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Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7
million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma
cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection,
the parasite invades and multiplies in the myocardium, leading to acute myocarditis
that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate
multiple host cell signaling pathways to promote host cell invasion. The primary secreted
lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host
immune response. Cruzipain hinders macrophage activation during the early stages
of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows
the parasite to survive and replicate, and may contribute to the spread of infection
in acute Chagas disease. Another secreted protein P21, which is expressed in all of
the developmental stages of T. cruzi, has been shown to modulate host phagocytosis
signaling pathways. The parasite also secretes soluble factors that exert effects on
host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted
phospholipase A from T. cruzi contributes to lipid modifications on host cells and
concomitantly activates the PKC signaling pathway. Here, we present a brief review of
the interaction between secreted proteins from T. cruzi and the host cells, emphasizing
the manipulation of host signaling pathways during invasion.

Keywords: T. cruzi, secretome, secreted proteins, virulence factor, host parasite interaction, host cell signaling,
host cell invasion, Chagas disease

INTRODUCTION

Trypanosoma cruzi: Life Cycle and Chagas Disease
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, affects 6–7 million
individuals, primarily in Latin America, and is associated with negative economic impacts
in developing countries (http://www.who.int/mediacentre/factsheets/fs340/en/). T. cruzi is
transmitted to vertebrate hosts by the triatomine vector Triatoma infestans. Despite its high
incidence and economic costs, Chagas disease remains a neglected tropical disease; it does not
have an effective pharmacological treatment and there are minimal investments in finding a
cure for Chagas disease (Clayton, 2010; Souza et al., 2010). The life cycle of T. cruzi has four
developmental phases that occur in the hematophagous insect vector and bloodstream and tissues
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of mammalian hosts (Souza et al., 2010). The epimastigote (EPI)
is a non-infectious replicative form found in the vector’s digestive
tract. The EPI differentiates into the metacyclic trypomastigote
(MT), which is transmitted to mammals through the insect’s
feces during a blood meal or by the oral route. The MT invade
mammalian host cells where they transform into an amastigote
(AMA) that replicates intracellularly. After a multiple rounds
of replication, the AMAs differentiate back into trypomastigotes
(TCTs), which are released into the extracellular milieu when the
host cell is disrupted. TCTs can invade neighboring host cells or
be released into the blood stream where they can infect other
tissues or be ingested by a feeding insect. Once the host has been
infected, the parasite can invade and multiply in the myocardium,
leading to acute myocarditis, which kills around 5% of untreated
individuals (Ponce et al., 2013).

Similar to other intracellular protozoa, T. cruzi is an
intracellular parasite that invades different types of cells
to evade the host immune system (Guiñazú et al., 2007).
Intracellular parasites have complex lifecycles that involve several
developmental stages, and usually contain multiple secreted
proteins that can manipulate host cell signaling pathways to
promote parasite adhesion, recognition, and invasion (Burleigh
and Woolsey, 2002). The complex interplay between proteins
secreted by T. cruzi that affect the host cell environment or
contribute to immune evasion likely influences the outcome of
infection. Understanding the role of secreted proteins during
T. cruzi infection is critical to deepen the knowledge of the
pathogenesis of Chagas disease (McConville et al., 2002).

T. cruzi Secretome
In eukaryotes, secreted proteins typically contain an N-terminal
signal peptide that directs them to the classical endoplasmic
reticulum (ER)/Golgi-dependent secretion pathway. Secretory
proteins that do not contain the signal peptide are secreted
outside the plasma membrane using non-classical secretory
pathways including, membrane-bound extracellular vesicles
(EVs), such as exosomes and ectosomes (Nickel and Seedorf,
2008; Simpson and Mathivanan, 2012). Only a small fraction
(∼9%) of the proteins in the T. cruzi secretome contain
an N-terminal signal peptide suggesting that they are
secreted by classical pathways (Bayer-Santos et al., 2013),
the remaining proteins are likely secreted by non-classical
pathways (Torrecilhas et al., 2009, 2012; Bayer-Santos et al., 2013;
Marcilla et al., 2014).

