected four joint features with variable importance greater
than 50%. We examined the abundances these abundances with
red to green colors representing the depth values (Figure 3). We
observed these joint features are more abundant in the responder
group suggesting that they may improve the treatment efficacy.
Among them, the most important feature is the K00826 gene
(branched-chain amino acid aminotransferase, BCAT1) from the
genus Eubacterium (Table 1). The average abundance of this joint
feature in the response group is three-fold higher compared to
that in the progression group (response ¼ 4.70 vs progression ¼
1.17). Interestingly, BCAT1, as an important enzyme in branched-
chain amino acid, is associated with glycolysis and oxygen con-
sumption (Kelly and Pearce 2020). These biological procedures
determine the cancer growth (Bertout et al. 2008; Yttersian Sletta
et al. 2017), and they may be interfered by the high activity of
BCAT of Eubacterium, the top abundant taxon in this dataset
(20.9%). Although alteration of BCAA metabolism from the

bacterial contributes to creating a tumor-favoring metabolic con-

dition in the host remains a hypothesis, further mechanistic

studies may investigate the K00826 genes from Eubacterium as a

biomarker for cancer immune checkpoint therapy.
In terms of computation, all the above analyses can be accom-

plished on a standard computation cluster (e.g., 128 GB memory

with 2 GB hard drive space per sample).

Discussion
We present a novel bioinformatics tool, MetaPrism. It imple-

ments functions to quantify the joint features (both taxonomic

and functional) from metagenomic sequence reads, as well as

other functions for downstream data analyses including compar-

ative studies and prediction modeling. We demonstrate that the

joint features can provide novel insights to understand the mi-

crobial role in a cancer immunotherapy study.

Figure 2. Comparison of gene abundances reported by FMAP and MetaPrism. We used simulations to compare the estimated gene abundances using
FMAP and MetaPrism. The Pearson correlation coefficients between true abundances and the software-estimated abundances were listed on the
bottom right.

Figure 3. Heatmap of joint features for predicting immune checkpoint therapy response. We used MetaPrism_heatmap.pl to visualize four joint
features (taxa-specific gene abundances, with variable importance values greater than 50%) in the immune checkpoint therapy study. The colors from
red to green represent the increased gene abundances, the mean depth normalized by the contig lengths. P10, P14, P23, P25, P34, and P39 are patients
who respond to the therapy; P8, P16, P24, P30, P32, and P42 are patients having progressive outcomes. K00826, branched-chain amino acid
aminotransferase; K03205, type IV secretion system protein VirD4; K01006, pyruvate, orthophosphate dikinase; K06187, recombination protein RecR.
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MetaPrism is flexible and can be customized. For example, we

can prepare a specific gene database to investigate taxa-specific

antibiotic resistance genes (ARGs). We have used reference pro-

tein databases with ARGs, such as ARDB (Liu and Pop 2009) or

CARD (McArthur et al. 2013). In a graft-versus-host disease

(GVHD) study, we used MetaPrism with the ARDB to infer taxa-

specific ARGs for joint resistome profiling. Then we correlated

patients’ resistome to the outcome of GVHD. We found increased

abundances of antibiotic-resistance genes (e.g., mdtG, AcrA, AcrB,

and TolC) in Klebsiella and E. coli in the GVHD patients compared

with the abundances in non-GVHD patients. This finding may

hint optimal antibiotic prescription for better management of

GVHD.
MetaPrism characterizes the joint features based on the con-

tigs that are de novo assembled from metagenomic sequence

reads. This is a distinct feature compared with other software.

For example, HUMAnN2 used a tiered search strategy that relied

on a curated reference database for organism-specific genes

(Franzosa et al. 2018). However, many bacterial genes are shared

across organisms and can be missed by the organism-specific

gene database. Thus, we designed the MetaPrism to reduce the

dependency on curated reference databases. The tradeoff for this

decision is that MetaPrism requires more computational resour-

ces for the de novo assembling step.
In all, MetaPrism is free and useful software to facilitate joint

analyses and it is suitable for general microbiome studies.

Researchers can expect MetaPrism to quantify species-specific

gene abundances and use these interpretable features in associa-

tion studies and prediction tasks.

Data Availability
The metagenomic shotgun sequence dataset in the immune

checkpoint therapy is available from the NCBI BioProject

PRJNA397906. The treatment responses for the 12 patients as

well as the analysis codes were available in the Supplementary:
Discover species-specific biomarker in an immune checkpoint
therapy study. The source codes of MetaPrism software

are available at: https://github.com/jiwoongbio/MetaPrism.

That resource contains the software requirements, usage

example, and documentations for all MetaPrism components

(e.g., download bacterial database, quantify species-specific

gene abundances, build association models and prediction

models, tabularize results, and visualize results in heatmap

plots). Supplemental material is available at figshare DOI:

https://doi.org/10.25387/g3.13944521.
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