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Type III interferons (IFNs), or IFNls, are cytokines produced in response to microbial
ligands. They signal through the IFNl receptor complex (IFNLR), which is located on
epithelial cells and select immune cells at barrier sites. As well as being induced during
bacterial or viral infection, type III IFNs are produced in response to the microbiota in the
lung and intestinal epithelium where they cultivate a resting antiviral state. While the
multiple anti-viral activities of IFNls have been extensively studied, their roles in immunity
against bacteria are only recently emerging. Type III IFNs increase epithelial barrier integrity
and protect from infection in the intestine but were shown to increase susceptibility to
bacterial superinfections in the respiratory tract. Therefore, the effects of IFNl can be
beneficial or detrimental to the host during bacterial infections, depending on timing and
biological contexts. This duality will affect the potential benefits of IFNls as therapeutic
agents. In this review, we summarize the current knowledge on IFNl induction and
signaling, as well as their roles at different barrier sites in the context of anti-
bacterial immunity.
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1 TYPE III INTERFERON INDUCTION AND SIGNALING

1.1 Type III Interferons and Their Receptor
Type III interferons (IFNs), also called IFNls, are the most recent addition to the IFN family. These
class II cytokines include two more members: type I and II IFNs. Type I IFNs include IFNas and
IFNb and are functionally similar to IFNls. They are produced by many cell types and signal
through the IFNa Receptor (IFNAR), which is expressed on nearly every nucleated cell (1, 2). Type
II IFN only includes IFNg and is the most phylogenetically and functionally distinct (3, 4). The type
III IFN family is comprised of 4 members in humans: IFNl1 (IL-29), IFNl2 (IL-28A), IFNl3 (IL-
28B), and the most recently identified IFNl4. Mice express IFNl2 and IFNl3, but murine IFNl1
and IFNl4 are pseudogenes (5). Type III IFNs are induced by both epithelial and immune cells
(6, 7), in particular dentritic cells (DC) (8–11). Type I and III IFNs are produced in response to the
detection of Microbe-Associated Molecular Patterns (MAMPs) by host Pattern Recognition
Receptors (PRRs) (12–17). Secreted IFNls signal in an autocrine and paracrine manner through
a common heterodimeric receptor, IFNLR, composed of the high affinity type III IFN receptor
(IFNLR1, also known as IL-28Ra) and the Interleukin 10 Receptor 2 (IL-10R2) (18). IFNLR
is mostly expressed at barrier sites and was initially thought to be only present on epithelial cells
(19–21). However, increasing evidence has demonstrated the expression of IFNLR on multiple
org May 2022 | Volume 13 | Article 8576391
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immune cell subsets such as neutrophils (22), macrophages (23),
plasmacytoid dentritic cells (pDCs) (8, 24) and lymphocytes (5,
25, 26). Human natural killer (NK) cells do not appear to express
IFNLR (27), whereas mouse NK cells express IFNLR1 and
potently respond to IFNl (28). This selective distribution of
IFNLR distinguishes type III IFNs from the ubiquitously sensed
type I IFNs (1, 29).

1.2 Production of Type III IFNs in
Response to Bacterial Ligands
MAMPs are conserved microbe-specific structures that are
produced by both pathogenic and non-pathogenic
microorganisms. They include nucleic acids and bacterial cell
components like flagellin, present in the flagella of motile
bacteria (30); peptidoglycan, found in the cell wall of most
bacteria (31); or lipopolysaccharide (LPS) from the outer
membrane of Gram-negative bacteria (32). Detection of both
Gram-positive and Gram-negative bacteria by epithelial and
innate immune cells was shown to induce type III IFNs to
similar or greater levels than type I IFNs (13, 16, 33–36). IFNls
are induced via stimulation of all PRRs that induce type I IFN (37),
including the cytosolic DNA and RNA sensors cGAS (38–43)
RIG-I-like receptors (RLRs) (44) and endosomal Toll-like
receptors (TLRs) (16, 35, 45). However, several signaling
pathways have been shown to preferentially drive IFNl
expression (16, 33, 35, 46). For example, following detection of
LPS by TLR4, IFNb and IFNl are induced via distinct
mechanisms. While the induction of IFNb does not occur until
TLR4 reaches endosomes, and is independent of the adaptor
MyD88 (47–49), IFNl production occurs from the plasma
membrane and requires MyD88 (16). Similarly, TLR2 and TLR5
that detect bacterial components from the plasma membrane do
not strongly induce type I IFNs (16, 50–52), but potently induce
type III IFN expression (16). Therefore, IFNls seem to be
preferentially induced in response to ligands of bacterial origin,
hinting at possible roles of these IFNs in antibacterial immunity.