Secretion or shedding of EVs by T. cruzi can occur
spontaneously or be induced by nutritional or chemical stress
(da Silveira et al., 1979; Torrecilhas et al., 2009, 2012; Bayer-
Santos et al., 2013; Marcilla et al., 2014). A considerable number
of the T. cruzi secreted/excreted proteins have been characterized
at the structural and functional levels. Some of the secreted
T. cruzi proteins, such as the trans-sialidase (TS) glycoproteins
(TS/SAPA, Tc85, gp82, gp90, CRP, TESA), mucin-associated
surface proteins (MASP), cruzipain, gp63, mucins, and serine-
, alanine-, and proline-rich proteins (SAP), are associated with
the plasma membrane via a glycosylphosphatidylinositol (GPI)
anchor (Torrecilhas et al., 2009, 2012; Bayer-Santos et al.,
2013; Marcilla et al., 2014). Several of these proteins (e.g.,

TS/SAPA, CRP, mucins) are also spontaneously shed from the
parasite surface in a soluble form that lacks the GPI anchor,
possibly due to cleavage by an endogenous phospholipase
C (Affranchino et al., 1989; de Almeida and Heise, 1993;
Bartholomeu et al., 2009; de Pablos et al., 2011; Cánepa et al.,
2012a). Others (e.g., Tc85) are shed with the GPI anchor
linked to membrane vesicles (Zingales et al., 1985; Abuin et al.,
1996a).

Trypomastigotes and AMAs release EVs containing virulence
factors involved in: (i) host cell invasion and intracellular parasite
development, such as the TS and TS-like proteins (Zingales et al.,
1985; Gonçalves et al., 1991; Schenkman et al., 1991; Abuin et al.,
1996a,b; Torrecilhas et al., 2009, 2012; Cánepa et al., 2012a;
Maeda et al., 2012; Bayer-Santos et al., 2013; Marcilla et al.,
2014; Mattos et al., 2014), peptidyl prolyl cis-trans-isomerase
(Moro et al., 1995), oligopeptidases and proteases (Meirelles et al.,
1992; Caler et al., 1998; Scharfstein et al., 2000; Cuevas et al.,
2003; Bastos et al., 2005; Doyle et al., 2011; Maeda et al., 2014),
phospolipases A1 and C (Andrews et al., 1988; Rosenberg et al.,
1991; Furuya et al., 2000; Okura et al., 2005; Belaunzarán et al.,
2007, 2013; Castillo et al., 2013); mucins and mucin-like proteins
(Gazzinelli et al., 1991; de Diego et al., 1997; Kierszenbaum
et al., 1999; Pereira-Chioccola et al., 2000; Kierszenbaum et al.,
2002; Alcaide and Fresno, 2004; Cánepa et al., 2012b), MASP
(de Pablos et al., 2011; Cánepa et al., 2012a), SAP (Baida et al.,
2006; Zanforlin et al., 2013), P21 AMA specific proteins (da Silva
et al., 2009), surface membrane proteins (TcSMP; Martins et al.,
2015); (ii) immune evasion (Andrews et al., 1990; Norris et al.,
1991; Norris and Schrimpf, 1994; Ouaissi et al., 1995; Reina-San-
Martin et al., 2000; Martin et al., 2006; Mott et al., 2011; Kulkarni
et al., 2013; Nogueira et al., 2015); and (iii) increased heart
parasitism, inflammation, and arrhythmia that contribute to the
pathogenesis of Chagas disease (Torrecilhas et al., 2009; Nogueira
et al., 2015; Rodriguez-Angulo et al., 2015). In addition, some of
the secreted/excreted proteins are diagnostic markers for Chagas
disease (Jazin et al., 1995; Umezawa et al., 1996; Agusti et al.,
2000; Bernabó et al., 2013). This mini review will focus on specific
molecules secreted by T. cruzi that have already been identified as
interfering with host cell signaling and that ultimately play a role
in the ability of T. cruzi to evade the immune system.

