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Abstract: Human pythiosis is associated with poor prognosis with significant mortality caused by
Pythium insidiosum. Antimicrobials’ in vitro and in vivo results against P. insidiosum are inconsistent.
Although antimicrobials are clinically useful, they are not likely to achieve therapeutic success alone
without surgery and immunotherapy. New therapeutic options are therefore needed. This non-
exhaustive review discusses the rationale antimicrobial therapy, minimum inhibitory concentrations,
and efficacy of antibacterial and antifungal agents against P. insidiosum. This review further provides
insight into the immunomodulating effects of antimicrobials that can enhance the immune response
to infections. Current data support using antimicrobial combination therapy for the pharmacothera-
peutic management of human pythiosis. Also, the success or failure of antimicrobial treatment in
human pythiosis might depend on the immunomodulatory effects of drugs. The repurposing of
existing drugs is a safe strategy for anti-P. insidiosum drug discovery. To improve patient outcomes in
pythiosis, we suggest further research and a deeper understanding of P. insidiosum virulence factors,
host immune response, and host immune system modification by antimicrobials.

Keywords: human pythiosis; antibacterial; antifungal; immunomodulatory; drug repurposing

1. Introduction

Human pythiosis is an infectious disease with high morbidity and mortality [1]. Pythium
insidiosum, a fungus-like aquatic oomycete microorganism, is a causative agent of pythiosis.
The motile flagellate zoospore plays a significant role in initiating an infection. The zoospores
of P. insidiosum adhere to the skin cut or wound sites and encyst on the surface of the injured
tissue(s). The encysted spore develops a germination tube (hypha) that uses chemotaxis to
find the host and infiltrate human blood vessels [1,2]. Pythiosis risk is higher in tropical
and subtropical regions, including Southeast Asia, eastern coastal Australia, and South
America [3].

Human pythiosis is associated with a poor prognosis due to the difficulties in diagnos-
ing the infection and the lack of effective therapeutic agents against this disease [4]. The
clinical features of human pythiosis are classified into four forms: (i) vascular pythiosis
characterized by arteritis, thrombosis, gangrene, aneurysm, or limb claudication; (ii) ocular
pythiosis characterized by corneal ulcers, decreased visual acuity, conjunctival redness,
eyelid swelling, or multiple, linear, tentacle-like infiltrates and dot-like or pinhead-shaped
infiltrates in the surrounding cornea; (iii) cutaneous and subcutaneous pythiosis charac-
terized by a granulomatous and ulcerating lesion in the face or limbs, cellulitis, soft tissue
abscess, or lymphadenopathy; and (iv) disseminated pythiosis characterized by the infec-
tion of internal organs [1,4,5]. The risk factors for vascular pythiosis include thalassemia,
hemoglobinopathy, paroxysmal nocturnal hemoglobinuria, aplastic anemia, and leukemia
because P. insidiosum has a higher affinity for iron [6,7].

Antibiotics 2022, 11, 450. https://doi.org/10.3390/antibiotics11040450 https://www.mdpi.com/journal/antibiotics

https://doi.org/10.3390/antibiotics11040450
https://doi.org/10.3390/antibiotics11040450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://doi.org/10.3390/antibiotics11040450
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics11040450?type=check_update&version=3


Antibiotics 2022, 11, 450 2 of 16

When an infection is diagnosed as P. insidiosum, the therapeutic options include
surgery, pharmacotherapy, and immunotherapy (Figure 1) [8]. Surgical intervention is
the mainstay treatment for managing human pythiosis, but such treatment substantially
increases the financial burden on patients, postsurgical complications, and uncontrolled
infection [9]. Immunotherapy is a promising approach for human pythiosis treatment
where antigens of P. insidiosum from in vitro cultures are injected into the patient [10,11].
The mechanism behind P. insidiosum antigen (PIA) immunotherapy in human pythiosis
includes a switching from the host’s T helper-2 (Th2) to T helper-1 (Th1) mediated immune
response in the host; the Th1 response producing higher levels of interferon-γ (IFN-γ) and
interleukin 2 (IL-2) [10,12,13]. Even though a good prognosis in PIA-treated patients can be
implied by Th2 to Th1 switching, the efficacy of P. insidiosum antigen is inconclusive when
used as immunotherapy in human pythiosis [7,12,14]. In vitro studies have demonstrated
the anti-P. insidiosum effect of antifungals even though the P. insidiosum lacks the antifungal
drug-target: ergosterol biosynthetic pathway [15]. However, a significant concern with
antifungals is the contradictory results in susceptibility to P. insidiosum in in vitro and
clinical use [15,16].
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tive IgG against P. insidiosum (with permission). Abbreviations: CTA, computed tomography angi-
ography; ELISA, enzyme-linked immunosorbent assay. 
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genesis of the P. insidiosum infection in humans, or the management of human pythiosis 
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marks on future strategic options for managing human pythiosis. 