1.3 IFNl-Mediated Signaling and Anti-
Bacterial ISGs
Although type I and type III IFNs bind unique receptors, the
signaling pathways downstream of IFNLR and IFNAR activation
are similar. In both cases, phosphorylated Janus kinase (JAK)
family proteins activate Signal Transducer and Activator of
Transcription 1 (STAT1) and STAT2. Activated STAT1/2 form
a complex with the IFN regulatory factor 9 (IRF9), called the IFN
stimulated gene factor 3 (ISGF3). ISGF3 translocates into the
nucleus where it binds IFN-stimulated response elements
(ISREs) located in the promoters of IFN-stimulated genes
(ISGs) (19, 29). Despite these similarities, the combination of
JAK kinases activated by type I and III IFNs may be different.
Some studies have suggested that JAK2 may mediate IFNLR, but
not IFNAR, signaling (22, 35, 53). In addition, Tyrosine kinase 2
(TYK2) is required for type I IFN signaling, but seems to be
dispensable for IFNl signaling (54–56).

Hundreds of ISGs are expressed in response to IFNs and can
modulate innate and adaptive immunity to promote
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microbial clearance. The ISGs expressed in response to type I
and type III IFNs overlap greatly, however the kinetics of their
production differ. Type I IFNs typically induce a strong, rapid
expression of ISGs, whereas the type III IFN response is slower and
of a lesser magnitude (19, 29, 57–61). Although the functions of
IFNl and ISGs have been predominantly studied in the context of
viral infection (62, 63), emerging evidence indicates a protective
role of some ISGs in bacterial infection. For example, the anti-viral
IFN induced transmembrane (IFITM) proteins have been shown
to restrictMycobacterium tuberculosis intracellular growth (64) and
the ISG Viperin inhibits the entry of Shigella into epithelial cells
(65). Additionally, guanylate-binding proteins (GBPs) bind the LPS
of Gram-negative bacteria, facilitating activation of the non-
canonical inflammasome (66–69). GBPs also interfere with actin-
based motility of Shigella flexneri, hindering bacterial
dissemination (70, 71). Given their emerging antibacterial roles,
ISGs are attractive targets for bacterial virulence factors (72). This is
exemplified by the Shigella ubiquitin ligase IpaH9.8, which targets
GBPs for proteosomal degradation (69, 71, 73).

The production of IFNls and ISGs in response to bacterial
ligands, in conjunction with the privileged localisation of IFNLR,
raises interest regarding the function of IFNl at barrier sites.
Here, we summarize the roles of IFNl in mucosal epithelia
during disease and homeostasis.
2 TYPE III IFNS IN ANTI-BACTERIAL
MUCOSAL IMMUNITY

2.1 Type III IFNs and Epithelial Barriers
2.1.1 Intestinal Epithelial Barriers
Compartmentalisation by epithelial barriers is critical in the
intestine, as they not only protect the host from potential
pathogens but also separate the underlying tissue from foreign
material ingested by the host. IFNls protect intestinal epithelial
barrier integrity (16, 74, 75). In a mouse model of colitis induced
by dextran sulfate sodium (DSS), IFNls were shown to control
the proliferation of intestinal epithelial cells and accelerate
intestinal mucosal healing, which reduced epithelial cell
damage (15, 22, 76).

