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The purpose of this study is to show how Monte Carlo analysis of meta-ana-

lytic estimators can be used to select estimators for specific research situations.

Our analysis conducts 1620 individual experiments, where each experiment is

defined by a unique combination of sample size, effect size, effect size hetero-

geneity, publication selection mechanism, and other research characteristics.

We compare 11 estimators commonly used in medicine, psychology, and the

social sciences. These are evaluated on the basis of bias, mean squared error

(MSE), and coverage rates. For our experimental design, we reproduce simula-

tion environments from four recent studies. We demonstrate that relative esti-

mator performance differs across performance measures. Estimator

performance is a complex interaction of performance indicator and aspects of

the application. An estimator that may be especially good with respect to MSE

may perform relatively poorly with respect to coverage rates. We also show

that the size of the meta-analyst's sample and effect heterogeneity are impor-

tant determinants of relative estimator performance. We use these results to

demonstrate how these observable characteristics can guide the meta-analyst

to choose the most appropriate estimator for their research circumstances.
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1 | INTRODUCTION

Meta-analysts have an embarrassment of riches when it
comes to choosing an estimator for measuring mean
effects. The list of potential estimators is long and grow-
ing. Accordingly, a literature has arisen that attempts to
provide guidance to those seeking a “best” estimator. The
purpose of this study is not to produce yet another
attempt at recommending estimators. Instead, this study

lays out a procedure for how one can identify a best esti-
mator for a given research application. While we provide
an example of how such a procedure could work, the pur-
pose of the example is to demonstrate the feasibility and
practicality of our approach.

Selecting a best estimator for meta-analysis (MA) is
complicated. “Best” depends on the meta-analyst's goals.
Different meta-analysts can have different goals. Further,
no estimator performs well in every situation. Yet
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relatively little is known about the circumstances which
would cause a given estimator to perform better than
others. In an ideal world, there would exist a flow-chart
that would guide researchers toward the estimator that
was best for their research application. Given the current
state of knowledge, it is not even clear what factors
should be included in such a flow-chart. This study
attempts to make progress on this issue. In the remainder
of this introduction, we elaborate on what this study does
and the results that we obtain.

Our study performs the largest, most extensive Monte
Carlo analysis of MA estimators to date. We conduct 1620
individual experiments, where each experiment is defined
by a specific combination of sample size (ie, number of esti-
mates in the meta-analyst's sample), effect size, effect size
heterogeneity, publication selection mechanism, and other
research characteristics. We compare 11 estimators com-
monly used in medicine, psychology, and the social sci-
ences. We assess these estimators on the basis of bias, mean
squared error (MSE), coverage rates, and Type I error rates.

Our Monte Carlo experiments reproduce experimen-
tal designs from four previous studies: Stanley et al1; Ali-
naghi and Reed2; Bom and Rachinger3; and Carter et al.4

We do this rather than design our own experiments for
two reasons. Monte Carlo experiments are by definition
artificial representations of a complex reality. They
involve a large number of subjective judgments. We
wanted to select designs that had to some extent been
approved by the peer review process. We also wanted to
use multiple experimental designs to see if results would
differ across simulation environments.

Our research produces four major findings. First, esti-
mators that rank relatively high in terms of average per-
formance on one criterion frequently do not perform as
well on other criteria. From this we conclude that meta-
analysts need to prioritize which criteria (Bias, MSE, etc.)
are most important to them. Second, estimators that per-
form relatively well in one experimental design often do
not perform as well in others. We identify two possible
reasons for this difference across experimental designs,
though more research needs to be done to better under-
stand why this is so.

Third, we show that effect size heterogeneity and the
number of estimates in the meta-analyst's sample (“sam-
ple size”) are important determinants of estimator perfor-
mance. Both these characteristics are observable to the
meta-analyst. As such, they can serve as elements of a
“flow-chart” that allows the meta-analyst to match exper-
imental results to their own research situation, and thus
guide them to the best estimator for the problem at hand.

Lastly, we give a specific example of how this would
work. Our example assumes that the meta-analyst wants
an estimator that minimizes MSE. The meta-analyst's

sample consists of 100 estimates characterized by a high
degree of effect heterogeneity. Further, they believe that
the Monte Carlo design of Carter et al4 most closely
matches their own research situation. The meta-analyst
gathers all the experimental results associated with the
Carter et al4 experimental design having sample sizes of
100 and a high degree of heterogeneity. They then com-
pare MSE performance across all 11 estimators for this
set of experiments and select a “best” estimator, which
can then be used for their own research.

Our study proceeds as follows. Section 2 describes the
estimators that we study. Section 3 highlights the main
characteristics of the different simulation environments
used for our analysis. Section 4 defines the performance
measures. Section 5 presents our results. Section 6 gives
an example of how Monte Carlo experimental results can
be used to guide the selection of a “best” estimator for a
given research situation. Section 7 concludes with a

Highlights

• Despite much previous research, meta-analysts
do not have much guidance when it comes to
selecting a “best” estimator

• This study shows how Monte Carlo experi-
ments can be used to select the “best” estima-
tor for a given research situation

• We compare 11 estimators commonly used in
medicine, psychology, and the social sciences

• The estimators are evaluated on four perfor-
mance measures: bias, mean squared error
(MSE), coverage rates, and Type I error rates.

• We conduct 1620 individual experiments,
where an experiment is defined by a unique
combination of sample size, effect size, effect
size heterogeneity, publication selection mech-
anism, and other research characteristics

• Estimators that are relatively good on one per-
formance measure may perform relatively
poorly on another

• The size of the meta-analyst's sample and effect
heterogeneity are important determinants of
relative estimator performance

• We demonstrate how the observable character-
istics of sample size and effect heterogeneity
can guide the meta-analyst to select the most
appropriate estimator for their research
circumstances
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TABLE 1 Summary of selected Monte Carlo studies of estimator performance: number of experiments and estimators studied

Study Experiments Estimators

Stanley et al1 180 RE, WLS, WAAP, PP

Alinaghi and Reed2 74 WLS-FE, WLS-RE, PP

Bom and Rachinger3 215 FE, RE, WAAP, PP, EK

Carter et al4 432 TF, pC, pU, RE, 3PSM WAAP, PP

Hedges and Vevea6 176 5PSM

McShane et al7 125 pC, pU, 3PSM

Moreno et al8 240 TF(FE-FE), TF(FE-RE), TF(RE-RE), FE,
RE, FE-se, RE-se, D-se, FE-var, RE-
var, D-var, Harbord, Peters, and
Harbord-C

Reed9 36 OLS, PET, PEESE, FE, WLS, RE

Rucker et al10 36 TF, CSM, RE, LMA

Simonsohn et al11 30 TF, pC, FE

Stanley12 120 WLS, FE, PP

Stanley and Doucouliagos13 60 FE, RE, Top10, PEESE, PP, WLS-se,
WLS-Quadratic, WLS-Cubic

van Aert et al14 25 pC, pU, FE, RE

van Assen et al15 36 FE, TF, pU, TES

Our study 1620 TF, pC, pU, RE, 3PSM, 4PSM, AK1,
AK2, WAAP, PP, EK

Note: Estimators:

• 3PSM/4PSM/5PSM = Three-Parameter, Four-Parameter, and Five Parameter Selection Models

• AK1 = Andrews and Kasy's16 “symmetric selection” model

• AK2 = Andrews and Kasy's16 “asymmetric selection” selection
• CSM = Copas selection model (Copas25)

• EK = Bom and Rachinger's3 Endogenous Kink estimator

• FE = Fixed Effects

• FE-se, RE-se, and WLS-se/D-se/PET = Estimates the following model using FE, RE, and WLS: ^effecti = α+ βse ^effect
� �

+ ϵi
• FE-var, RE-var, and PEESE/D-var/ = Estimates the following model using FE, RE, and WLS. ^effecti = α+ βse2 ^effect

� �
+ ϵi

• Harbord/Harbord-C = Harbord, Egger, and Sterne's26 “Regression test for small-study effects” and variant
• LMA = Limit meta-analysis (Rucker et al10).

• OLS = OLS regression of estimated effects on a constant.

• pC = p-curve

• pU = p-uniform

• Peters = Peters et al's27 “Regression test for funnel asymmetry”

• PP = PET-PEESE (Stanley and Doucouliagos22)

• RE = Random Effects
• TES = Test for excess significance (Ioannidis and Trikalinos28)

• TF/TF(RE-RE) = Trim and Fill with RE used for both the “trim” and “fill” components

• TF(FE-FE)/TF(FE-RE) = Trim and Fill with variants depending on whether FE or RE is used for the “trim” and “fill” components, respectively

• Top10 = Estimator which uses only the most precise 10% of estimates (Stanley et al.29)

• WLS/WLS-FE = Weighted Least Squares with weights 1
SE2

i

� �
• WLS-RE = Weighted Least Squares with weights 1

SE2
i + τ

2

� �
• WLS-Quadratic = Estimates the following model using WLS: ^effecti = α+ β1se ^effect

� �
+ β2se2 ^effect

� �
+ ϵi

• WLS-Cubic = Estimates the following model using WLS: ^effecti = α+ β1se ^effect
� �

+ β2se2 ^effect
� �

+ β3se3 ^effect
� �

+ ϵi
• WAAP = Stanley et al's1 Weighted Average of the Adequately Powered-WLS-FE hybrid estimator.
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summary of our main results and suggestions for future
research. All of the programming code and output files
associated with this project are available at https://osf.io/
pr4mb/. We note that our code borrows considerably
from Carter et al.5

2 | THE ESTIMATORS

As noted by Carter et al,4(p117) while many studies have
analyzed the performance of meta-analytic estimators, “…
there is very little overlap among these studies in either
the methods they have examined or the simulated condi-
tions they have explored.” Table 1 summarizes a selection
of previous Monte Carlo studies and compares them in
terms of the number of experiments and estimators stud-
ied. Our study analyses and compares the performance of
11 estimators. This compares favorably with previous stud-
ies both in terms of number of estimators and variety in
the types of estimators. We chose our estimators because
they either are widely used in the MA literature, or have
recently appeared in prominent publications.

