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Abstract

The increasing availability of time series expression datasets, although promising, raises a number of new computational
challenges. Accordingly, the development of suitable classification methods to make reliable and sound predictions is
becoming a pressing issue. We propose, here, a new method to classify time series gene expression via integration of
biological networks. We evaluated our approach on 2 different datasets and showed that the use of a hidden Markov
model/Gaussian mixture models hybrid explores the time-dependence of the expression data, thereby leading to better
prediction results. We demonstrated that the biclustering procedure identifies function-related genes as a whole, giving rise
to high accordance in prognosis prediction across independent time series datasets. In addition, we showed that
integration of biological networks into our method significantly improves prediction performance. Moreover, we compared
our approach with several state-of–the-art algorithms and found that our method outperformed previous approaches with
regard to various criteria. Finally, our approach achieved better prediction results on early-stage data, implying the potential
of our method for practical prediction.
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Introduction

In the last decade, the development of a variety of techniques,

such as microarray-based techniques, has enabled instant mea-

surement of the expression of up to thousands of genes. The use of

gene expression profiling allows clinical diagnosis to be made on a

molecular level, thereby facilitating the choice of treatment based

on the patients’ genetic traits [1]. Some of these methods have

been commercialized, creating tools for expression-based diagnosis

and treatment prognosis [2,3].

In the past few years, gene expression experiments have been

limited to static analysis [4,5], in which only a snapshot of gene

expression for a set of samples is available. Recently, many

research groups have proposed the combination of static gene

expression measurements with biological networks, such as

protein-protein interaction and metabolic networks, and have

verified that integrative approaches can achieve better classifica-

tion results than approaches that analyze only static gene

expression data [6,7,8,9,10,11].

Although static analyses are appropriate for many cases, they

are less appropriate for longer-term follow-up [12]. In the case of

transplant patients, for example, physicians need to determine

whether or when patients’ bodies start rejecting the new organ, in

order to determine whether treatment with immunosuppressant

drugs is required. In this scenario, classification can be improved if

one takes into account not only the current state of the patient but

also their past state and the changes that have occurred over time.

Accounting for the temporal dynamics of gene expression affords a

novel perspective on clinical studies, such as drug response

prediction. Although time series analysis is promising, it also raises

a number of new computational challenges. A unique challenge

for clinical time series expression classification is to take into

account the patient-specific rate of disease development or

treatment response [13]. Another challenge is that clinical data

usually have very peculiar characteristics: typically, only a small

number of samples (patients) are available, each containing a large

number of features (genes) [14]. As a result, in order to make

reliable and sound predictions, careful development of suitable

classification methods becomes a pressing issue.

Over the past several years, a few methods for classifying time

series expression data have been reported, including an exhaustive

search strategy to identify genes for a Bayesian classifier [14], an

SVM method based on dynamic systems kernels [15], a classifier

based on hidden Markov models and discriminative learning [12],

a series of biclustering-based classification algorithms [16], and a

tensor decomposition method to classify time series expression

data [17]. One major problem of these approaches is that they

merely analyze genome-wide expression profiles, which contain

inherent measurement noise. Heterogeneity across samples further

aggravates this problem. Moreover, gene markers selected by these

approaches may be function-related and hence contain redundant

information. Collectively, these factors lead to the degradation of

the overall classification performance [8,10].

Motivated by limitations of current classification methods in

time series data and the good performance of network integration
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approaches in static gene expression, our aim in this study was to

classify time series gene expression via integration of biological

networks. To our knowledge, this study is the first attempt at

integration of biological networks for classification of time series

data. We emphasize that integration approaches in static analysis

cannot be directly applied to time series data. In order to reduce

the effect of the measurement noise, we have introduced a hybrid

model of hidden Markov model/Gaussian mixture model (HMM/

GMM) into our approach, converting the original gene expression

value, which contains noise, into a discrete gene state that

represents the qualitative assessment of the gene expression level.

The HMM/GMM hybrid model also takes into consideration

time-dependence, which is a special property of time series data.

Instead of using single gene markers that may be function-related,

we regard genes that show similar expression pattern as a whole

(bicluster) with the hypothesis that these genes may share a

common biological function. Because genes sharing an expression

pattern are likely, but not certain, to be function-related, we

integrated biological networks into our approach, weighting a

bicluster according to its connected genes in the network. The

more closely connected the genes, the more likely the genes share a

common biological function, and the higher the weight. Every

sample (patient) is denoted as a point in the bicluster space.

Similarity between samples (distance between points in the space)

can be calculated as the weighted sum of bicluster similarity. We

classified a sample based on its similarity to other samples.