The protective role of IFNl in intestinal epithelia extends to
the context of bacterial infection. Treatment with IFNl1 was
shown to increase trans-epithelial electrical resistance (TEER) in
an in vitromodel of barrier integrity using polarized T84 colonic
epithelial cells (16). Invasive enteric pathogens such as S. flexneri
and Salmonella enterica serovar Typhimurium disrupt epithelial
barriers to aid bacterial dissemination. While TEER dropped
upon infection with these bacteria in control conditions, it was
maintained following IFNl1 pre-treatment. In addition, IFNl
treatment prevented S. flexneri and S. Typhimurium
transmigration, showing that IFNl protects intestinal epithelial
barriers from infection and damage mediated by invasive
bacteria in vitro (16) (Figure 1). The molecular mechanism of
action of IFNls-mediated protection of barriers has not been
uncovered, but intracellular tight junction proteins like claudin-1
were shown to be upregulated by IFNl2 (75). Whether these
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observations in cell culture extend to in vivo models of bacterial
infection remains to be determined.

2.1.2 Airways Epithelial Barriers
While type III IFNs appear to protect against enteric bacterial
infections, their roles in the airway epithelium are unclear. At
steady state, IFNls modulate immune cell responses to decrease
inflammation (24, 25, 77, 78). However, during infection, the
activities of type III IFNs on lung epithelial cells were also shown
to increase inflammation and compromise barrier function (79–
82) (Figure 1). During infection with Klebsiella pneumoniae,
IFNl treatment lowered epithelial barrier integrity in vitro,
faci l i tating neutrophil transmigration and bacterial
translocation. Moreover, Ifnlr1-/- mice were protected from
Klebsiel la-induced pneumonia (79). Similarly, IFNl
exacerbated lung inflammatory pathology in a mouse model of
Bordetella pertussis infection (80). In this study, antibody
neutralization of IFNl, as well as deletion of IFNLR, led to
reduced lung inflammatory pathology (80), congruent with a
detrimental role of type III IFN in bacteria-infected lungs.

Compromised barrier functions and increased inflammation
during viral infection in the lungs can result in complications
such as bacterial superinfection (81–84). Infection with Influenza
A virus (IAV) or intratracheal instillation of poly (I:C), a synthetic
ligand that mimics viral dsRNA, were shown to up-regulate IFNl2
and IFNl3. This led to compromised barrier function and
promoted superinfection by Staphylococcus aureus (81) and S.
pneumoniae (82). Greater barrier damage and higher bacterial
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burdens were found in mice treated with poly (I:C), a phenotype
reversed inmice lacking IFNLR. Moreover, the co-administration of
IFNl and R848 (a TLR7 agonist that mimics viral ssRNA), but not
IFNl alone, increased sensitivity to S. aureus infection. This suggests
that IFNl promotes superinfections in inflamed lungs by driving
inflammation and compromising barrier function (81) (Figure 1).

IFNl was also shown to impair neutrophil recruitment and
phagocytosis during recovery from IAV infection (85). This
enhanced superinfections with methicillin-resistant S. aureus
(MRSA) or S. pneumoniae (82, 83). Consequently, mice
lacking IFNLR that were infected with IAV were less
susceptible to superinfections (82, 83).

Although type III IFNs can be protective in the intestinal
epithelium and healthy lung, it is evident that they can have a
detrimental role in inflamed airways. These findings emphasize
that biological context is crucial, and further research is required
to understand the nuanced effects of IFNs at epithelial barriers.

2.2 Type III IFNs and the Microbiota
Mucosal barriers serve to protect the host in a multitude of ways. As
well as forming a physical barrier, they maintain a tolerance to the
commensal microorganisms that make up the microbiota. This
population benefits the host by inhibiting infection by pathogenic
species, as well as contributing to host metabolism (86).

2.2.1 Intestinal Microbiota
At steady-state, ISGs are detected in mouse and human intestinal
epithelial cells (87–90). The expression of ISGs is dependent on
FIGURE 1 | Functions of IFNl at barrier sites at steady state and during bacterial infection. At barrier sites, detection of Microbe-Associated Molecular Patterns
(MAMPs) by Pattern Recognition Receptors (PRRs) triggers IFNl production (in yellow) and subsequent expression of IFN-stimulated genes (ISGs). IFNl can
enhance (green lines) or inhibit (red lines) host immune responses. In infected or inflamed lungs (left panel), IFNl and ISGs restrict neutrophil recruitment, resulting in
increased bacterial burdens. IFNl also decreases tight junction protein production, facilitating bacterial translocation and promoting bacterial superinfections. In
contrast, IFNl promotes the phagocytic activity of macrophages. During bacterial infections of the intestinal tract (lower right panel), IFNl strengthens tight junction
proteins, preventing bacterial transmigration. IFNl also impairs neutrophil recruitment and reactive oxygen species (ROS) production to limit tissue destruction. At
both sites (top right panel), steady-state detection of the bacterial microbiota induces the production of IFNls, whose signaling drives homeostatic expression of
ISGs. The resulting basal ISG response protects against viral infections.
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PRR-mediated sensing of the microbiota, particularly in the
ileum, and expression of specific ISGs was found to be ablated
following antibiotic treatment to eliminate the microbiota (87,
90). Interestingly, homeostatic ISG expression was shown to
control enteric viral infections (89), which benefits the
host (Figure 1).