2.1 | The context

The estimators are best described within a research context.
The following example focuses on a linear regression
model, but is easily extended to analyses involving Cohen's
d and Log-Odds/logistic regression. Suppose a researcher is
interested in synthesizing the results of an empirical litera-
ture. The literature consists of studies that estimate the
effect of X on Y using the following linear regression model,

Yit = αi + βiXit +
X
k

γiktZikt + ϵit, t=1,2,…Ti, ð1Þ

where i identifies a given regression having Ti observa-
tions. The true effect of X on Y in any given regression is
given by βi. βi can differ across regressions for many rea-
sons that are unobservable to the meta-analyst. The dis-
tribution of the population effect βi across regressions is
represented by βi~N(μ, τ

2), τ2 ≥ 0.
Let β̂i be the estimated effect from regression i. The

meta-analyst collects a sample of estimates, β̂i , =1,2,…,N,
and wants to estimate μ, the population mean effect of
X on Y. They know that publication selection may distort
their sample of estimates. They have the following esti-
mators available to them: Trim-and-Fill, p-curve, p-uni-
form, Random Effects, Three-Parameter and Four-
Parameter Selection Models, Andrews and Kasy's16 “sym-
metric selection” and “asymmetric selection” models, the
Weighted Average of the Adequately Powered-WLS

hybrid estimator, PET-PEESE, and Bom and Rachinger's3

Endogenous Kink estimator. Each of these is briefly
described below.

2.2 | Trim and Fill (TF)

Trim and Fill (Duval and Tweedie17) is a method that
assumes that any asymmetry in the distribution of
effect sizes and SEs is due to publication selection. The
method works by iteratively removing individual
observations until symmetry in the distribution of
effect sizes and SEs is achieved. The removed observa-
tions are then added back into the sample, along with
artificially generated effect/SE observations that are
the mirror images of the removed observations. This
ensures that the reconstructed MA sample achieves
symmetry. Our estimates are obtained using the met-
afor package in R.

2.3 | p-curve (pC)/p-uniform (pU)

The p-curve (Simonsohn et al11) and p-uniform (van
Assen et al15) methods are conceptually identical and
similar in implementation. Both estimate the mean true
effect from the sample of MA estimates that are statisti-
cally significant; that is, have P-values less than 5%. Both
assume that estimates with P-values less than .05 are
equally likely to be published, and that the respective P-
values are independently distributed. Both methods work
from the starting point that the distribution of P-values
(the “p-curve”) will be uniformly distributed between
0 and .05 if the null hypothesis is true. Larger, positive
effects produce a right skewness to the shape of the “p-
curve.” Neither is recommended in the presence of effect
size heterogeneity (van Aert et al14).

Conceptually, both methods estimate the value of the
true (unobserved) effect that would produce a “p-curve”
closest to the observed “p-curve.” Both define a loss func-
tion that measures the distance between the (trans-
formed) expected and the observed p-curves and choose
a mean true effect that minimizes that loss function. The
two methods differ in the metric they use to measure dis-
tance. P-curve uses the Kolmogorov-Smirnov test statistic
as a distance metric, while p-uniform's metric is based on
the Irwin-Hall distribution. They also differ in that the p-
curve estimator does not produce a SE. We follow stan-
dard practice and only include significant estimates that
are same-signed (positive in our case). Our p-curve esti-
mates are obtained from the programming code in Carter
et al.5 Our p-uniform estimates use method one in the
puniform package in R.
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2.4 | Random effects (RE)

The random effects estimator is arguably the most com-
monly used meta-analytic estimator. It does not explicitly
correct for publication selection other than giving greater
weight to more precise estimates of βi. It estimates the
population mean effect μ assuming the following
specification:

β̂i = μ+ εi, i= 1,2,…,N , ð2Þ

where εi �N 0,σ2
β̂i
+ τ2

� �
, σ2

β̂i
is the variance in β̂i due to

sampling error, and τ2 is the variance of true effects
across studies. σ2

β̂i
is estimated by SE2

i , where SEi is the
(estimated) SE of the estimated effect, β̂i. A variety of pro-
cedures have been developed to estimate τ2. Our RE esti-
mates are obtained using the R package metafor, where
τ̂2 is calculated using the restricted maximum likelihood
method.

2.5 | Three-parameter and four-
parameter selection models (3PSM
and 4PSM)

A variety of selection models have been proposed in the
literature to correct for publication bias (Iyengar and
Greenhouse18; Vevea and Hedges19; Vevea and Woods20).
A common model is the Three-Parameter Selection
Model (3PSM). 3PSM assumes that standardized effect
sizes (β̂i=SEi ) are distributed normally in the population.
Publication selection induces differential probabilities of
being published, with publication probabilities following
a step function. The general method allows researchers to
set the values of the steps. For our 3PSM analysis, we fol-
low Carter, Schönbrodt, Gervais, and Hilgard4 in allocat-
ing estimates to two categories depending on whether the
estimates are (a) correctly signed (positive) and statisti-
cally significant, β̂i=SEi

� �
≥1:96 ; or (b) not correctly

signed and significant, β̂i=SEi
� �

<1:96 . These have rela-
tive publication probabilities equal to 1 and p1, respec-
tively (see Panel A of Figure 1). The “Three-Parameters”
correspond to the mean true effect (μ), the extent of effect
heterogeneity (τ2), and p1.

We also consider a Four-Parameter Selection Model.
Our 4PSM adds another category to the 3PSM model:
positive and insignificant estimates. The respective cate-
gories then become (a) β̂i=SEi

� �
≥1:96 ; (b)

0≤ β̂i=SEi
� �

<1:96; and (c) β̂i=SEi
� �

<0.1 The associated
relative publication probabilities are equal to 1, p1, and p2
(see Panel B of Figure 1); with μ, τ2, p1, and p2 accounting
for the Four-Parameters. We use R's weightfunct package

to estimate 3PSM and 4PSM. When the relative probabili-
ties of being published are equal to one (ie, no publica-
tion selection), these models collapse to the RE model.

2.6 | AK1 and AK2

Similar to 3PSM and 4PSM are two new estimators from
Andrews and Kasy.16 Like 3PSM and 4PSM, these models
categorize estimated effects into groups with different
probabilities of being published. The AK1 model groups
estimates into significant and insignificant estimates
without respect to sign: (i) β̂i=SEi

�� ��≥1:96 ; and (ii)
β̂i=SEi

�� ��<1:96. Andrews & Kasy refer to this as the “sym-
metric selection” case (see Panel A of Figure 2). The rela-
tive probability that a significant estimate is published is

FIGURE 1 Illustration of 3PSM and 4PSM. [Colour figure

can be viewed at wileyonlinelibrary.com]
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fixed at 1, while estimates that are insignificant are publi-
shed with probability p1.

Andrews and Kasy16 propose another estimator that
recognizes that the sign of the estimated effect may also
affect selection. The AK2 estimator allocates estimates
into four groups: (a) β̂i=SEi

� �
≥1:96, (b) β̂i=SEi

� �
< −1:96,

(c) −1:96≤ β̂i=SEi
� �

<0, and (d) 0≤ β̂i=SEi
� �

<1:96 .
These have relative publication probabilities equal to
1, p1, p2, and p3 (see Panel B of Figure 2). Andrews and
Kasy16 call this the “asymmetric selection” case. Because
the P-values produced by AK1 and AK2 are based on t-
statistics, they require four and six observations, respec-
tively, in order to obtain P-values for all the parameter
estimates. This can be a problem for meta-analyses with
very small samples, such as is common in medicine. We

use the programming code that accompanies Andrews
and Kasy16 to obtain our AK1 and AK2 estimates.2

2.7 | Weighted average of the adequately
powered-weighted least squares hybrid
estimator (WAAP)

The Weighted Average of the Adequately Powered-
Weighted Least Squares hybrid estimator was introduced
in Stanley et al.1 Conceptually, this estimator chooses a
subset of the N estimates β̂i that are “adequately
powered,” defined as coming from regression equations
having a power of at least 80%. Weighted Least Squares
(weights = 1

SE2
i
) is used to estimate Equation (2) in order

to obtain an initial estimate of μ.
To determine whether a particular estimate comes

from an “adequately powered” regression equation, the
WAAP estimator determines a threshold value, δ, for the
effect SE:

δ=
μ̂j j
2:8

, ð3Þ

where μ̂ is the WLS estimate of μ in Equation (2) based
on the full sample of N estimated effects. Note that this
initial estimate of μ does not correct for publication bias.
WAAP then selects all the β̂i

0s for which SEi< δ. Let M ≤N
of the β̂i

0s satisfy this criterion. It then uses WLS to re-
estimate Equation (2) using only the M estimates (the
“adequately powered” estimates) to obtain a revised esti-
mate of μ. A problem can arise when there too few effect
estimates that are adequately powered. Following Stanley
et al1 if there are fewer than two adequately powered
effect estimates, the WAAP estimator uses the WLS esti-
mate from the full sample of N estimated effects.