T. cruzi Cruzipain: A Role in Evading the
Host Immune Response and Promoting
Survival in Cardiomyocytes
To facilitate their entry into non-phagocytic cells, infectious
TCTs employ an arsenal of surface glycoproteins, secreted
proteases, and signaling agonists to actively manipulate multiple
host cell signaling pathways (Burleigh and Woolsey, 2002).
Several studies using synthetic irreversible cysteine peptidase
inhibitors have demonstrated that T. cruzi infectivity, host
immune evasion, and intracellular growth depend on the activity
of cruzipain (Meirelles et al., 1992; Waghabi et al., 2005;
McKerrow et al., 2008). To facilitate entry into non-phagocytic
cells like endothelial cells and cardiomyocytes, cruzipain acts
on a cell-bound kininogen to generate bradykinin, which upon
recognition by the B2 bradykinin receptor, triggers the Ca2+
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mobilization required for parasite internalization (Scharfstein
et al., 2000; Guiñazú et al., 2007; Maeda et al., 2014).

Murine macrophages stimulated with cruzipain up-regulate
arginase activity and increase production of IL-10 and TGF-
β, thereby increasing T. cruzi survival (Stempin et al., 2002).
TGF-β in particular can suppress some of the microbicidal
functions of macrophages and is one way that parasites create a
favorable cellular microenvironment to gain a survival advantage
(Gantt et al., 2003; Waghabi et al., 2005). Previous studies have
demonstrated that forms of T. cruzi are able to activate latent
TGF-β (Waghabi et al., 2005). Treatment of macrophages with
increasing doses of cruzipain promoted the activation of TGF-
β in a dose-dependent manner, confirming that this peptidase is
capable of activating latent TGF-β in the absence of any other host
or parasite factors (Ferrão et al., 2015). In addition, transgenic
EPIs overexpressing chagasin, a natural cruzipain inhibitor, were
significantly less able to activate latent TGF-β when compared to
wild type parasites (Santos et al., 2005; Ferrão et al., 2015).

The role of cruzipain in cell entry and TGF-β production
suggest that it may function during the early events of
macrophage infection to facilitate parasite survival and
replication. Taken together, the data suggests that cruzipain
is a potential pharmaceutical target as it may have an essential
role in the pathogenesis of Chagas disease (Guiñazú et al., 2007;
Doyle et al., 2011). Based on this evidence, cruzipain inhibitors
are considered promising anti-T. cruzi chemotherapeutic agents
(Ndao et al., 2014; Branquinha et al., 2015). Irreversible cruzipain
inhibitors, such as the prototype molecule K777 (also known as
K11777) have been efficacious in experimental models of T. cruzi
infection (Engel et al., 1998; Barr et al., 2005; Doyle et al., 2011).

In parallel to the immunological findings, cruzipain promotes
cardiomyocyte survival via the PI3K and MEK1-dependent
signaling pathways (Aoki et al., 2004, 2006). Cardiomyocytes
were pretreated with PI3K or MAPK inhibitors and grown in
the presence or absence of cruzipain. Cardiomyocyte apoptosis
was decreased after cruzipain treatment, but this protective effect
was reduced by incubation with PI3K and MEK1 inhibitors,
which had no effect on cruzipain-mediated cardiomyocyte
survival in the absence of cruzipain. These findings suggest the
survival effects of cruzipain are regulated by effector proteins
downstream of PI3K and MEK1. Moreover, T. cruzi infection
as well as cruzipain itself mediates the phosphorylation of
ERK1/2 and Akt, and cruzipain inhibits proteolytic cleavage of
caspase 3 via PI3K and MEK1-dependent signaling pathways
(Fujio et al., 2000; Aoki et al., 2006). Together the data
strongly suggest cruzipain mediates survival in part via anti-
apoptotic PI3K/MEK1 signaling. Another study has shown that
the anti-apoptotic effect of cruzipain is also mediated in part
by arginase activity and Bcl-2 expression (Aoki et al., 2004).
Thus, cruzipain activates at least two signaling pathways leading
to enhanced cardiomyocyte survival. Parallel activation of these
signal transduction pathways may represent a cellular strategy
to amplify survival signals in the target cell. Elucidating the
pro-survival pathways may lead to a better understanding
of the parasite–host relationship and may provide useful
targets for the treatment of Chagas disease (Aoki et al., 2004,
2006).