2.2.2 Airway Microbiota
Although the pulmonary microbiota is poorly understood (91–
93), a homeostatic ISG response has also been found in mouse
lungs (89, 94). Emerging evidence demonstrates that IFNl is also
important for regulating the microbiota and influencing
infection at this mucosal barrier in humans (Figure 1).

One study investigated the microbiota composition using
random sampling of bronchoalveolar lavage fluid (BALF) from
lung transplant recipients. Post-transplant lung microbiota were
categorised into four ‘pneumotypes’. In balanced pneumotype,
BALF samples analysis of differential expression of host genes,
revealed that Ifnlr1 was upregulated, relative to the other groups.
This balanced pneumotype was associated with the lowest risk of
infection and allogenic responses, resulting in a lower clinical
risk (95). Moreover, in a study assessing the contribution of nasal
commensal bacteria in antiviral defense against IAV infection in
the upper respiratory tract, the commensal bacterium
Staphylococcus epidermidis was shown to reduce host
susceptibility to IAV infection by inducing the expression of
IFNl (96).

2.3 Type III IFNs and Immune Cells
It was initially believed that the IFNLR was solely expressed by
epithelial cells, but it has since been demonstrated to be present
on immune cells. Neutrophils (22), macrophages (23), pDCs (8,
24), T cells, B cells (5, 25, 26) and mouse NK cells (28) express
IFNLR. These cells exhibit limited basal expression of IFNLR, but
can rapidly increase expression upon stimulation of TLRs (10,
22, 28), T cell receptor (TCR) (23, 26) or B cell receptor
(BCR) (26).

2.3.1 Neutrophils
Neutrophils are phagocytes that can engulf foreign materials and
pathogens. They also potently produce microbicidal reactive
oxygen species (ROS) and promote inflammation via
degranulation. However, excessive or prolonged neutrophil
activation is a hallmark of many inflammatory pathologies.
IFNLR is expressed at higher levels in human and mouse
neutrophils than other immune or epithelial cells (22, 25, 78,
97), and its expression in neutrophils is further upregulated by
bacterial ligands such as LPS (22). While IFNb elicits pro-
inflammatory activities in neutrophils (78), IFNls cultivate an
anti-inflammatory state by inhibiting neutrophil recruitment
(22, 25, 85). Crucially, IFNl treatment of bone marrow derived
neutrophils diminished ROS production and degranulation but
did not affect protective cytokine production or phagocytosis.
This was protective in the intestine in a mouse model of DSS-
induced colitis (22).

Neutrophils are efficient phagocytes and are essential to the
resolution of infection. Despite their crucial roles, the functions
Frontiers in Immunology | www.frontiersin.org 4
of IFNl in neutrophils in the context of bacterial infections have
seldom been addressed. In models of bacterial superinfection in
murine lungs, IFNl was shown to reduce the phagocytic abilities
of neutrophils which impaired bacterial clearance, exposing the
host to infection (85). However, during infection with
Pseudomonas aeruginosa, an IFNl2-mediated decrease in
neutrophil recruitment was protective and resulted in less
epithelial damage (98) (Figure 1). As such, the balance
between inhibiting neutrophil-mediated inflammatory damage
and promoting bacterial clearance should be carefully considered
when evaluating the therapeutic potential of IFNl.