2.8 | PET-PEESE (PP)

PET-PEESE stands for Precision Effect Test and Precision
Effect Estimate with SE (Stanley and Doucouliagos22).
The PP estimator proceeds in two steps. The first step
estimates a publication-corrected variant of Equation (2)
using WLS:

β̂i = μ+ ρ �SEi + εi, i= 1,2,…,N : ð4aÞ

with weights equal to 1
SE2

i
. It then tests whether μ = 0. If it

fails to reject this hypothesis, then PP takes μ̂ as an esti-
mate of μ. If it rejects μ = 0, it then estimates

FIGURE 2 Illustration of AK1 and AK2 [Colour figure can be

viewed at wileyonlinelibrary.com]
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β̂i = μ+ ρ �SE2
i + εi, i= 1,2,…,N : ð4bÞ

The estimate of μ from Equation (4b) then becomes
the updated PP estimate of μ.3 Following Stanley's12 rec-
ommendation, we use a one-tailed test when testing
μ = 0. While endogeneity lies outside the purview of our
study, it should be noted that PET-PEESE, unlike the
other estimators, easily accommodates IV methods.

2.9 | Endogenous Kink (EK)

Bom and Rachinger3 recently proposed a modification to
the PET-PEESE model. The modification concerns a non-
linearity between the size of the bias due to publication
selection and the SE. When μ is nonzero there is no publica-
tion selection when SE is very small because all or virtually
all estimates are statistically significant. As SE increases, the
degree of publication selection increases. This induces a
non-linearity in the relationship between bias and SE. This
nonlinearity is the reason why Stanley and Doucouliagos22

propose including SE2 in Equation (4b).
As an alternative, Bom and Rachinger3 propose the

following kinked regression specification:

β̂i = μ+ ρ � SEi−a½ �ISE≥a+ εi, i= 1,2,…,N: ð5Þ

where ISE ≥ a is a dummy variable that takes the value
1 whenever SE is larger than a cut-off point a. This
induces a kink at SE = a. To determine a, Bom and
Rachinger3 follow a two-step procedure. They first esti-
mate μ as if one was implementing the first stage of the
PET-PEESE procedure.

Assuming the estimated effect is positive, they then
calculate the lower bound of a 95% confidence interval
around μ̂ where the SE is derived from a RE model
(to accommodate effect heterogeneity): μ̂−1:96 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
i + τ̂2

q
. The cutoff value a is the value of SE that sat-

isfies the equality μ̂−1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

i + τ̂2
q

=1:96 �SEi . Below
a, most estimates of μ are likely to be statistically signifi-
cant and thus unaffected by publication selection.
Beyond a, publication selection is likely to become an
increasing problem, causing the bias to be linearly related
to SE. To estimate the EK model, we use programming
code provided by Bom and Rachinger.

3 | THE SIMULATION
ENVIRONMENTS

To assess the 11 estimators above, we reproduce the sim-
ulation designs from four recently published studies:

Stanley et al,1 Alinaghi and Reed,2 Bom and Rachinger,3

and Carter et al.4 We chose to work with multiple simula-
tion environments in light of Carter et al4(p117) assess-
ment of previous research:

Different simulation studies have
implemented bias differently, have drawn
sample sizes from different distributions, and
have varied widely in the value and form of
the simulated true underlying effects. This
lack of overlap is not surprising given that
there is an effectively infinite number of pos-
sible combinations of different conditions to
explore and no way of determining which
conditions actually underlie real-world data.
In other words, not only is there an inherent
dimensionality problem in these simulation
studies, but there is also no ground truth.
These problems are often not discussed in
reports of simulation studies, and indeed,
many of the reports just cited—explicitly or
implicitly—recommended the use of a single
method, despite the fact that each study
examined performance of only a handful of
correction methods in only a limited subset
of possible conditions.

Working with multiple simulation environments
allows us to determine the sensitivity of our results to
alternative experimental designs.

Our choice of simulation environments was made to
ensure that we covered scenarios of interest to multiple
disciplines. Stanley et al1 was published in Statistics in
Medicine. Carter et al4 was published in Advances in
Methods and Practices in Psychological Science. Alinaghi
and Reed2 and Bom and Rachinger3 were recently publi-
shed in Research Synthesis Methods. Each of the simula-
tion designs are briefly described below. More extensive
discussions can be found in the original articles. While
the simulation designs cover many different scenarios,
many relevant scenarios are missing from the designs.

3.1 | Stanley, Doucouliagos, and
Ioannidis

SD&I1 consider two scenarios where researchers are
interested in determining the effect of a given treatment,
treat = {0, 1}. In the “Log Odds Ratio” scenario, primary
studies track the effect of a treatment on a binary indica-
tor of “success.” Individual observations are simulated
such that the probability of “success” (Y = 1) is 10% for
the control group, and (10% + a fixed effect + a mean
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zero, random component) for the treatment group. Effect
heterogeneity is regulated by the variance of the random
component, σ2h.

Primary studies estimate a logistic regression to deter-
mine the effect of the treatment on Prob(Y = 1). The
parameter of interest is the coefficient on treat, α1. Each
study produces a single estimated effect. Variation in the
SE of the estimated effects across studies is generated by
allowing the primary studies to have different numbers
of observations. The mean effect of treatment across all
studies, α1, equals 0.0, 0.30, or 0.54, depending on the
experiment. Sample sizes for the simulated meta-analyses
vary across experiments and are pre-determined to con-
sist of 5, 10, 20, 40, or 80 estimated effects. In the absence
of publication selection, a regression of the estimated
treatment effects on a constant should produce an unbi-
ased estimate of α1 in any given MA sample.

Publication selection consists of two regimes: no pub-
lication selection, or 50% publication selection. Under
50% publication selection, estimates are sequentially eval-
uated for inclusion in the meta-analyst's sample. Each
estimate has a 50% chance of being “selected.” If it avoids
selection, the estimate is “published” without consider-
ation to its sign and statistical significance. If selected,
the estimate is “published” if it is positive and significant.
If not, new estimates are generated until a positive and
significant estimate is found. This continues until the
meta-analyst's sample attains its pre-determined size (see
Panel A of Appendix 1 in Data S1).4

In the second scenario, “Cohen's d,” primary studies
estimate the effect of a treatment, but this time the
dependent variable is continuous. The difference in out-
comes between the treatment and control groups is equal
to a fixed effect, α1, plus a random component that differs
across studies. Effect heterogeneity is introduced through
this random component, which is regulated by the
parameter σ2h.

Each primary study calculates Cohen's d, which is the
standardized difference in the mean outcome values
across the two groups. The mean value of d across studies
is set equal to either 0 or 0.5, depending on the experi-
ment. Differences in the SEs of d are generated by all-
owing the simulated primary studies to have different
sample sizes. In the absence of publication selection, a
regression of the estimated treatment effects on a con-
stant will produce an unbiased estimate of the population
mean of d. Sample sizes for the simulated meta-analyses
are pre-determined to consist of 5, 10, 20, 40, or 80 esti-
mated effects, depending on the experiment. The Cohen's
d experiments include the no publication selection and
50% publication selection scenarios used for the Log OR
scenario, plus one more: 75/100% publication selection.
Under 75/100% publication selection, positive and

statistically significant estimates are selected with proba-
bility 75%, but 100% of the estimates are restricted to be
positive (see Panel B of Appendix 1 in Data S1).

3.2 | Alinaghi and Reed

A&R2 study univariate regression models where a vari-
able X affects a continuous variable Y. The parameter of
interest is the coefficient on X. In the “Random Effects”
data environment, each study produces one estimate and
the population effect differs across studies. The coeffi-
cient on X equals a fixed component, α1, plus a random
component that is fixed within a study but varies across
studies. The overall mean effect of X on Y is given by α1.
To estimate α1, the meta-analyst regresses the study spe-
cific estimates on a constant. In the absence of publica-
tion selection, the resulting estimate will be unbiased.

A distinctive feature of A&R's experiments is that
they fix the size of the sample of estimated effects before
publication selection, rather than after. The size of the
meta-analyst's sample is thus determined endogenously,
and is affected by the size of the effect. For example, very
large population effects will be subject to relatively little
publication selection as most estimates will satisfy the
selection criteria, whether it be statistical significance or
correct sign.

Another distinctive feature of A&R's experiments is
that they separate statistical significance from the sign of
the estimated effect as criteria for selection. Other studies
commonly combine these two, assuming a mechanism
that selects estimates that are both positive and statisti-
cally significant. A&R's experiments accommodate the
fact that these two criteria have different, sometimes con-
flicting, consequences for estimator performance. All sig-
nificant/correctly-signed estimates are “published,” while
insignificant/wrong-signed estimates only have a 10%
chance of getting published.