T. cruzi Phospholipase A1: A Role in
Activating Host Protein Kinase C (PKC)
Throughout Infection
Phospholipases play a critical role in some physiological processes
including the generation of signaling lipids that are relevant to
disease (Dennis, 2015). In the case of T. cruzi, phospholipid
degrading enzymes are associated with the inflammatory
responses elicited by degenerating AMA nests in the tissues of
patients with Chagas disease (Wainszelbaum et al., 2001).

Throughout its life cycle, T. cruzi has to adapt to different
environments through morphological and functional changes
that involve complex networks of enzymatic pathways, including
phospholipases. T. cruzi Phospholipase A1 (Tc-PLA1) is secreted
by the parasite into the extracellular medium and shows
remarkably higher membrane-bound activity in infectious AMAs
and TCTs (Wainszelbaum et al., 2001; Belaunzarán et al., 2007).
In VERO cells, treatment with Tc-PLA1 and PMA (phorbol 12-
myristate 13-acetate), a known PKC activator, demonstrated that
Tc-PLA1 is involved in host cell lipid modifications leading to
PKC activation (34). Tc-PLA1 significantly modified the host
cell lipid profile by generating secondary lipid messengers (DG,
FFA, and LPC) and concomitant PKC activation. PKC has
been implicated in increased parasite invasion, suggesting that
Tc-PLA1 is involved in the early events of parasite–host cell
interaction preceding parasite invasion (Belaunzarán et al., 2007).
Specific anti- Tc-PLA1 antibodies can bind to the surface of
the parasite and neutralize Tc-PLA1 activity, preventing parasite
invasion. This suggests that Tc-PLA1 is an emerging virulence
factor for T. cruzi and emphasizes the promise of Tc-PLA1
as a potential therapeutic target (Belaunzarán et al., 2007).
Taking these findings into consideration, Tc-PLA1-mediated
host cell PKC activation could modulate Ca2+ release from
intracellular stores thereby contributing to parasite invasion.
Ca2+ mobilization, in both host cell and parasite, is required
during the internalization process (Villalta et al., 1999; Yoshida,
2006; Souza et al., 2010; Maeda et al., 2012). In addition, T. cruzi
infective stages partially incorporated and metabolized LPC,
therefore the remaining extracellular LPC might exert a toxic
effect on the host cell, reinforcing the involvement of Tc-PLA1
in the pathogenesis. In this concern, it has been described that
LPC inhibits nitric oxide production by T. cruzi stimulated
macrophages (Figure 1), and thus interferes with the vertebrate
host immune system (Belaunzarán et al., 2007).

Secreted T. cruzi Cyclophilin Inactivates
the Lytic Vector Defense
Trypanosoma cruzi not only has to interact with the mammalian
host but also with its insect vector (Triatoma infestans), and
many of these interactions are still unknown. Innate immune
cationic antimicrobial peptides (CAMPs) are expressed by a wide
variety of insects to prevent microbial colonization and infection.
Several CAMPs have been identified from the saliva, hemolymph,
and intestinal tract of reduviid insects (Lopez et al., 2003).
Kulkarni et al. (2013) studied the interactions between CAMPs
and T. cruzi, and found a unique parasite-driven pathway that
modified host CAMPs. Parasites exposed to cyclophilin-trialysin
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FIGURE 1 | To ensure successful invasion of the host cell T. cruzi has developed a multi-step process with redundant mechanisms involving diverse
host and parasite molecules. The enzyme Plase A1 (Tc-Plase A1) is secreted by T. cruzi and is widely present during the infectious life stages. Tc-Plase A1 may
contribute to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. This suggests that Tc-Plase A1 is involved in the early events
of the parasite–host cell interaction and precedes parasite invasion.