  

Figure 1. Photograph of human pythiosis. A 46-year-old Thai male with thalassemia was diagnosed
with vascular pythiosis. CTA showed the occlusion of the right aorta, and ELISA showed the positive
IgG against P. insidiosum (with permission). Abbreviations: CTA, computed tomography angiography;
ELISA, enzyme-linked immunosorbent assay.

This review focuses on evidence supporting and disputing the effectiveness of antimi-
crobials to expand the pharmacotherapeutic role of antimicrobials in the management of
human pythiosis. We do not explicitly discuss the biology of P. insidiosum, the pathogenesis
of the P. insidiosum infection in humans, or the management of human pythiosis with
immunotherapy and surgical intervention. Finally, we conclude with general remarks on
future strategic options for managing human pythiosis.

2. Principles of Antimicrobial Therapy

Antimicrobial therapy should achieve a clinical response by eliminating the invading
microorganism(s) while minimizing cost, adverse effects, and antimicrobial resistance [17,18].
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When selecting appropriate antimicrobial therapy, both pharmacokinetic and pharmaco-
dynamic properties of the drug(s) must be considered to ensure that effective agents are
administered in sufficient doses for therapeutic success [19]. For species such as P. insidiosum,
identifying potential targets for antimicrobials is necessary for managing pythiosis. The
microbial cell wall is a critical target for antimicrobials, and the cell wall of P. insidiosum is
primarily composed of β-glucan and cellulose [20]. However, the cell wall of P. insidiosum
lowers the penetration of drug molecules and prevents drug access to targets inside the
cell wall [21]. The gene expression of cytochrome oxidase 2 (COX2) in Thai P. insidiosum
strains was 2.5-fold higher at 37 ◦C compared to the expression at 27 ◦C [22]. In addition, the
elicitin protein, ELI025, was highly up-regulated in P. insidiosum hyphae at 37 ◦C compared
to hyphae grown at 28 ◦C and facilitated the evasion of the host antibody response [23].
COX2 and ELIO25 can be candidate targets for controlling P. insidiosum infection.

Several antifungal and antibacterial drugs have been examined for their susceptibility
profile against P. insidiosum in an in vitro study (Figure 2). They have been tried to manage
human pythiosis but have been successful only in a few cases [4]. P. insidiosum keratitis
was successfully managed in a 20-year-old Japanese man following triple antibiotic therapy
(minocycline ointment four times a day, chloramphenicol eye drops hourly, and linezolid
1200 mg orally twice a day) [24]. Recently, a P. insidiosum keratitis patient was successfully
managed with topical 0.2% linezolid and topical 1% azithromycin, administered hourly [25].
Antimicrobial susceptibility testing (AST) is a procedure to determine the concentration of
an antimicrobial that inhibits microbial growth in vitro by establishing minimum inhibitory
concentration (MIC), which is the lowest concentration of an antimicrobial that inhibits visi-
ble growth of a microorganism [26,27]. Table 1 summarizes the methods used to determine
the MIC of antimicrobial drugs against P. insidiosum discussed in our review.
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Figure 2. Mode of MIC value of each antibacterial/antifungal class against P. insidiosum isolates
reviewed in previous publications. Mode of MIC value of P. insidiosum isolates against antimi-
crobial drugs in class different antimicrobial classes: tetracyclines (4 µg/mL) [28,29], macrolides
(6 µg/mL) [29], oxazolidinones (8 µg/mL) [29], lincosamides (4 µg/mL) [30], streptogramins
(2 µg/mL) [30], phenicols (16 µg/mL) [30], aminoglycosides (64 µg/mL) [31], nitrofurantoin (no
data) [30], mupirocin (4 µg/mL) [29], polyenes (64 µg/mL) [29], allylamines and azoles (4 µg/mL) [9],
and echinocandins (4 µg/mL) [32].
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Table 1. Summary of methods for determining MICs of antimicrobial drugs against P. insidiosum.