A&R design their simulations to be representative of
meta-analyses in economics and business. These typically
have samples of several hundred estimates and substan-
tial effect heterogeneity. In addition to the “Random
Effects” data environment described above, A&R also
construct a “Panel Random Effects” data environment,
where each study has 10 estimates. This models the fact
that the overwhelming share of meta-analyses in eco-
nomics and business have multiple estimates per study.
Effect estimates and SEs are simulated to be more similar
within studies than across studies. Publication selection
targets the study rather than individual estimates. To be
included in the meta-analyst's sample, a study must have
at least 7 out of the 10 estimates be significant/correctly
signed.5
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3.3 | Bom and Rachinger

B&R3 consider univariate regression environments where
researchers are interested in estimating the effect of a
variable X1 on a dependent variable Y, represented by the
parameter α1. Variation in the SEs of estimated effects is
accomplished by allowing sample sizes to differ across
primary studies. Effect heterogeneity is introduced via an
omitted variable (X2) that is correlated with X1. The coef-
ficient on the omitted variable, α2, is randomly distrib-
uted across studies with mean zero and variance σ2h .
Individual estimates of α1 will be biased for nonzero
values of α2. In the population of all studies, the omitted
variable bias averages out. However, publication selection
induces a bias in the meta-analyst's sample when selec-
tion depends on the sign and significance of α̂1.

The experiments are designed to produce 5, 10, 20, 40,
or 80 “studies” for a given simulated MA, with each study
consisting of one estimated effect. In the absence of publi-
cation selection, the regression on a constant produces an
unbiased estimate of α1, where α1 equals either 0 or
1 depending on the experiment. Publication selection con-
sists of four regimes: no publication selection, 25%, 50%,
and 75% publication selection. The publication selection
algorithm is modeled after SD&I's 50% publication selec-
tion algorithm (see Panel A of Appendix 1 in Data S1).

3.4 | Carter, Schönbrodt, Gervais, and
Hilgard

In the simulation environment of CSG&H4 (for Carter,
Schönbrodt, Gervais, and Hilgard), primary studies esti-
mate the effect of a treatment using Cohen's d as their
measure of effect. The difference in outcomes for the
treatment and control groups is equal to a fixed effect, α1,
plus a random component that differs across studies.
Effect heterogeneity is introduced through this random
component, which is regulated by the parameter σ2h . The
mean value of d takes on four values depending on the
experiment: 0, 0.2, 0.5, and 0.8. Differences in the SEs of
d for a given experiment are generated by allowing the
simulated primary studies to have different sample sizes.

CSG&H introduce two types of distortions in the
research environment. They employ a publication selec-
tion algorithm in which the probability of estimates being
“published” depends nonlinearly on both the sign of the
estimated effect and its P-value. They construct three dif-
ferent publication selection regimes which they call “No
Publication Bias,” “Medium Publication Bias,” and
“Strong Publication Bias.” These are obtained by altering
the parameters of the publication selection algorithm.
They also simulate four different types of “questionable

research practices” (QRPs): (a) optional removal of out-
liers, (b) optional selection between two dependent vari-
ables, (c) optional use of moderators, and (d) optional
stopping. Finally, CSG&H also construct experiments in
which the simulated MA samples take on four different
sizes: 10, 30, 60, and 100.

Table 2 reports the number of experiments for each of
the four simulation environments, categorized by num-
ber of estimates included in the meta-analyst's sample
(“Sample Size”) and the extent of measured effect hetero-
geneity (“ I2”). We calculate I2 as:

I2 =
τ̂2

τ̂2 + σ̂2
, ð6Þ

where τ̂2 is the estimate of effect heterogeneity using the
restricted maximum likelihood method, and

σ̂2 =

P
wi N−1ð ÞP
wið Þ2−P

w2
i

, ð7Þ

wi =1=SE2
i , and N is the number of estimates in the

meta-analyst's sample. I2 takes values between 0 and
100%. I2 is often interpreted as a measure of the share of
effect size variance that is due to heterogeneity in true
effects in the population. However, Augusteijn et al.24

demonstrate, that it is affected by publication selection.
The effect of publication selection can be large, and can
either increase or decrease the value of I2. Our simula-
tions calculate I2 post-publication selection. Whether that
vitiates the usefulness of I2 in the selection of estimators
is an empirical question.

In order to induce greater overlap in the simulation
environments, we added simulations to the SD&I,1 B&R,3

and CSG&H4 experimental designs that allow for larger
sample sizes. These are yellow-highlighted in the table.
This resulted in a total of 1620 experiments, where an
experiment is defined as a unique set of parameters deter-
mining (a) effect size, (b) effect heterogeneity, (c) publica-
tion selection, (d) sample size, and (e) (for CSG&H4)
questionable research practices. This compares favorably
with previous studies (see Table 1). Details about the
experiments are reported in Appendix 2 in Data S1.

4 | THE PERFORMANCE
MEASURES

We evaluate estimators on three performance measures:
(a) Bias, (b) Mean Squared Error (MSE), and (c) 95% Cov-
erage Rates. With respect to bias, the average bias for any
given experiment k is calculated by
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Biask =
1
Rk

� 	XRk

i=1
Estimated Effectki−True Effectkð Þ,

where Rkis the total number of iterations for that experi-
ment (typically 3000). Note that Biask can be positive or
negative. When aggregating over experiments to obtain a

summary measure of performance, we calculate the aver-
age of absolute values, |Bias|= 1

R

� �PR
k=1 Biaskj j ,, where

R is the total number of experiments included in the eval-
uation. “Best estimator” with respect to bias is defined as
the estimator with the smallest value of average |Bias|.

TABLE 2 Number of experiments

by sample size and extent of effect

heterogeneity [Colour table can be

viewed at wileyonlinelibrary.com]

A. Stanley, Doucouliagos, and Ioannidis1

Sample size
Low 2 Moderate 2 High 2

TotalI2 ≤ 0.25 0.25 < I2 ≤ 0.75 0.75 < I2

{5,10} 30 27 15 72

20 15 10 11 36

40 15 10 11 36

80 13 12 11 36

{100, 200, 400, 800} 51 49 44 144

Total 124 108 92 324

B. Alinaghi and Reed2

Sample size
Low 2 Moderate 2 High 2

TotalI2 ≤ 0.25 0.25 < I2 ≤ 0.75 0.75 < I2

0 < SS ≤ 100 0 0 0 0

100 < SS ≤ 500 0 0 13 13

500 < SS 0 1 22 23

Total 0 1 35 36

C. Bom and Rachinger3

Sample size
Low 2 Moderate 2 High 2

TotalI2 ≤ 0.25 0.25 < I2 ≤ 0.75 0.75 < I2

{5, 10} 20 27 65 112

20 5 18 33 56

40 5 17 34 56

80 5 17 34 56

{100, 200, 400, 800} 20 68 136 224

Total 55 147 302 504

D. Carter et al4

Sample size
Low I2 Moderate I2 High I2

TotalI2 ≤ 0.25 0.25 < I2 ≤ 0.75 0.75 < I2

10 33 68 7 108

30 29 57 22 108

60 28 54 26 108

100 28 50 30 108

{200, 400, 800} 81 147 96 324

Total 199 376 181 756

Note: The table lists the number of experiments for each {sample size, effect heterogeneity} category, by
simulation environment. An experiment is defined as a unique set of parameters determining (a) effect size,
(b) effect heterogeneity, (c) publication selection, (d) sample size, and (e) (for Carter et al., 2019)

questionable research practices (see Appendix 2 in Data S1). Each experiment consists of 3000 simulated
meta-analyses. I2 measures the share of effect size variance that is due to heterogeneity in true effects. It is
based on τ̂2, which we, following Carter et al,4 estimate using restricted maximum likelihood (REML) [see
Equation (6) in the text and the associated discussion].
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MSE for a given experiment k is calculated by

MSEk =
1
Rk

� 	XRk

i=1
Estimated Effectki−True Effectkð Þ2:

When used as a summary measure of performance, it
is calculated by SE= 1

R

� �PR
k=1MSEk . “Best estimator”

with respect to MSE is defined as the estimator with the
smallest value of MSE.

|Coverage-0.95| calculates the absolute value of the
difference between the coverage rate – the percent of
times the 95% confidence interval covers the true effect -
and 95%. For example, if the coverage rate in one simula-
tion was 97%, and in another it was 93%, the mean abso-
lute value of the difference would be 2%. “Best estimator”
with respect to |Coverage-0.95| is the estimator that pro-
duces values closest to 0.

The previous performance measures apply to all 1620
experiments. The last performance measure, Type I Error
Rate, only applies to experiments where the true value of
the mean effect equals 0. It measures how often the esti-
mator finds a statistically significant when in fact there is
no effect. Good performance on this criterion is represen-
ted by values close to 5%.