Here, we investigated the classification of Multiple Sclerosis

(MS) patients with respect to their response to interferon beta

(IFN-b) treatment. MS is one of the most prevalent autoimmune

disorders, and treatment with IFN-b is widely applied to reduce

the intensity and frequency of symptoms. Nevertheless, almost

50% of patients do not respond to the therapy [15]. To exacerbate

matters, IFN-b therapy has been associated with a number of

adverse reactions, including flu-like symptoms, transient laborato-

ry abnormalities, menstrual disorders, increased spasticity, and

dermal reactions [16]. Accordingly, it is of great importance to

accurately predict patients’ response to therapy ahead of, or at an

early stage in treatment. In this paper, we evaluated our approach

on 2 different MS datasets and compared the results of our

GMM/HMM model with other discretization methods. We

investigated the contribution of integrating networks within our

approach and compared our method with several state-of-the-art

algorithms with respect to various performance criteria. Finally,

we demonstrated the potential of our approach in practical

prediction.

Materials and Methods

The prediction process primarily consists of 4 steps (Figure 1).

Firstly, gene states are inferred by an HMM/GMM hybrid model.

Secondly, the QL-biclustering algorithm extracts biclusters of

every patient from the gene state matrix. Thirdly, every bicluster is

scored according to its genes’ connection in the protein-protein

interaction (PPI) network. Finally, the label of every test patient is

predicted by PPI-SVM-KNN based on patient similarity, taking

into account both bicluster similarity and its score. The software is

available at http://home.ustc.edu.cn/̃ lwqian/PPI-SVM-KNN/

PPI.html.

1. Dataset
1.1 Time series gene expression dataset. We tested our

approach on 2 different sets of time series microarray expression

data from Baranzini and Goertsches [17,18] to predict whether

MS patients [19] will respond positively to treatment with

recombinant human IFN-b (rIFN-b). The Baranzini dataset

contains time expression profiles of 52 multiple sclerosis patients,

of which 33 responded well, and 19 responded poorly to rIFN-b.

Expression profiles of 70 genes were measured up to 7 times per

patient. The first 5 observations were at a regular intervals of 3

months apart, whereas the last 2 observations were spaced 6

months apart. Seventeen patients missed a test, and hence, we

have only 6 measurements. Eight patients missed 2 tests, and

hence, we have only 5 measurements. All missing values are filled

with a weighted mean of the 3 closest neighboring values after data

normalization. The Goertsches dataset contains 25 patients, out of

which 15 responded well and 10 responded poorly to rIFN-b.

Expression profiles of genes were measured 5 times per patient.

Here, we used the expression values of 58 genes that were also

measured in Baranzini dataset. It should be mentioned here that

Baranzini dataset is based on one-step kinetic reverse-transcription

PCR experiments. The Goertsches dataset is based on Affymetrix

DNA microarrays.

1.2 PPI network. The protein-protein interaction network

obtained from a public human PPI database (HPRD) [20] was

used here, excluding those PPIs not related to the genes of MS

dataset. After excluding those interactions not related to genes in

the dataset, we obtained 121 binary protein-protein interactions.

The selected human protein-protein interaction network is shown

in Figure S1.

2. Inference of gene states via the HMM/GMM hybrid
model

The HMM/GMM hybrid model is a classical method in speech

recognition [21]. In the present study, we introduced the model to

process time series gene expression data. It is known that genome-

wide expression profiles contain inherent measurement noise. In

order to reduce the effect of this noise, we introduced an HMM/

GMM hybrid model into our approach, converting the original

gene expression value, which contains noise, into a discrete gene

state that represents the qualitative assessment of the gene

expression level. Moreover, the HMM/GMM hybrid model takes

into account time-dependence, which is a special property of time

series data.

A standard continuous HMM is characterized by the following

elements [22]: (1) Q, the number of hidden states; (2) A = [aij], the

state transition probability distribution, where aij is the transition

probability from state i to j; (3) B = {bj(x)}, the emission probability

distribution, where bj(x) is the emission probability of observing x

in state j; and (4) p= {pi}, the initial state distribution, where pi is

the start point probability of the state i.

An HMM is often simply notated as l= (A,B,p). The HMM/

GMM hybrid model is a specific form of the HMM model, in

which the emission probability distribution can be modeled by a

mixture of Gaussian functions: bj xð Þ~
Pn
i~1

wjigji mji,sji

� �
where n is

the mixture number, wji is the mixture weight, and gji is the

component Gaussian function with expected value mji and

standard deviation sji.