Antimicrobial Class Drug MIC Determination Method(s) Reference(s)

Tetracyclines

Tetracycline Broth microdilution [28]

Tigecycline Broth microdilution, disk diffusion, and Etest [28,29,31]

Minocycline Broth microdilution, disk diffusion, and Etest [28,29]

Macrolides
Azithromycin Broth microdilution, disk diffusion, and Etest [28,29]

Clarithromycin Broth microdilution, disk diffusion, and Etest [28,29]

Oxazolidinones Linezolid Broth microdilution, disk diffusion, and Etest [29]

Lincosamides Clindamycin Broth dilution [30]

Streptogramins Quinupristin and dalfopristin Broth dilution [30]

Phenicols Chloramphenicol Broth dilution [30]

Aminoglycosides

Gentamicin Broth microdilution [31]

Neomycin Broth microdilution [31]

Paromomycin Broth microdilution [31]

Streptomycin Broth microdilution [31]

Nitrofurantoin Broth dilution [30]

Mupirocin Broth microdilution, disk diffusion, and Etest [29]

Polyenes Amphotericin B Etest [29]

Allylamines Terbinafine Broth dilution and radial growth [9]

Azoles

Miconazole Broth microdilution [9]

Ketoconazole Broth microdilution [9]

Fluconazole Broth microdilution and agar diffusion [9]

Itraconazole Broth microdilution, radial growth,
and agar diffusion [9]

Posaconazole Broth microdilution and agar diffusion [9]

Voriconazole Broth microdilution, radial growth,
and agar diffusion [9]

Echinocandins
Caspofungin Broth dilution [32]

Anidulafungin Broth dilution [32]

Abbreviations: MIC, minimal inhibitory concentration.

3. Why Do Antimicrobial Treatments Fail?

Factors contributing to the antimicrobial treatment failure include antimicrobial agent’s
pharmacokinetic and pharmacodynamic issues related to the antimicrobial agent, lack of
pathogen control, development of infection complications, drug-resistant pathogens, con-
flicting AST results, disparities between in vitro and in vivo efficacy, host immune response,
and wrong choice of antimicrobial drug (Figure 3) [33,34]. Pharmacokinetics variabil-
ity can be defined as differences in plasma antimicrobial exposure, impacting treatment
success [35]. Antimicrobials, like beta-lactams and aminoglycosides, achieve suboptimal
plasma concentrations in critically ill patients due to increased volume of distribution and
increased renal and hepatic clearance [36,37]. As another example, linezolid’s pharmacoki-
netic variability results in adverse effects and ineffective therapy because of the narrow
therapeutic window of linezolid [38].



Antibiotics 2022, 11, 450 5 of 16Antibiotics 2022, 11, 450 5 of 16 
 

 
Figure 3. Antimicrobial treatment in the management of P. insidiosum infection. Antibacterial and 
antifungal drugs exhibit immunomodulation activity and can improve treatment strategies for hu-
man pythiosis. Several mechanisms contribute to antimicrobial failure during the treatment of dis-
eases. 

P. insidiosum produces six enzymes (ERG3, ERG5, ERG11, ERG20, ERG24, and 
ERG26) included in the sterol biosynthetic pathways [16]. However, more than 40 en-
zymes are involved in the sterol biosynthetic pathways; thus, drugs targeting sterol path-
ways exhibit limited efficacy against P. insidiosum. These drugs cannot be exploited for 
rationalized and successful management of pythiosis [39]. Different strategies could be 
considered to prevent the antimicrobial treatment failure in pythiosis, namely: delivering 
adequate concentration of antimicrobial drug at the site of infection [40], increased periods 
of exposure of P. insidiosum to the antimicrobial drug [41], redesigning drug to penetrate 
the outer membrane of P. insidiosum and avoid being pumped out of the membrane [42], 
and modulate host immunity [43]. 

  

Figure 3. Antimicrobial treatment in the management of P. insidiosum infection. Antibacterial and
antifungal drugs exhibit immunomodulation activity and can improve treatment strategies for human
pythiosis. Several mechanisms contribute to antimicrobial failure during the treatment of diseases.