4.1 | A caveat about using average
performance to assess evaluators

A number of the estimators (3PSM, 4PSM, AK1, AK2, pC,
pU, and TF) use maximization procedures to produce their
estimates. In some cases, the algorithms do not converge and
no estimate is produced. This can cause comparisons of aver-
age performance to be misleading. Consider the extreme case
where all estimators perform well in simulation environment
A but poorly in simulation environment B, but one of the esti-
mators always fails to converge in B. That estimator will
appear to be superior based on its average performance. Its
superior average performance would reflect differences in
experiments, and not differences in actual performance. As an
aggregate measure, average performance is suggestive, but
conclusions regarding performance should always be based on
an inspection of performance at the level of individual experi-
ments.6 Section 6 provides a demonstration of this approach.

5 | RESULTS

5.1 | Relative performance differs across
criteria

Table 3 ranks average performance of the estimators for
all 1620 experiments.7 Results are separated by

performance measure (Bias, MSE, etc.). The purpose of
this table is not to demonstrate overall superiority for any
given estimator. In addition to the problem of conver-
gence rates discussed above, there is too much heteroge-
neity in these average numbers for them to be very
useful. The main purpose of this table is to note that esti-
mators that dominate on one criterion may perform rela-
tively poorly on another.

For example, on the dimension of bias, Bom and
Rachinger's3 Endogenous Kink (EK) estimator produces
the lowest overall, mean absolute bias (“|Bias|”). How-
ever, it is dominated by Stanley, Doucouliagos, and
Ioannidis's1 WAAP estimator when it comes to mean
squared error (“MSE”); and Andrews and Kasy's16 “asym-
metric selection” estimator (AK2) with respect to |Cover-
age-0.95| and Type I Error rates. The table color-codes
the three estimators with best average performance on
the respective criteria to facilitate comparison. It high-
lights that superior performance on one dimension does
not guarantee superior performance on another. As a
result, when choosing an estimator, meta-analysts should
prioritize which performance measure is of most
importance.

Table 3 also highlights the poor performance of all
the estimators when it comes to coverage and Type I
error rates. While AK2 may be the “best” performing esti-
mator on these dimensions, the mean absolute deviation
between the coverage rate and 95% is 17%. The mean
Type I error rate is 11%, compared to an expectation of
5%. The other estimators perform much worse. Most of
the estimators have coverage rates below 70% and Type I
error rates larger than 25%. This should cause researchers
to question the reliability of any hypothesis testing about
effect sizes that is performed in meta-analyses that use
these estimators.

5.2 | Relative performance differs across
simulation environments

We next focus on the sensitivity of results to simulation
environment. Table 4 collects the results from all 1620
experiments and breaks them out according to each of
the four simulation environments and each of the four
performance criteria. In both panels, we are looking for
consistency in relative performance across simulation
environments.

In Panel A, which reports performance with respect
to bias, simulations for three of the four simulation envi-
ronments show that the AK2 estimator has best average
performance, as measured by smallest mean absolute
bias. However, in the CSG&H simulations, the AK2 esti-
mator ranks 9th of 11. The 3PSM estimator ranks second
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in the SD&I simulations with respect to mean absolute
bias, but 8th in A&R's, 5th in B&R's, and 5th in CSG&H's
simulations. These inconsistencies are not unusual. Panel
B ranks average performance of the estimators with
respect to MSE. The AK2 estimator ranks 1st in the SD&I
and A&R simulations, but 6th in B&R's simulations, and
9th in CSG&H's. Other inconsistencies across simulation
environments are easily found in Panels C and D.

Table 1 demonstrated that it was difficult to draw
guidance from previous studies about which estimator to
use because there was little overlap in the estimators
being compared. Table 4 identifies a more critical issue.
Even when the same estimators are being compared, one
can obtain different results depending on which simula-
tion design is being used. This raises the question: what
are the factors responsible for these differences? A full
treatment of the question lies beyond the scope of this
study. However, we undertake an initial effort at

answering this question by focusing on two features of
the simulation designs: number of estimates in the simu-
lated MA samples (“sample size”), and the extent of effect
size heterogeneity, as measured by I2. Table 2 highlights
that the different simulation environments differ on these
dimensions. If these two features systematically affect
estimator performance, then differences in the combina-
tions of sample size and effect heterogeneity would pro-
vide at least a partial explanation for the differences in
average performance across simulation environments.

5.3 | The influence of sample size and
effect heterogeneity on relative estimator
performance

It is well-known that estimator performance generally
declines as effect heterogeneity increases and improves as

TABLE 3 Comparison of estimator

performance: all experiments [Colour

table can be viewed at

wileyonlinelibrary.com]

Performance criterion

|Bias| MSE |Coverage-0.95|a Type I Errorb

EK 0.076 WAAP 0.075 AK2 0.172 AK2 0.113

PP 0.081 PP 0.106 3PSM 0.212 EK 0.236

AK2 0.083 EK 0.107 4PSM 0.258 3PSM 0.243

4PSM 0.090 TF 0.110 PP 0.290 PP 0.267

3PSM 0.101 AK1 0.120 EK 0.297 4PSM 0.274

WAAP 0.109 AK2 0.136 WAAP 0.310 WAAP 0.516

AK1 0.132 3PSM 0.140 AK1 0.346 AK1 0.566

TF 0.140 pU 0.160 TF 0.396 TF 0.586

RE 0.216 4PSM 0.163 RE 0.512 pU 0.589

pU 0.229 RE 0.195 pU 0.578 RE 0.640

pC 0.333 pC 0.608 pC NA pC NA

Note: The values in the table represent the average values of the respective performance measures across all
1620 experiments for the first three columns. The last column only reports results for those experiments
where the true mean effect = 0. The three “best” performing estimators on the dimensions of Bias, MSE,
and Coverage rates/Type I Error (EK, WAAP, and AK2) are color-coded to facilitate comparison across

performance measures.
Estimators:

• 3PSM/4PSM = Three-Parameter/Four-Parameter Selection Models
• AK1 = Andrews and Kasy's16 “symmetric selection” model

• AK2 = Andrews and Kasy's16 “asymmetric selection” selection

• EK = Bom and Rachinger's3 Endogenous Kink estimator

• pC = p-curve

• pU = p-uniform

• PP = PET-PEESE (Stanley and Doucouliagos22)
• RE = Random Effects

• TF = Trim and Fill

• WAAP = Stanley et al's1 Weighted Average of the Adequately Powered-WLS hybrid estimator.
aThis column reports the average, absolute value of the difference between (a) the percent of times the 95%

confidence interval contains the true mean value and (b) 95%.
bThis column reports the percentage of false positives when the true mean effect = 0; that is, the percent of
times an estimate is statistically significant when there is no true effect.
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TABLE 4 Comparison of Estimator Performance across Simulation Environments [Colour table can be viewed at

wileyonlinelibrary.com]

A. |Bias|

SD&I1 A&R2 B&R3 CSG&H4

AK2a 0.031 AK2 0.200 AK2 0.071 PP 0.058

3PSMa 0.036 EK 0.213 EK 0.089 WAAP 0.062

4PSM 0.040 PP 0.256 4PSM 0.099 AK1 0.064

PP 0.050 WAAP 0.263 PP 0.124 EK 0.071

EK 0.053 TF 0.284 3PSM 0.147 3PSM 0.080

AK1 0.060 4PSM 0.298 WAAP 0.187 TF 0.091

WAAP 0.083 AK1 0.390 TF 0.238 4PSM 0.095

TF 0.088 3PSM 0.468 AK1 0.262 pU 0.105

RE 0.107 RE 0.550 RE 0.361 AK2 0.107

pUa 0.146 pC 1.530 pU 0.373 pC 0.114

pC 0.420 pU 1.556 pC 0.521 RE 0.150

B. MSE

SD&I1 A&R2 B&R3 CSG&H4

AK2 0.013 AK2 0.229 WAAP 0.171 AK1 0.011

3PSM 0.013 TF 0.244 pU 0.184 WAAP 0.016

AK1 0.016 4PSM 0.318 EK 0.250 3PSM 0.021

WAAP 0.024 AK1 0.363 PP 0.262 TF 0.021

TF 0.024 WAAP 0.423 TF 0.289 PP 0.021

PP 0.024 PP 0.456 AK2 0.324 EK 0.025

EK 0.026 3PSM 0.468 AK1 0.333 pU 0.025

RE 0.033 RE 0.484 4PSM 0.366 4PSM 0.028

pU 0.049 EK 0.567 3PSM 0.376 AK2 0.036

4PSM 0.144 pC 3.518 RE 0.502 RE 0.045

pC 1.209 pU 3.626 pC 0.836 pC 0.060

C. |Coverage-0.95|b

SD&I1 A&R2 B&R3 CSG&H4

AK2 0.104 AK2 0.268 AK2 0.040 WAAP 0.285

3PSM 0.155 4PSM 0.367 4PSM 0.071 AK2 0.298

PP 0.183 AK1 0.542 3PSM 0.076 3PSM 0.308

EK 0.196 TF 0.557 EK 0.092 AK1 0.364

4PSM 0.220 WAAP 0.291 PP 0.136 4PSM 0.394

AK1 0.291 3PSM 0.600 WAAP 0.317 PP 0.419

WAAP 0.324 EK 0.702 TF 0.339 TF 0.431

TF 0.385 PP 0.712 AK1 0.340 pU 0.454

RE 0.421 RE 0.818 RE 0.416 EK 0.459

pU 0.459 pU 0.924 pU 0.808 RE 0.601

pC NA pC NA pC NA pC NA

D. Type 1 Errorc

SD&I1 A&R2 B&R3 CSG&H4

AK2 0.086 AK2 0.300 AK2 0.029 AK2 0.254

EK 0.212 4PSM 0.597 4PSM 0.083 EK 0.400
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the meta-analyst's sample size gets larger (Moreno
et al.,8; Stanley12). Less well-known is that relative esti-
mator performance is also affected by these factors. In
this section we demonstrate both phenomena. We use
the results from the CSG&H simulations to estimate the
following regressions for each of the 11 estimators ( j):

Biasij = β0 + βSampleSize � SampleSizeð Þij + βI2 � I2
� �

ij + εij,

ð8aÞ

and

MSEij = β0 + βSampleSize � SampleSizeð Þij + βI2 � I2
� �

ij + εij:

ð8bÞ

Regressions were estimated using OLS with
bootstrapped t-statistics to obtain P-values. Each regres-
sion used the Bias/MSE results for a given estimator j.
The respective samples were constructed from the indi-
vidual results of the 756 experiments in the CSG&H sim-
ulations (see Panel D of Table 2).