We assume that expression values of each gene are from a

Markov process, which is widely used by many existing methods

[23]. In the model, a state represents the qualitative assessment of

gene expression level, reflecting contiguous regions of a time series

with similar levels of expression [24]. Each gene remains in one

state at a time point. The gene can remain in the same state or

switch to other states in the next time point (the number of states is

Q). The model is initialized as follows: the initial state distribution

(p), state transition probability distribution (A), and mixture weight

distribution (w) are set to uniform distribution. The expression
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values of all genes are divided into Q bins. Each bin has the same

number of expression values. The mixture number n is equal to

the number of genes. mji and sji denote the mean and standard

deviation of expression values in the jth bin of gene i, respectively.

When the initialization process is complete, the model parameter

is trained by EM algorithm [25]. Finally, the Viterbi algorithm

[26] is applied to infer the hidden state sequences for all genes.

Algorithm 1:QL_Biclustering Algorithm

Input: ml, mo, gene state matrix

Output: biclusters

1. for each gene expression sequence

2. Construct all responding suffix strings (SA).

3. end for

4. Sort all the suffix strings in SA by MSD (most significant digit)

radix sort method.

5. for every 2 adjacent suffix strings

6. Compute longest common prefix and store the longest

common prefix length (LCP_Length).

7. end for

8. for each distinct value i in LCP_Length

9. for each occurrence (j) of i in LCP_Length

10. pos(i, j) = pinpoint(LCP_Length, i, j)

11. if i,ml then {Blcp[pos(i,j)] = 1; continue; }

12. l = max{k| k,pos(i,j) and Blcp[k] = 1}+1

13. r = min{k| k.pos(i,j) and Blcp[k] = 1}

14. Blcp[pos(i,j)] = 1

15. if (r2l+1),mo then continue;

16. if .1 && LCP_Length [l -1] = = i then continue;

17. Bicluster:

18. Gene set (G): Gene [l … r];

19. J(Timepoint (T) and corresponding expression state

(S)): SA(pos(i,j), 1...i)

20. end for

21. end for

3. Extraction of biclusters through a new biclustering
algorithm

Previous approaches of classifying time series expression data

have been limited to analysis of genome-wide expression profiles.

Gene markers selected by these approaches may be function-

related and hence contain redundant information, leading to the

degradation of the overall classification performance. Accordingly,

it is more effective to regard function-related genes as a whole. We,

therefore, extracted biclusters from the gene state sequences of

each patient. Biological processes start and finish in a contiguous,

but unknown, period, leading to increased activity of sets of genes

that can be identified as biclusters with continuous time points.

Several authors have previously pointed out the importance of

biclusters and their relevance in the identification of biological

processes [27,28].

Biclustering algorithms identify groups of genes that show

similar expression patterns under a specific subset of the

experimental conditions [29]. Given a gene expression matrix

with n genes (rows) and m time points (columns), the temporal

biclustering problem is to find a subset of genes G and a

continuous segment of time points T, the expression values of

genes G follow a desired profile S under time points T, as shown in

Figure S2. A bicluster is often simply notated as B(G, J(T, S)).

Madeira et al. [30] proposed a suffix tree based CCC-Biclustering

method. Suffix tree-based methods are characterized by high

space complexity and are difficult for biologists to fully understand.

Qu et al. [31] introduced a method based on pairwise alignment of

all gene pairs, which can be more easily interpreted, although its

time complexity is relatively high.

Here, a new biclustering algorithm, named QL_Biclustering, is

proposed to extract biclusters from the gene state matrix obtained

in the previous step. In order to differentiate a specific time point,

a transformation is introduced, appending a time point to each

gene state. For example, given the gene state sequence of a certain

gene at each of the first 3 time points S = {3, 2, 1}, the

transformed state sequence is J (T, S) = {13, 22, 31}.

QL_Biclustering algorithm (Algorithm 1) is based on the suffix

string and longest common prefix. The input is the gene state

matrix, ml (minimum number of continuous time points), mo

(minimum number of genes). The output is all biclusters satisfying

the user’s requirements. The algorithm traverses all the values in

LCP_Length from the smallest to the largest. For each occurrence

of each different value in LCP_Length, QL_Biclustering processes

it as follows. At step 10, the jth occurrence position of value i in

LCP_Length is pinpointed and stored in pos(i,j). The number of

time points of the current bicluster is ensured to be not less than ml

at step 11. The algorithm finds an interval [l, r] at steps 12–13, the

suffix strings among which share a common prefix with length i.