P. insidiosum produces six enzymes (ERG3, ERG5, ERG11, ERG20, ERG24, and ERG26)
included in the sterol biosynthetic pathways [16]. However, more than 40 enzymes are
involved in the sterol biosynthetic pathways; thus, drugs targeting sterol pathways exhibit
limited efficacy against P. insidiosum. These drugs cannot be exploited for rationalized
and successful management of pythiosis [39]. Different strategies could be considered
to prevent the antimicrobial treatment failure in pythiosis, namely: delivering adequate
concentration of antimicrobial drug at the site of infection [40], increased periods of exposure
of P. insidiosum to the antimicrobial drug [41], redesigning drug to penetrate the outer
membrane of P. insidiosum and avoid being pumped out of the membrane [42], and modulate
host immunity [43].
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4. Immune Response and Antimicrobial Therapy

The innate immune system protects the host from various toxins and infectious agents,
including bacteria, fungi, viruses, and parasites via phagocytosis and intracellular killing, re-
cruitment of other inflammatory cells, and presentation of antigens [44]. The innate immune
system is highly complex and comprises physical and anatomical barriers, effector cells,
antimicrobial peptides, soluble mediators, and cell receptors [45]. However, pathogens can
breach the early innate immune mechanisms. In these circumstances, a strategy to modify
the function of immune cells can lead to the elimination of the pathogenic intruder [46].
Interestingly, host immunity is often overlooked in the process of pathogen clearance. A
favorable innate immune response can considerably reduce the need for more prolonged
antimicrobial therapy in infections [47].

Once P. insidiosum enters and adheres to the host tissues, the soluble exoantigens from
P. insidiosum trigger the Th2 response and lock the host immune system into a Th2 subset.
Further, P. insidiosum protects itself from the host immune system by concealing inside
the eosinophilic material formed by the eosinophil degranulation, which helps protect
the P. insidiosum from being fully presented to the host’s immune system [10]. Toll-like
receptors (TLRs) play a central role in the innate immune system by recognizing pathogen-
associated molecular patterns and triggering downstream signaling pathways that activate
the innate immune response [48]. Wongprompitak et al. demonstrated that both zoospores
and hyphae of P. insidiosum induced a TLR2-mediated innate immune response with a
subsequent increase in the levels of the pro-inflammatory cytokines IL-6 and IL-8 [49].

To combat the pathogen and prevent its spread, it is rational to administer antimi-
crobial drugs that interact with the host’s innate immune system to provide profound
indirect effects and enhance pathogen clearance. Antimicrobial drugs have been shown
to modify the immune responses to infection, guiding improved treatment strategies in
human pythiosis (Table 2 and Figure 3).

Table 2. Immunomodulatory effects of antimicrobials.

Antimicrobial Class Drug Immunopharmacological Effect Reference(s)

Tetracyclines Tigecycline, minocycline Potentiate the innate immune response and augment
resolution of inflammation [50]

Macrolides Azithromycin Reduce the production of IL-12, resulting in enhanced
Th2 response [51]

Oxazolidinones Linezolid
Suppress synthesis of proinflammatory cytokines, such

as interleukin-1β (IL-1β), IL-6, IL-8, interferon-γ
(IFN-γ), and tumor necrosis factor-α (TNF-α)

[52–54]

Lincosamides Clindamycin
Suppress the release of inflammatory cytokines such as

TNF-α and IL-1β and enhance the phagocytosis of
microorganisms by host cells

[55,56]

Streptogramins Quinupristin-dalfopristin
Decrease the concentration of pro-inflammatory cell
wall components (lipoteichoic acid and teichoic acid)

and the activity of TNF
[57]

Phenicols Chloramphenicol Elevate the anti-inflammatory IL-10 levels [58]

Polyenes Amphotericin B
Activate the host’s innate immunity and augment the
IL-1β-induced inducible nitric-oxide synthase (iNOS)

expression and the production of nitric oxide (NO)
[59]

Allylamines Terbinafine Stimulate proinflammatory cytokines [60]

Azoles Fluconazole, voriconazole Enhance microbicidal activity of monocytes,
macrophages, and neutrophils [61,62]

5. Antibacterial Drugs against P. insidiosum

Previous in vitro screening of antibacterial drugs has identified tetracycline, minocy-
cline, tigecycline, azithromycin, clarithromycin, erythromycin, gentamicin, streptomycin,
paromomycin, neomycin, linezolid, nitrofurantoin, quinupristin-dalfopristin, chloram-
phenicol, clindamycin, and mupirocin, which demonstrated inhibitory activity against
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P. insidiosum [29–31,63–65]. Among the arsenal of antibiotics, the best-studied antibiotics in
human pythiosis are tetracyclines, macrolides, and oxazolidinones. This section discusses
different classes of antibacterial drugs to manage human pythiosis.