Table 5 presents the results. They provide strong evi-
dence that Bias and MSE increase as effect heterogeneity
(I2) increases. With only one exception, the coefficient on

the I2 term is positive and significant in both the Bias and
MSE regressions for each of the 11 estimators. The excep-
tion is the coefficient for I2 in the MSE regression for the
p-curve estimator (pC). Sample size is also strongly associ-
ated with MSE performance. Sample size is negatively and
significantly associated with MSE for each of the 11 estima-
tors. The evidence for sample size affecting bias is not as
strong. Still, 9 of the 11 estimated coefficients are negative,
with 5 of 11 negative and significant at the 5% level.

While Table 5 documents changes in absolute estima-
tor performance, Table 6 presents evidence of changes in
relative performance. Once again we use the CSG&H
simulation results and focus on bias and MSE. We divide
the 756 CSG&H experiments into 21 separate cells
depending on sample size (10, 30, 60, 100, 200, 400, 800)
and effect heterogeneity (I2 ≤ 0.25, 0.25 < I2 ≤ 0.75,
0.75 < I2). Panel D of Table 2 reports the number of
experiments for each sample size/ I2 cell.

For both Bias and MSE, we identify the top two esti-
mators in the cell for smallest sample size (10) and effect
heterogeneity (low I2). For Bias, these are the AK1 and
4PSM estimators. For MSE, they are AK1 and 3PSM.
We then track the relative position of these estimators
as sample size and effect heterogeneity increases. The
respective estimators are color-coded to facilitate
tracking across cells.

TABLE 4 (Continued)

D. Type 1 Errorc

SD&I1 A&R2 B&R3 CSG&H4

PP 0.249 AK1 0.629 3PSM 0.096 3PSM 0.413

3PSM 0.257 RE 0.630 EK 0.118 PP 0.419

4PSM 0.332 TF 0.637 PP 0.156 pU 0.436

pU 0.526 WLS 0.719 WLS 0.497 4PSM 0.474

AK1 0.526 PP 0.791 TF 0.518 WLS 0.498

WLS 0.562 EK 0.797 AK1 0.539 AK1 0.632

RE 0.612 3PSM 0.919 RE 0.602 TF 0.655

TF 0.613 pU 1.000 pU 0.721 RE 0.712

pC NA pC NA pC NA pC NA

Note: The four panels rank the performance of the 11 estimators on the basis of their average Bias, MSE, |Coverage-0.95|, and Type I Error performance,

disaggregated by simulation environment. Estimators are ranked from “best” (least Bias, smallest MSE, etc.) to worst. Values in the tables are the average
values for the respective performance measures and simulation environments. In each panel the best and second best performing estimators in the SD&I
environments are color-coded brown and gray, respectively. This allows one to track their relative performance across the remaining three simulation
environments.
aIt is important to note that the maximization procedures that underlie some of the estimators do not always converge. Averages across estimators will not be
comparable if they average across different experiments due to lack of convergence. To indicate this in the table, we indicate three types of convergence
behaviour. Boldfaced estimators indicate a convergence rate of 99% or higher (eg, AK1). Conventional, non-boldfaced type indicates that the estimator
converged between 90%-99% of the time (eg, AK1). Italicized estimators indicate that convergence rates were lower than 90% (eg, AK1).
bThis panel reports the average, absolute value of the difference between (i) the percent of times the 95% confidence interval contains the true mean value and

(ii) 95%.
cThis panel reports the percentage of false positives when the true mean effect = 0; that is, the percent of times an estimate is statistically significant when
there is no true effect.
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Table 6 clearly reveals that there is substantial move-
ment in the relative rankings of average estimator perfor-
mance as sample size and effect heterogeneity change.
For the sake of brevity, we only report results for Bias
and MSE.8 In some cases, the change in relative ranking
is dramatic. When sample size = 10, the 4PSM estimator
ranks 2nd and 1st on Bias, respectively, for low and mod-
erate effect heterogeneity. It falls to 9th when effect het-
erogeneity is high. In other cases, relative performance is
relatively stable: Across all sample sizes, AK1 is either
ranked 1st or 2nd in terms of smallest average MSE.

The table demonstrates two things. It underscores a
point made previously that no estimator dominates in
all research settings. However, it also suggests that there
may be circumstances where one estimator is generally
preferred. For example, if a researcher is interested in
estimator efficiency and works in an area where effect
heterogeneity is expected to be high, and if the
researcher is convinced that the CSG&H simulation
environment captures the key elements of their research

situation, then Table 6 suggests that AK1 may be the
best estimator for their analysis. However, the Table 6
results are based on average performance within a given
{sample size, effect heterogeneity} cell. As demonstrated
previously, averages can conceal much variation. The
next section illustrates how further investigation can
lead to a more definitive conclusion regarding “best”
estimator.

6 | AN EXAMPLE OF HOW
SIMULATION EXPERIMENTS CAN
GUIDE THE SELECTION OF A
“BEST” ESTIMATOR

Previous sections demonstrated that there is no superior
estimator for all research situations. “Best” is conditional
on performance measure, and depends on observable
characteristics of the meta-analyst's sample such as sam-
ple size and effect heterogeneity. It also can depend on

TABLE 5 Sample size and effect

heterogeneity as determinants of

absolute estimator performance:

CSG&H4 simulation environment

Estimator

Bias MSE

βSampleSize βI2 βSampleSize βI2

AK1 −0.0143*
(0.0074)

0.1147***
(0.0068)

−0.0101*** (0.0018) 0.0240***
(0.0018)

4PSM 0.0112
(0.0116)

0.2214***
(0.0098)

−0.0160*** (0.0045) 0.0812***
(0.0040)

3PSM 0.0029
(0.0101)

0.1624***
(0.0088)

−0.0156*** (0.0034) 0.0536*** (0.0030)

WAAP −0.0366***
(0.0091)

0.1163***
(0.0078)

−0.0235*** (0.0027) 0.0344*** (0.0024)

TF −0.0150
(0.0121)

0.1555***
(0.0093)

−0.0121*** (0.0042) 0.0413*** (0.0033)

AK2 −0.0355**
(0.0168)

0.1883***
(0.0122)

−0.0458*** (0.0099) 0.0676*** (0.0075)

PP −0.0206***
(0.0069)

0.0868***
(0.0060)

−0.0443*** (0.0040) 0.0468*** (0.0037)

RE −0.0222
(0.0178)

0.2180***
(0.0151)

−0.0139** (0.0083) 0.0927*** (0.0071)

EK −0.0286***
(0.0058)

0.0125***
(0.0058)

−0.055*** (0.0041) 0.0399*** (0.0039)

pU −0.0180
(0.0124)

0.1352***
(0.0121)

−0.0182*** (0.0050) 0.0575*** (0.0053)

pC −0.0403***
(0.0151)

0.1360***
(0.0150)

−0.1140*** (0.0302) −0.0025
(0.0318)

Note: The table reports the results of estimating Equations (8a) and (8b) in the text. Regressions were
estimated using OLS with bootstrapped t-statistics to obtain p-values. Each regression used the Bias/MSE
results for a given estimator j. The respective samples were constructed from the individual results of the

756 experiments in the Carter, Schönbrodt, Gervais, and Hilgard4 simulations. Bootstrap SEs are reported in
parentheses. When estimating the model we use Sample size/1000. This transformation increases the size of
βSampleSize by a factor of 1000, but leaves economic and statistical significance unchanged.
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TABLE 6 The relationship between relative estimator performance, sample size, and I2: CSG&H4 simulation environment [Colour table

can be viewed at wileyonlinelibrary.com]