have enhanced binding and invasion in myoblasts pre-grown
leading to higher infectivity. They found that secreted parasite
cyclophilin, a peptidyl-prolyl isomerase involved in protein
folding (Kulkarni et al., 2013; Carraro et al., 2015), binds to and
inactivates trialysin via its proline residue. Replicating insect-
stage parasites secrete cyclophilin 19 as they migrate through
the reduviid gastrointestinal tract. Cyclophilin 19 binds to and
isomerizes the CAMP peptide neutralizing its anti-parasitic
activity. The cyclophilin-trialysin complex then synergistically
acts on the parasites to activate calcineurin phosphatase signaling,
which drives metabolic activation and ATP production leading
to enhanced infectivity. This parasite pathway is a mechanism
of CAMP recognition, evasion, and adaptation mediated through
calcineurin intracellular signaling (Kulkarni et al., 2013; Carraro
et al., 2015). These findings also represent one of the few
descriptions of specific stimuli that enhance infectivity of T. cruzi
and indicate a defined host molecule-based environmental

sensing mechanism in this group of organisms (Kulkarni et al.,
2013).

T. cruzi Soluble Factors: Effects on the
Host Extracellular Matrix
Trypomastigotes trigger rapid changes in the host cell signaling
pathways during their early interactions with mammalian host
cells to facilitate the process of parasite entry into non-
professional phagocytic cells (Giddings et al., 2006; Yoshida,
2008). However, T. cruzi also affects the host cell downstream
of the invasion process. Transcriptional profiling of T. cruzi-
infected fibroblasts showed that the earliest detectable changes
triggered by infectious TCTs involved downregulation of a
small subset of genes including members of the CCN family
(cyr61 and ctgf/ccn2) that play critical roles in cardiovascular
development (angiogenesis), injury repair, fibrotic disease, and
extracellular matrix (ECM) homeostasis (Chen and Lau, 2009;
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Mott et al., 2011). Connective tissue growth factor (CTGF/CCN2)
promotes cell proliferation and cooperates with TGF-ß to
promote myofibroblast differentiation and enhanced ECM
synthesis. Mott et al. (2011) showed that T. cruzi may release a
factor that inhibits TGF-ß-mediated expression of CTGF/CCN2.
The expression of CTGF/CCN2 is also controlled by the
ETS family of transcriptional factors, which are regulated
through MAP kinase signaling. T. cruzi-dependent abrogation
of CTGF/CCN2 expression in human dermal fibroblasts is
associated with inhibition of both basal and agonist-induced
activation of MAP kinase signaling (Mott et al., 2011). T. cruzi-
mediated down-regulation of CTGF expression requires de novo
host cell protein synthesis, indicating that the ability of
T. cruzi to interfere with the host fibrogenic response is
a complex process requiring input from multiple host cell
signaling pathways (Unnikrishnan and Burleigh, 2004; Mott
et al., 2011).

Regarding the impact of T. cruzi secreted factors on
TGF-ß-induced fibroblast gene expression, a discrete subset
of agonist-inducible fibroblast genes are sensitive to factors
secreted/released by T. cruzi. A study reports that the group
of TGFß-inducible genes that exhibit the highest sensitivity
to a T. cruzi secreted/released fraction are MAP kinase-
regulated genes that function in wound repair, ECM remodeling,
and host response pathways. Inhibition of ECM synthesis
because of these secreted parasite factors would facilitate
dissemination from early sites of infection (Mott et al.,
2011).