5.1. Tetracyclines

Tetracycline antibiotics such as tetracycline, tigecycline, and minocycline inhibit bacterial
protein synthesis by binding with the bacterial 30S ribosomal subunit [66]. Tetracyclines can
inhibit mammalian collagenase activity and assist wound healing [67]. Further, tetracyclines
potentiate the innate immune response and augment the resolution of inflammation [50].

Based on the in vivo studies in rabbits, minocycline in combination with immunother-
apy may be an effective therapeutic medical treatment of pythiosis to heal injuries [68].
Worasilchai et al. evaluated the in vitro susceptibility of human, environmental, and animal
P. insidiosum isolates to eight antibiotic classes and demonstrated that tetracyclines and
macrolides inhibited the in vitro growth of P. insidiosum isolates at concentrations 10 to
100 times lower than those observed for previously studied antifungal drugs [28]. Also, the
combination of tetracyclines and macrolides resulted in a synergistic effect that reduced
MICs against P. insidiosum isolates. Loreto et al. also reported a similar in vitro suscep-
tibility of P. insidiosum isolates to tetracyclines and their superior potency compared to
amphotericin B, echinocandins, and triazole antifungals [29].

5.2. Macrolides

Macrolides are the group of antibiotics that inhibit bacterial protein synthesis by bind-
ing with the bacterial 50S ribosomal subunit. Common macrolides include erythromycin,
clarithromycin, and azithromycin [69]. Among the macrolides, azithromycin, in partic-
ular, is highly accumulated in phagocytes and is targeted to the sites of infection [70].
Azithromycin reduces the production of IL-12, resulting in enhanced Th2 response [51].
Th2 cells are involved in wound healing and tissue repair [71,72]. The immunomodulatory
activities of macrolides are evident with both pro-inflammatory and anti-inflammatory
effects. For example, erythromycin can suppress pro-inflammatory cytokine production,
such as IL-6, IL-8, and tumor necrosis factor-α (TNF-α) [73].

Jesus et al. investigated the antimicrobial activity of azithromycin alone and in combi-
nation with minocycline against P. insidiosum in a rabbit model [74]. The results revealed a
strong in vivo activity of azithromycin (20 mg/kg/day twice daily) alone and combination
with minocycline (10 mg/kg/day twice daily) against subcutaneous lesions. In an in vitro
susceptibility study, the MICs of azithromycin and clarithromycin were less than 4 µg/mL
for P. insidiosum isolates [29].

5.3. Oxazolidinones

Oxazolidinones such as linezolid inhibit bacterial protein synthesis by binding with
the 50S subunit of the ribosome [75]. The suppression of the synthesis of pro-inflammatory
cytokines, such as interleukin-1β (IL-1β), IL-6, IL-8, IFN-γ, and TNF-α by linezolid has
highlighted an exciting role of linezolid in immunomodulatory effects [52–54]. Linezolid
may significantly reduce the inflammatory damage induced by the excessive release of
pro-inflammatory cytokines during critical infections [76].

In a rabbit model of P. insidiosum keratitis, topical linezolid demonstrated superior
efficacy and safety compared to azithromycin and tigecycline after prolonged treatment for
more than 3–4 weeks [77].

5.4. Lincosamides, Streptogramins, and Phenicols

Lincosamides, streptogramins, and phenicols inhibit bacterial protein synthesis by
interacting with the 50S subunit of bacterial ribosomes [78]. Among lincosamides, clin-
damycin possesses immunomodulatory activity by suppressing the release of inflammatory
cytokines such as TNF-α and IL-1β and enhancing the phagocytosis of microorganisms
by host cells [55,56]. Quinupristin and dalfopristin, used in a fixed combination, belong
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to a class of streptogramins [78]. Quinupristin-dalfopristin decreased the concentration
of pro-inflammatory cell wall components (lipoteichoic acid and teichoic acid) and TNF
activity in cerebrospinal fluid compared to the ceftriaxone-treated rabbits [57]. A previous
report showed that chloramphenicol, a member of the phenicols group, elevated the IL-10
levels, a potent anti-inflammatory cytokine [58].