A. Sample size = 10

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

AK1a 0.028 4PSM 0.071 AK1 0.097 AK1 0.006 AK1 0.027 AK1 0.027

4PSM 0.033 3PSM 0.074 WAAP 0.104 3PSM 0.007 pU 0.042 TF 0.045

3PSM 0.035 PP 0.087 TF 0.110 4PSM 0.008 TF 0.043 WAAP 0.057

WAAPa 0.040 AK1 0.088 AK2 0.119 TF 0.010 3PSM 0.043 3PSM 0.069

TF 0.042 EK 0.098 3PSM 0.146 WAAP 0.010 WAAP 0.046 RE 0.075

AK2a 0.047 pU 0.107 EK 0.153 AK2 0.010 4PSM 0.049 AK2 0.078

PP 0.063 WAAP 0.112 PP 0.160 RE 0.018 RE 0.068 4PSM 0.093

RE 0.082 TF 0.127 4PSM 0.177 PP 0.021 PP 0.081 pU 0.114

pU 0.090 pC 0.147 RE 0.179 pU 0.023 EK 0.092 pC 0.164

EK 0.101 AK2 0.160 pU 0.253 EK 0.030 AK2 0.102 PP 0.209

pC 0.150 RE 0.188 pC 0.270 pC 0.278 pC 0.203 EK 0.220

B. Sample size = 30

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

WAAP 0.012 PP 0.048 EK 0.094 WAAP 0.002 AK1 0.011 AK1 0.026

AK1 0.019 AK1 0.068 PP 0.106 AK1 0.002 pU 0.015 TF 0.041

TF 0.020 EK 0.071 AK1 0.115 TF 0.002 3PSM 0.020 WAAP 0.045

3PSM 0.026 3PSM 0.074 WAAP 0.116 3PSM 0.003 PP 0.020 3PSM 0.053

4PSM 0.026 pU 0.076 TF 0.144 4PSM 0.003 WAAP 0.020 PP 0.071

AK2 0.028 WAAP 0.078 3PSM 0.145 PP 0.004 4PSM 0.024 EK 0.077

PP 0.029 4PSM 0.079 4PSM 0.190 AK2 0.004 TF 0.024 pU 0.077

RE 0.049 pC 0.083 RE 0.202 RE 0.005 EK 0.030 4PSM 0.078

EK 0.073 TF 0.102 AK2 0.217 EK 0.011 AK2 0.036 pC 0.081

pU 0.081 AK2 0.113 pU 0.218 pU 0.014 pC 0.049 RE 0.084

pC 0.094 RE 0.181 pC 0.224 pC 0.077 RE 0.052 AK2 0.096

C. Sample size = 60

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

WAAP 0.010 PP 0.050 EK 0.081 WAAP 0.001 AK1 0.009 AK1 0.021

TF 0.016 EK 0.065 PP 0.089 TF 0.001 pU 0.012 WAAP 0.033

AK1 0.017 AK1 0.066 WAAP 0.104 AK1 0.001 PP 0.012 TF 0.034

3PSM 0.022 WAAP 0.066 AK1 0.107 3PSM 0.002 WAAP 0.014 PP 0.040

4PSM 0.023 pU 0.073 3PSM 0.137 PP 0.002 EK 0.018 3PSM 0.041

PP 0.024 pC 0.073 TF 0.138 4PSM 0.002 3PSM 0.018 EK 0.044

AK2 0.026 3PSM 0.084 AK2 0.163 AK2 0.003 pC 0.018 AK2 0.050

RE 0.042 4PSM 0.090 4PSM 0.189 RE 0.004 4PSM 0.022 pU 0.065

EK 0.063 TF 0.102 RE 0.201 EK 0.007 TF 0.022 4PSM 0.065

(Continues)
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TABLE 6 (Continued)

C. Sample size = 60

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

pU 0.074 AK2 0.118 pU 0.205 pU 0.010 AK2 0.035 pC 0.068

pC 0.081 RE 0.180 pC 0.213 pC 0.049 RE 0.051 RE 0.075

D. Sample size = 100

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

WAAP 0.009 PP 0.049 EK 0.073 WAAP 0.001 AK1 0.007 AK1 0.020

TF 0.015 WAAP 0.055 PP 0.086 TF 0.001 PP 0.009 WAAP 0.027

AK1 0.017 AK1 0.061 WAAP 0.104 AK1 0.001 pC 0.009 PP 0.028

AK2 0.021 EK 0.064 AK1 0.110 PP 0.001 pU 0.009 EK 0.028

3PSM 0.021 pC 0.066 3PSM 0.131 3PSM 0.001 WAAP 0.010 3PSM 0.034

PP 0.022 pU 0.068 AK2 0.148 4PSM 0.002 EK 0.013 TF 0.035

4PSM 0.022 3PSM 0.089 TF 0.149 AK2 0.002 3PSM 0.018 AK2 0.041

RE 0.041 TF 0.094 4PSM 0.179 RE 0.003 TF 0.019 4PSM 0.056

EK 0.060 4PSM 0.097 pU 0.196 EK 0.006 4PSM 0.021 pU 0.058

pU 0.071 AK2 0.108 pC 0.204 pU 0.009 AK2 0.026 pC 0.062

pC 0.074 RE 0.168 RE 0.218 pC 0.030 RE 0.046 RE 0.079

E. Sample size = 200

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

WAAP 0.008 PP 0.048 EK 0.072 TF 0.001 AK1 0.006 EK 0.018

TF 0.013 WAAP 0.052 PP 0.089 WAAP 0.001 PP 0.007 AK1 0.019

AK1 0.016 AK1 0.060 WAAP 0.097 AK1 0.001 WAAP 0.008 PP 0.021

AK2 0.020 EK 0.063 AK1 0.109 PP 0.001 pC 0.008 WAAP 0.022

3PSM 0.020 pC 0.067 3PSM 0.132 3PSM 0.001 pU 0.009 3PSM 0.033

4PSM 0.021 pU 0.068 AK2 0.144 4PSM 0.001 EK 0.009 TF 0.034

PP 0.021 3PSM 0.091 TF 0.151 AK2 0.001 3PSM 0.017 AK2 0.036

RE 0.036 TF 0.095 4PSM 0.185 RE 0.002 TF 0.019 4PSM 0.055

EK 0.057 4PSM 0.100 pU 0.196 EK 0.005 4PSM 0.021 pU 0.056

pC 0.063 AK2 0.121 pC 0.207 pC 0.007 AK2 0.028 pC 0.061

pU 0.067 RE 0.167 RE 0.218 pU 0.007 RE 0.045 RE 0.078

F. Sample size = 400

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

WAAP 0.008 PP 0.046 EK 0.070 TF 0.000 PP 0.005 EK 0.013

TF 0.013 WAAP 0.048 PP 0.091 WAAP 0.000 AK1 0.006 AK1 0.018

AK1 0.016 AK1 0.059 WAAP 0.097 AK1 0.001 WAAP 0.006 PP 0.018

3PSM 0.020 EK 0.061 AK1 0.107 PP 0.001 EK 0.007 WAAP 0.020

4PSM 0.020 pC 0.064 3PSM 0.139 3PSM 0.001 pC 0.007 3PSM 0.033

PP 0.021 pU 0.066 TF 0.150 4PSM 0.001 pU 0.008 TF 0.033
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unobservable characteristics such as the type of publica-
tion selection (statistical significance, correct sign, both),
the extent of publication selection, and other factors such
as assorted questionable research practices (QRPs). By
conditioning on observables and investigating perfor-
mance over unobservables, one can study the relative
performance of estimators and use the results to guide
estimator selection for use in a given research situation.
This section demonstrates how this can be done.

Suppose a meta-analyst is studying the empirical liter-
ature on a given “effect,” measured by Cohen's d. They
collect a sample of 100 estimates. Initial analysis indi-
cates a high degree of effect heterogeneity (I2 > 0.75).
While they are unsure whether publication selection is a
problem, if it does exist, they believe selection would

depend on both correct sign and statistical significance.
Looking over the alternatives, it is their experienced judg-
ment that the CSG&H simulation environment best cap-
tures the salient aspects of their research situation.
However, they do not have strong priors about the size of
the effect, the severity of publication selection, nor the
extent of QRPs. While they would like to have an estima-
tor that minimized bias, produced accurate coverage
rates, and provided reliable tests of significance, their
main priority is choosing an estimator that is efficient.
We show how simulation results can be used to guide
that selection.