2.3.2 Macrophages
Macrophages are phagocytes that engulf and destroy bacteria.
They can also stimulate the adaptive immune system via the
presentation of foreign antigens to T cells. Exposure to IFNl
increases their phagocytic activity and the production of
proinflammatory cytokines and chemokines (23). This
promotes bacterial clearance during infection; IFNl1 was
shown to enhance S. aureus uptake in macrophages, and
increase bacterial killing (99) (Figure 1).

Interestingly, when monocytes are incubated with
Granulocyte Macrophage Colony-Stimulating Factor (GM-
CSF) or Macrophage Colony-Stimulating Factor (M-CSF) to
respectively produce M1- or M2-shifted macrophages, the
differentiated macrophages respond differently to IFNl3. GM-
CSF differentiated macrophages demonstrated greater IFNLR1
expression and had increased levels of STAT1 phosphorylation
and ISG expression in response to IFNl3 than M-CSF
differentiated macrophages (23). Moreover, GM-CSF
differentiated macrophages exhibited a pro-inflammatory
profile and were more potent at recruiting leukocytes and NK
cells upon IFNl3 stimulation. Interestingly, when stimulated
with type I IFN, these macrophages did not exhibit a pro-
inflammatory phenotype and were incapable of recruiting
leukocyte and NK cells (23).

2.3.3 Other Immune Cells
IFNl also alters the function of pDCs (8, 24), T and B
lymphocytes (5, 26) and mouse NK cells (28). However,
whether these effects have an impact on bacterial infections has
yet to be explored. pDCs are antigen presenting cells which
secrete cytokines that recruit and activate cells of the adaptive
immune system. IFNl3 was shown to prolong the survival of
human pDCs in vitro, as well as increase their immunoreactivity
and ISG response (100). IFNl was also demonstrated to enhance
activation of, and antibody production by, human B lymphocytes
(101, 102) and skew the T helper 1 (Th1)/Th2 balance to a Th1-
pro-inflammatory response (103–105). Finally, in an in vivo
model of bacterial-induced inflammation, IFNl signaling in
mouse NK cells was shown to induce IFNg production, which
promoted inflammation. Although enhanced activation of
immune cells may promote bacterial clearance, the dangers of
prolonged inflammation and tissue destruction must be
considered. As such, studying the role of IFNl in the
resolution of inflammatory responses to infection is essential to
uncover whether it causes any detrimental effects.
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3 CONCLUDING REMARKS

IFNls are crucial mediators of inflammation. They are produced
by a variety of cell types in response to both commensal and
pathogenic microorganisms. Although the IFNLR receptor is
found on a restricted subset of cells, the localisation of these cells
at barrier sites makes them optimally suited as gatekeepers of
immune responses (summarized in Figure 1). Homeostatic
IFNl production in response to the microbiota promotes a
resting antiviral state and strengthens epithelial barrier
integrity in the intestines and the lungs. IFNl has diverse
effects in health and disease, with the outcome depending on
the biological context. In the intestine, IFNl appears to be
protective during bacterial infection, inhibiting the invasion of
enteric pathogens in vitro. In contrast, in the respiratory tract,
IFNl production during viral infection promotes inflammation
and can lead to bacterial superinfections. In addition to the lungs
and intestinal tract, mucosal epithelial barriers are also present in
the genitourinary tract. IFNl is produced and protective against
viral infection in the vaginal and cervical epithelium (106–108).
Whether type III IFNs are protective against genitourinary
bacterial infections warrants further investigation.

IFNl also has inverse effects on different immune cells. While
it dampens neutrophil recruitment and phagocytosis, it enhances
bacterial uptake and killing by macrophages. As they are
intrinsically involved in innate and adaptive immune
responses, it is important that IFNls are not studied in
isolation. Although IFNl and the other IFN family members
are functionally distinct, they exert antagonistic or synergistic
influences on each other (109–111). For example, epithelial cells
lacking type III IFN signaling were shown to be more responsive
Frontiers in Immunology | www.frontiersin.org 5
to type I IFN. Conversely, depletion of type I IFN signaling
negatively regulates the sensitivity of cells to IFNl (109). Finally,
defining the bidirectional relationship that occurs between the
gut microbiota and the lung IFN response will be key to our
understanding of anti-bacterial immunity at barrier sites. This
review illustrates the need for further research into the functions
of IFNl at barrier sites in the context of bacterial infection and
mandates further exploration into this field.
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