Lincosamides, streptogramins, and phenicols have shown the ability to inhibit the
growth of P. insidiosum isolates. The microdilution-based MIC ranges (with geometric
means) of lincosamides, streptogramins, and phenicols against P. insidiosum were reported
to be 2 to >4 µg/mL, 1 to >2 µg/mL, and 8 to >16 µg/mL, respectively [30].

5.5. Aminoglycosides

Aminoglycosides such as gentamicin, streptomycin, paromomycin, and neomycin
bind to the bacterial ribosome and inhibit protein synthesis [79]. Streptomycin stimulated
the in vitro growth of one of the Thai P. insidiosum isolates [80]. Aminoglycoside antibiotics
inhibited the in vitro growth of P. insidiosum; however, they may not be clinically relevant
due to the high MIC values [31]. Therefore, aminoglycosides for clinical use in managing
human pythiosis are questionable.

5.6. Miscellaneous Antibacterial Drugs

Nitrofurantoin is used to treat urinary tract infections and works by attacking bacterial
ribosomal proteins non-specifically, causing complete inhibition of protein synthesis [81].
P. insidiosum mycelial growth was inhibited with nitrofurantoin (MIC range of 64 to
>64 µg/mL) in an in vitro susceptibility test [30].

Mupirocin inhibits bacterial protein and RNA synthesis by reversibly inhibiting
isoleucyl-transfer RNA [82]. A study evaluating the in vitro susceptibility of Brazilian
P. insidiosum strains showed that mupirocin could inhibit the growth of P. insidiosum isolates
at MIC lower than 4 µg/mL [29].

6. Antifungal Drugs against P. insidiosum

Studies have focused on several antifungal medications, such as polyenes, azoles, ally-
lamines, and echinocandins, for the adjunctive therapy in managing human pythiosis [4].
Despite the evidence of anti-P. insidiosum effects, it has been highly challenging to achieve
consistently effective antifungal treatment in human pythiosis.

6.1. Polyenes

Amphotericin B is a polyene antifungal that binds to ergosterol in the fungal cell
membrane, which alters cell membrane permeability leading to the loss of intracellular
components [83]. Two Australian cases with subcutaneous pythiosis responded well to
amphotericin B treatment [84]. However, the evidence of the effectiveness of amphotericin
B against other forms of human pythiosis and substantial activity against P. insidiosum is
lacking [14,85–87].

Studies have shown amphotericin B’s immunomodulatory properties, which acti-
vate the host’s innate immunity [88]. Nitric oxide (NO) is an endogenous regulator of
inflammation and an antibacterial agent, and it plays a crucial role in wound repair [89,90].
Amphotericin B can augment the IL-1β-induced inducible nitric-oxide synthase (iNOS)
expression and NO production [59]. In addition, amphotericin B is reported to induce
oxidative stress and improve antifungal efficacy [91,92].

6.2. Allylamines and Azoles

The primary mode of action of allylamines, such as terbinafine, is the inhibition
of the enzyme squalene monooxygenase. Therefore, these drugs inhibit the fungal syn-
thesis of ergosterol [93]. Azoles, such as miconazole, ketoconazole, fluconazole, itra-
conazole, posaconazole, and voriconazole, exhibit antifungal activity by inhibiting the
14α-lanosterol demethylase, a key enzyme in ergosterol biosynthesis, in fungi [94,95]. Stud-
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ies have suggested that the enhanced microbiocidal activity of monocytes, macrophages,
and neutrophils against intracellular Candida albicans is enhanced when combined with
azoles [61,62]. However, terbinafine has been reported to stimulate pro-inflammatory
cytokines [60].