Table 7 reports the individual experimental results for
sample size = 100/ High I2. There are a total of 30 experi-
mental results (cf. Table 2), covering a wide range of

TABLE 6 (Continued)

F. Sample size = 400

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

AK2 0.021 3PSM 0.087 AK2 0.158 AK2 0.001 3PSM 0.015 AK2 0.039

RE 0.036 4PSM 0.093 pU 0.187 RE 0.002 4PSM 0.017 pU 0.052

EK 0.056 TF 0.093 4PSM 0.193 EK 0.004 TF 0.018 4PSM 0.055

pC 0.061 AK2 0.115 pC 0.200 pC 0.006 AK2 0.026 pC 0.057

pU 0.065 RE 0.161 RE 0.222 pU 0.007 RE 0.042 RE 0.078

G. Sample size = 800

Bias MSE

Low I2 Moderate I2 High I2 Low I2 Moderate I2 High I2

WAAP 0.007 PP 0.046 EK 0.070 WAAP 0.000 PP 0.005 EK 0.010

TF 0.013 WAAP 0.047 PP 0.093 TF 0.000 EK 0.006 PP 0.017

AK1 0.015 AK1 0.058 WAAP 0.097 AK1 0.001 WAAP 0.006 AK1 0.017

4PSM 0.019 EK 0.060 AK1 0.107 PP 0.001 AK1 0.006 WAAP 0.018

3PSM 0.020 pC 0.064 3PSM 0.140 3PSM 0.001 pC 0.007 3PSM 0.032

PP 0.020 pU 0.066 TF 0.150 4PSM 0.001 pU 0.007 TF 0.033

AK2 0.021 3PSM 0.087 AK2 0.162 AK2 0.001 3PSM 0.015 AK2 0.040

RE 0.036 4PSM 0.093 pU 0.187 RE 0.002 4PSM 0.017 pU 0.052

EK 0.055 TF 0.094 4PSM 0.195 EK 0.004 TF 0.018 4PSM 0.056

pC 0.060 AK2 0.101 pC 0.201 pC 0.006 AK2 0.020 pC 0.058

pU 0.064 RE 0.161 RE 0.222 pU 0.006 RE 0.042 RE 0.078

Note: The panels above rank the performance of the 11 estimators on the basis of their average Bias and MSE performance, disaggregated by {sample size, effect
heterogeneity} categories. Estimators are ranked from “best” (least Bias, smallest MSE) to worst. Values in the tables are the average values for the respective
performance measures and {sample size, effect heterogeneity} categories. For both Bias and MSE, the top two estimators in the cell for smallest sample size

(10) and effect heterogeneity (low I2) are identified by color-coding. For Bias, these are the AK1 and 4PSM estimators. For MSE, they are AK1 and 3PSM. The
relative position of these estimators are then tracked as sample size and effect heterogeneity increases.
aIt is important to note that the maximization procedures that underlie some of the estimators do not always converge. Averages across estimators will not be
comparable if they average across different experiments due to lack of convergence. To indicate this in the table, we indicate three types of convergence
behaviour. Boldfaced estimators indicate a convergence rate of 99% or higher (eg, AK1). Conventional, non-boldfaced type indicates that the estimator

converged between 90%–99% of the time (eg, AK1). Italicized estimators indicate that convergence rates were lower than 90% (eg, AK1).
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effect sizes {0, 0.2, 0.5, 0.8}, severities of publication
selection {No, Medium, Strong}, and QRP behaviors
{None, Medium, High} (see Appendix 2 in Data S1). We
suppose the meta-analyst is interested in not just aver-
age MSE performance, but also the variation of MSE
across situations. Since they do not know which of the
respective experiments best represents their research sit-
uation, they want to avoid an estimator that occasion-
ally produces a bad result, even if it does well on
average.

The top part of the table reports the individual MSE
experimental results. We yellow-highlight the minimum
MSE value in each experiment. Of the 11 estimators, all
but two of them (WAAP and PP) are “best” in at least
one experiment. This again highlights the fact that no
estimator is best in all research situations. To assist in
processing the large amount of information in the table,
we report average performance for the 30 experiments,
along with minimum and maximum MSE values, at the
bottom of the table.

Given that the researcher does not know which simu-
lated situation best represents their actual research situa-
tion, they first consider the estimator with the lowest
overall average MSE. That is the AK1 estimator. It has an
overall average value of 0.020. The next best estimator is
the WAAP, with an overall average of 0.027. AK1 also
takes on a relatively narrow range of values across the
30 experiments. Its minimum value is 0.001, and its maxi-
mum value is 0.081. This compares favorably with most
of the other estimators, but not all. For example, Bom &
Rachinger's EK estimator, while producing a slightly
larger overall average value of MSE (0.028), takes on a
narrower set of values (minimum = 0.008, maxi-
mum = 0.052). The WAAP and PP estimators have simi-
lar characteristics.

With respect to AK1, it is worth noting that simula-
tions will tend to be biased toward selection models,
because selection models have been designed to capture
the very kinds of behaviors built into selection algo-
rithms. This is not necessarily a bad thing. However, to
the extent that actual publication selection behavior dif-
fers from simulated selection behavior, results may over-
state the performance of selection models in real world
datasets.

The researcher's choice comes down to a trade-off
between mean and dispersion, a choice that is compli-
cated by the fact that randomness in the simulation pro-
cess cautions against attaching too much significance to
small numerical differences. We propose one possible
solution, with the researcher choosing the AK1 estimator
as best (yellow-highlighted), while also choosing one or
two other estimators (WAAP, PP, EK; highlighted in
blue) for robustness checking.

7 | CONCLUSION

The subject of MA estimator performance has received
much attention in the literature (Alinaghi and Reed2;
Bom and Rachinger3; Carter et al4; Hedges and Vevea6;
McShane et al7; Moreno et al.,8; Rücker et al10; Simo-
nsohn et al11; Stanley12; Stanley and Doucouliagos13;
Stanley et al1; van Aert et al14; van Assen et al15). A goal
of many of these studies has been to find a “best” estima-
tor. However, there is an increasing awareness that no
single estimator is “best” in all circumstances (Carter et
al4). Unfortunately, the way previous studies have been
conducted and reported has not been conducive to guid-
ing meta-analysts toward the best estimator for their par-
ticular research applications.

Different studies examine different sets of estima-
tors, making it difficult to aggregate results across stud-
ies. They employ different experimental designs with
different features, without being clear about which fea-
tures are important for estimator performance. Finally,
they typically do not make a distinction between the
influence of observable and unobservable characteris-
tics. For example, knowing that an estimator performs
well when a MA sample is unaffected by publication
selection, but poorly when it is affected, is not helpful if
the meta-analyst cannot observe whether their particu-
lar sample has this problem. What is missing is some-
thing akin to a flow-chart that would map observable
characteristics to experimental results which the meta-
analyst could then use to select the best estimator for
their situation.

This study contributes toward that goal. We demon-
strate how two characteristics that can be observed by
the meta-analyst – number of estimates in the meta-ana-
lyst's sample (“sample size”) and the degree of effect het-
erogeneity, as measured by I2 - can be used to guide the
meta-analyst to experimental results that are most ger-
mane to their research application. We construct an
extensive database of 1620 experiments and give an
example how the database can be used to select a “best”
estimator, or best set of estimators.

In our example of sample size = 100 and I2 > 0.75. we
find that Andrews and Kasy's symmetric selection esti-
mator (“AK1”) performs best with respect to minimizing
MSE, closely followed by Bom and Rachinger's “EK” esti-
mator; Stanley, Doucouliagos, and Ioannidis' WAAP esti-
mator; and Stanley and Doucouliagos' PET-PEESE
estimator. However, this example assumes the simulation
design of Carter et al4. Other simulation designs with the
same sample size and effect heterogeneity give different
results.9 Thus, a major challenge going forward is to gain
a better understanding of the factors that determine esti-
mator performance.
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A final contribution of our study is that we have made
all of our experimental results publicly accessible via a
ShinyApp at https://hong-reed.shinyapps.io/HongReedIn
teractiveTables. Table 7 presented the results of 30 Monte
Carlo experiments from the Carter, Schönbrodt, Gervais,
and Hilgard4 simulation environment for sample sizes of
100 and high effect heterogeneity. The online results
allow researchers to explore other scenarios that may be
more relevant for their particular research situations.
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ENDNOTES
1 Hedges and Vevea6 estimate a 5PSM with the following four cate-
gories: (a) β̂i=SEi

� �
≥1:64, (b) β̂i=SEi

� �
<0, (c) 0≤ β̂i=SEi

� �
<0:84,

and (d) 0:84≤ β̂i=SEi
� �

<1:64.
2 For further details about the AK1 and AK2 estimators, see Hong et al.21

3 In a recent Nature study that compared meta-analysis studies with
related replications, Kvarven et al23 found that PET-PEESE was
better at reducing bias compared to several other popular estima-
tors (Random Effects, Trim-and-Fill, 3PSM). However, it fared no
better on the dimension of MSE.

4 We note that what SD&I call “50% Selection” does not imply that
50% of all estimates are filtered out of the meta-analyst's sample.
The percent of estimates actually impacted by selection bias
depends on the size of the effect. For example, if the true effect is
zero, what SD&I call “50% Selection” will result in 2.5% of all esti-
mates being selected for the meta-analyst's sample. At the other
extreme, if the true effect is extremely large, “50% Selection” will
result in 100% of all estimates being selected.

5 When there are more than one estimate per study, the selection
rule needs to apply at the study level, as opposed to the level of
individual estimates. In modeling the journal review process, we
assume that journals typically do not say “we will publish your
paper if you drop specific regressions.” Instead, they say “we will
publish your paper, or not.” We chose 7 because, in previous
research, it produced datasets that “looked like” real-life meta-
analysis datasets (see Table 4 in Reed9).

6 Appendix 5 in Data S1 reports convergence rates for all the cells
in Tables 3 and 4.

7 Note that the results for Type I Error Rate are restricted to those
experiments for which the true effect = 0.

8 Results for |Coverage-0.95| and Type I Error are reported in
Appendix 3 in Data S1.

9 See Appendix 4 in Data S1 for a demonstration of how relative
rankings of average performance vary across simulation environ-
ments even when the set of experiments are restricted to those
having similar sample sizes and effect heterogeneity.
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