Any bicluster, the gene number of which is less than mo, is ignored

at step 15. Step 16 verifies whether the candidate bicluster can be

extended to the left. If it does, the candidate bicluster will be

discarded because it is not a maximal bicluster.

The QL_Biclustering algorithm is simple but efficient in aspects

of both time and space and is linear on the size of the gene state

matrix (Supplemental Material S1). In addition, a linear structure

is employed to implement our algorithm that, we believe, will be

more accessible to biologists.

4. Integration of biological network by hypergeometric
distribution

In the previous step, we extracted biclusters in which genes

showed a similar expression pattern. Genes in a bicluster obtained

according to their gene expression values are supposed, but not

certain, to be function-related (Supplemental Material S1, Figure

S3). Here, we weight a bicluster according to its genes’ connection

in biological network. In this study, the PPI network is used solely

as an illustration: the proposed method is independent of the

nature of the network and can be extended to many other

biological networks, for example, metabolic networks.

It is known that the distances among genes that are regulated by

the same transcription factors in a PPI network are 2 because they

have common upstream factors. The distance among genes that

belong to a protein complex in a PPI network are 1, as genes

represented in a complex are adjacent [31]. Hence, generally, the

more closely connected genes in the network, the more likely the

Figure 1. Schematic overview of classification of time series gene expression. The prediction process primarily consists of 4 or 5 steps.
Firstly, gene states are inferred by an HMM/GMM hybrid model. Secondly, the QL-biclustering algorithm extracts biclusters of every patient from the
gene state matrix. Thirdly, every bicluster is scored according to its genes’ connection in the protein-protein interaction (PPI) network. Finally, the
label of every test patient is predicted by PPI-SVM-KNN based on patient similarity, taking into account both bicluster similarity and its PPIScore.
doi:10.1371/journal.pone.0058383.g001
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genes share a common biological function. In view of this, among

all biclusters extracted at a previous step, biclusters in which genes

are highly connected relative to overall connectivity in the PPI

network are more preferable. Hypergeometric distribution is

employed to model the association between gene i and the gene set

of bicluster B.

p(i?B)~

ni?BznB?B

ni?B

� �
ni{wBznB?B

ni{wB

� �

ni?BznB?Bzni{wBznB?B

ni?Bzni{wB

� � ð1Þ

particularly, p(i?B)~0, when ni{wB~0 where B is the set of

all genes except genes in bicluster B, ni-.B is the number of

network interactions between gene i and genes in bicluster B, the

remaining notations may be deduced by analogy.

For each bicluster B, its preference (PPIScore) is scored as

follows:

PPIScore(B)~
X
i[B

p(i?B) =jBj ð2Þ

5. Classification of time series gene expression via
integration of PPI network

5.1 Computation of similarity between 2 patients based

on bicluster similarity and PPIScore. The Jaccard Index [30]

is used to compute the similarity measure Sim(Bi,Bj) between 2

biclusters Bi(Gi,Ji) and Bj(Gj,Jj):

Sim(Bi,Bj)~
jBi\Bjj
jBi|Bjj

ð3Þ

where |Bi>Bj| = |Gi>Gj|6|Ji>Jj|, |Bi<Bj| = |Bi|+|Bj|-

|Bi>Bj|, |Bi| = |Gi|6|Ji|, |Bj| = |Gj|6|Jj|.

Given 2 patients, P1 and P2, firstly, we normalize the PPIScore

of all biclusters in P1 and P2, respectively. Then, the similarity

between the 2 patients can be calculated as follows:

PPISim(P1,P2)

~
1

2
(
Xn

i~1

PPIScore(B1i) �max (Sim(B1i,B2j), j[1,:::,m)

z
Xm

j~1

PPIScore(B2j) �max (Sim(B2j ,B1i), i[1,:::,n ))

ð4Þ

n, m is the number of biclusters in P1, P2, respectively. B1i, B2j

denotes the ith bicluster in P1, the jth bicluster in P2, respectively.

The above formula bears 2 properties, which are crucial to

following classifier design:

PPISim(A,A) = 1; (5)

PPISim(A,B) = PPISim(B,A);

5.2 PPI-SVM-KNN classifier. An SVM [32] and KNN [33]

hybrid classifier integrating a PPI network named PPI-SVM-KNN

(Algorithm 2) is proposed here. The KNN classifier is used at the

initial stage, after which an SVM classifier is trained on the

collection of K-nearest neighbors. Training an SVM on the entire

data set is slow, and the extension of SVM to multiple classes is not

as natural as KNN. However, in the neighborhood of a small

number of samples, SVM, more often than not, performs better

than other classification methods. This is a process with a coarse

and quick categorization followed by a finer but slower

classification, which inherits the advantages of both SVM and

KNN classifiers [34]. In detail, a linear SVM with slack variables

was utilized in our approach. PPISim among different patients that

satisfies a symmetrical property is used as the kernel matrix

(Supplemental Material S1). Because experimental results have

shown that nonlinear SVMs, such as the SVM with Gaussian

kernel, do not lead to a better performance, we used the simplest

linear kernel.