Secreted T. cruzi P21 Enhances Host
Phagocytosis
P21 is a secreted protein expressed in all of the developmental
stages in the T. cruzi lifecycle that may play an important
role in parasite internalization (da Silva et al., 2009). Rodrigues
et al. (2012) engineered a recombinant protein based on
P21 (P21-His6) and then assessed its ability to upregulate
phagocytosis in macrophages and alter host cell signaling.
P21-His6 upregulated phagocytosis in macrophages in a manner
dependent on CXCR4-binding and actin polymerization, and
triggered the PI3K signaling pathway (Rodrigues et al., 2012).
P21-His6 required PI3K signaling independent of AKT for
its function (Vasudevan et al., 2009; Lee et al., 2011). PI3K-
dependent signal transduction through the Rho-family GTPases
occurs during FcR-mediated phagocytosis and that PI3K-
dependent deactivation of Cdc42 is necessary for phagocytosis.
Moreover, the activities of PI3K and Cdc42 are linked: FcR-
activated Cdc42 stimulates PI3K, which increases concentrations
of PI(3,4,5)P3 in phagocytic cups, allowing the PI(3,4,5)P3-
dependent deactivation of Cdc42 that is necessary to complete
phagocytosis (Beemiller et al., 2010). In addition, previous
work has provided evidence of PI3K activation in non-
professional phagocytic cells during T. cruzi cell invasion
(Woolsey et al., 2003; Rodrigues et al., 2012). In sum, P21
serves as part of the host cell invasion machinery by triggering
actin polymerization on the host cell through interactions with
the CXCR4 chemokine receptor on the cell membrane, and

favoring its own phagocytosis into the host (dos Santos et al.,
2014).

T. cruzi MASP: A Role in Evading Host
Immune Cells
The annotation of the T. cruzi genome revealed a new
multigene family composed of approximately 1,300 genes, which
became known as MASPs because they were clustered with
genes encoding mucins and other surface protein families
(El-Sayed et al., 2005). MASP proteins are GPI-anchored
glycoproteins expressed on the surface of the circulating
infectious forms of the parasite that can be secreted into the
extracellular medium (Bartholomeu et al., 2009; dos Santos
et al., 2012; Serna et al., 2014). MASP is the second largest
gene family (1377 genes and 433 pseudogenes), representing
approximately 6% of the T. cruzi genome (Serna et al.,
2014).

dos Santos et al. (2012) using antibody recognition
of several MASP peptides observed the interaction of
these proteins with the host immune system during acute
T. cruzi infection. The MASP family may play a role in
promoting the polyclonal lymphocyte activation that leads to
hypergammaglobulinemia and the delayed specific humoral
immune response, characteristic of the acute phase of Chagas
disease. Polyclonal B-cell activation might diffuse the immune
response, preventing the development of a specific and
neutralizing response against the parasite and its complete
elimination. Additionally, MASP peptides could possibly
mediate both specific T-cell dependent and non-specific
T-cell independent immune responses. This hypothesis is
partially supported by the differential recognition of MASPs
by immunoglobulin (Ig) M and IgG and the difference in the
antibody affinity levels against each of the synthetic peptides.
All of these phenomena are suggestive of an immune evasion
mechanism (Reina-San-Martin et al., 2000; Minoprio, 2001; Gao
et al., 2002; dos Santos et al., 2012).

CONCLUDING REMARKS

Host cell invasion and parasite internalization are important
steps in the evolution of parasitism by several pathogens.
These processes present at least two important advantages:
protection against the host immune response and access to a
microenvironment rich in metabolic products (Barrias et al.,
2012). Substantial progress has been made in understanding
the roles of secreted proteins in infection and invasion by
pathogenic T. cruzi. Host cell intracellular signaling can combat
the infection; but it can also favor parasite entry. Parasites
hijack the host immune response, phagocytosis, ECM, and anti-
parasitic proteins for their own survival, replication, and immune
evasion purposes. The complex networks are interconnected and
require extensive study to identify intracellular rearrangements
that facilitate parasite internalization; the tools in use today
include bioinformatics, novel molecular level studies, and
new experimental drugs. A multidisciplinary approach to
understanding parasite host interaction will be critical to
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better understand T. cruzi physiopathology, diagnosis, and
treatment.
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