Susaengrat et al. reported favorable responses to voriconazole and itraconazole in
Thai vascular pythiosis patients [96]. Synergistic effects have been demonstrated for
terbinafine and fluconazole against P. insidiosum isolates in vitro [97]. A synergistic combi-
nation of itraconazole and terbinafine was effective during the in vitro susceptibility testing
of a P. insidiosum isolate from the 2-year-old patient with a deeply invasive facial infec-
tion [98]. The growth of P. insidiosum isolates was inhibited by terbinafine, and the efficacy
of terbinafine increased against P. insidiosum isolates when combined with cetrimide, an
antiseptic [63]. Pediatricians used a combination of itraconazole and terbinafine to manage
a child with vascular pythiosis [99]. In vitro susceptibility testing of P. insidiosum showed a
MICs from 0.5 to 128 µg/mL for terbinafine, 2 to 32 µg/mL for miconazole, 4 to 64 µg/mL
for ketoconazole, 1 to >128 µg/mL for itraconazole, 2 to >16 µg/mL for voriconazole,
greater than 1 to >32 µg/mL for fluconazole, and >8 µg/mL for posaconazole based on the
strains of P. insidiosum [9,14].

6.3. Echinocandins

Echinocandins, such as caspofungin, anidulafungin, and micafungin, act by inhibiting
beta-(1,3)-D-glucan synthase, an enzyme that is necessary for the synthesis of beta-(1,3)-
D-glucan, which is an essential component of the fungal cell wall [99]. Studies have
documented the immunomodulatory effects of echinocandins with increased fungal beta-
(1,3)-D-glucan exposure and caspofungin-induced neutrophil-mediated fungal damage and
anidulafungin- and micafungin-induced phagocyte-mediated fungal damage [100,101].

Synergistic anti-P. insidiosum effects were observed with caspofungin and terbinafine
in vitro [97]. The MICs of caspofungin and anidulafungin against human P. insidiosum
isolates ranged from 2 to 8 µg/mL [32]. However, when used alone, echinocandins showed
poor in vitro and in vivo activity against P. insidiosum [29,102]. Caspofungin demonstrated
less fungistatic activity against P. insidiosum [103].

6.4. Miscellaneous Antifungal Drugs

Amorolfine, a morpholine derivative, inhibits fungal ergosterol biosynthesis and leads
to changes in the membrane permeability, which in turn causes fungal growth inhibition
and cell death [104]. Only recently, amorolfine hydrochloride exhibited in vitro inhibitory
activity against P. insidiosum [105]. The MICs of amorolfine hydrochloride tested against
P. insidiosum isolates were 16 to 64 mg/L. Further, amorolfine hydrochloride produced
alterations in P. insidiosum hyphae, with changes in the surface of hyphae, intracellular
organelles, the cell wall, and plasma membrane of P. insidiosum.

7. Repurposing Antimicrobials against P. insidiosum

Due to the limited success of pharmacological interventions against P. insidiosum in
humans, identifying novel therapeutic strategies is required to treat P. insidiosum infection
in humans. Drug repurposing is a process for identifying new therapeutic indications
different from the scope of the initial pharmacological indication [106]. For example,
antibiotics such as macrolides, tetracyclines, and fluoroquinolones have been used in
the clinical management of coronavirus disease 2019 (COVID-19) [107]. Using the drug
repurposing strategy, existing FDA-approved antimicrobials can forgo early phases of
drug development in managing human pythiosis [108]. Disulfiram irreversibly inhibits
aldehyde dehydrogenase (ALDH1A1) and is an alcohol-deterrent medication that causes a
severe adverse reaction when patients use alcohol. Disulfiram effectively treats individuals
dependent on alcohol but highly motivated to discontinue alcohol use [109]. Krajaejun et al.
evaluated disulfiram for its anti-P. insidiosum activity using agar- and broth-based methods
and revealed that P. insidiosum strains were susceptible to disulfiram with MICs ranging
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from 8 to 32 mg/Liter [110]. Further, disulfiram was found to bind and inactivate aldehyde
dehydrogenase and urease of P. insidiosum.

Researchers utilize computational and experimental approaches to identify the promis-
ing candidates in the drug repurposing process [111]. The computational system uses
various databases and computational tools, such as Gene Signature Database (GeneSigDB),
Gene Set Enrichment Analysis (GSEA), The Pharmacogenetics and Pharmacogenomics
Knowledge Base (PharmGKB), DrugBank, ChemBank, Genecard, Online Mendelian In-
heritance in Man (OMIM), PubMed, e-Drug3D, DrugPredict, Promiscuous, Mantra2.0,
Protein Data Bank (PDB), DRAR-CPI, repoDB, Repurpose DB, DeSigN, Cmap, and DPDR-
CPI, etc. [106,112]. Computational techniques employed for drug repurposing include (i)
profile-based drug repositioning, (ii) network-based drug repositioning, and (iii) data-based
drug repositioning [113]. Experimental-based approaches validate the computer-generated
hits for preclinical drug evaluation [112]. An experimental technique for drug repurpos-
ing involves protein target-based and cell/organism-based screens in in vitro and in vivo
assays [114].

Using combination regimens of antibacterial plus antifungal or antibacterial plus
antibacterial to achieve synergistic activity is one of the drug repurposing strategies against
P. insidiosum [115]. Synergism between antibacterial and antifungal against P. insidiosum
was observed for in vitro minocycline with amphotericin B, itraconazole, and micafungin
and clarithromycin with micafungin [65]. Susaengrat et al. reported two cases of relapsed
vascular pythiosis patients who were successfully clinically managed with a combination
of antibacterial plus antifungal [96]. However, isolate-specific combinations for treatment
must be implemented because of the varying effectiveness of any given drug combination
for different isolates of P. insidiosum [116]. Studies have found the enhanced killing effects
of multiple classes of antibiotics when combined with NO [117,118]. We expect that NO-
containing antibiotics might improve the therapeutic outcomes in patients with pythiosis.

8. Conclusions and Future Perspectives

Evidence supports using the antimicrobials reviewed in our article as a new therapeutic
option in treating human pythiosis. In vitro studies have demonstrated the tetracyclines,
macrolides, oxazolidinones, lincosamides, streptogramins, phenicols, aminoglycosides,
polyenes, allylamines, azoles, and echinocandins reviewed in our papers inhibit the growth
of P. insidiosum and have the potential implications for further research on their use in
the management of human pythiosis. However, prolonged use of antimicrobials and
prolonged treatment with antimicrobials is not warranted due to the side effects and
threat of antimicrobial resistance. A practical pharmacological intervention guideline
for human pythiosis remains to be discovered and is necessary to assist practitioner and
patient decisions, lower treatment costs, and optimize patient outcomes. Despite the
disease affecting the most vulnerable populations with higher mortality rates, pythiosis is
not included in the Sanford Guide, which provides evidence-based recommendations for
treating infectious diseases [119].

In the future, human pythiosis could be managed with antimicrobials owing to their
anti-inflammatory and immunomodulatory activities. Clinicians can optimize drug combi-
nations based on the anti-P. insidiosum susceptibility testing for the management of pythiosis.
Studies have shown the growth inhibitory effects of antimicrobials against P. insidiosum;
nevertheless, studies regarding the mechanism of action of the antimicrobials against
P. insidiosum are vital for clinical approval. Researchers must consider the pharmacodynam-
ics principle involved in selecting the antimicrobials to assess the anti-P. insidiosum activity.

Microbial virulence factors are molecules produced by microorganisms and may
cause disease in the host (e.g., toxins, enzymes, exopolysaccharides, lipopolysaccharides,
lipoproteins, etc.) [22]. The potential virulence factors of P. insidiosum include glucan 1,3-
beta-glucosidase, heat shock protein (Hsp) 70, and enolase [23]. Keeratijarut et al. reported
genetic, immunological, and biochemical characteristics of Exo-1,3-β-glucanase (Exo1) in
P. insidiosum and found up-regulated exo1 expression at 37 ◦C compared to 28 ◦C, thus
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suggesting a drug target against P. insidiosum [120]. A new therapeutic approach with
anti-virulence therapy combined with antimicrobials might prevent the pathogenesis of
P. insidiosum and limit host damage. Metabolites have been isolated from Pseudomonas
stutzeri and Klebsiella pneumoniaei, and these organisms have shown anti-P. insidiosum
activity [15,121]. Therefore, the role of potential microbial metabolites in the treatment of
pythiosis must be subjected to intense research in the future.

With the evidence of the effectiveness of some antimicrobials in the management of
human pythiosis, we suggest using new drug delivery systems to release the drug to the
target site in the body and minimize the off-target accumulation of the drug. Antibiotics
can be reformulated using nanotechnology-derived delivery systems to improve the tar-
geting and specificity at the infected areas [122]. Due to the genetic variability among
individuals, not all individuals with pythiosis exhibit similar therapeutics responses to
antimicrobials [123]. Therefore, it is essential to incorporate the pharmacogenomics assay
into the clinics to personalize antimicrobial treatment in pythiosis.
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