Algorithm 2: PPI-SVM-KNN

Input: C, K

Output: predictClass

1. for each test patient P do

2. Calculate the similarity between all patients in the training set

and the test patient P and rank those training patients by

similarity measure; add the top K patients to kPatients.

3. if the label of all the patients in kPatients is class_i

4. predictClass = class_i;

5. else

6. Compute similarity matrix PPISim among patients in

kPatients.

7. Train linear SVM with slack variable classifier by using

PPISim as kernel and predict the label of test patient P.

8. end if

9. end for

ð5Þ

Table 1. Classification accuracies of different discretization
methods for Baranzini dataset and Goertsches dataset:
average (AVG) and standard deviation (SD).

Method AVG/SD

Baranzini Dataset Goertsches Dataset

HMM/GMM 86.20/2.98 78.57/8.19

Average All 79.00/3.81 55.46/7.67

Average Col 76.18/3.26 50.86/8.56

Average Row 81.86/4.85 67.91/8.29

MidRange All 68.39/1.95 55.67/5.61

MidRange Col 65.07/2.89 50.30/9.76

MidRange Row 72.03/3.73 59.55/8.99

Max-X%Max All 63.48/0.02 41.37/2.69

Max-X%Max Col 53.97/5.40 44.32/6.98

Max-X%Max Row 71.34/5.85 58.67/8.72

EFP All 75.16/5.21 61.21/7.47

EFP Col 72.33/3.84 62.10/3.87

EFP Row 78.47/6.04 73.50/5.01

Top X% All 60.57/2.38 54.32/9.26

Top X% Col 52.44/4.96 36.02/7.48

Top X% Row 65.46/3.70 52.51/6.35

doi:10.1371/journal.pone.0058383.t001
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The model of linear SVM with slack variables:

maximize
Xn

i~1

ai{
1

2

Xn

i~1

Xn

j~1

aiajyiyjKernel(xi,xj) ð6Þ

subject to: 0ƒaiƒC, Vi;
Pn
i~1

aiyi~0

where

Kernel(xi,xj)~PPISim(xi,xj)

X is the matrix of training samples, y is the vector of

corresponding labels, n is the number of samples.

PPISim is calculated as described above.

The label of a new sample P can be predicted as follows:

predictClass~sign(
X
i[SV

aiyiKernel(xi,P)zb) ð7Þ

where SV (Support Vector) = {i| ai ? 0}

b~yi{
Pn
j~1

ajyjKernel(xi,xj) for any i such that ai ? 0.

The parameter C can be viewed as a way to control ‘‘softness’’:

it trades off between maximizing the margin and fitting the

training data (minimizing the error). The larger the value of C is,

the less likely the classifier is to misclassify samples in the training

set. The parameter K specifies the classifier’s dependence on the

choice of the number of neighbors. When K is small, the algorithm

behaves like a straightforward KNN classifier. When K is large

enough, our method is totally an SVM. A commonly used strategy

to evaluate classification performance is the k-fold cross validation

(CV) scheme. In this work, we use 10 repetitions of 4-fold CV,

which was also used in previous approaches.

Results and Discussion

1. The HMM/GMM hybrid model is conducive to dealing
with time series gene expression

In order to reduce the effect of the measurement noise, we

introduced an HMM/GMM hybrid model into our approach,

converting the original gene expression value, which contains

noise, into a discrete gene state that represents the qualitative

assessment of gene expression level. The HMM/GMM hybrid

model also takes into consideration time-dependence, which is a

special property of time series data. We compared the HMM/

GMM hybrid model with many other discretization methods,

including Average, Mid-Range, Max-X%Max, Top X%, EFP

[35]. The Average All, Average Row, and Average Col

discretization methods use the average expression value computed

using all the values in the matrix, by row and by column,

Figure 2. Randomly selected biclustering examples from Baranzini dataset and Goertsches dataset. The expression values of genes in
each bicluster are shown in (A) and (B). The state transitions of genes in each bicluster are shown in (C) and (D). The bicluster from Baranzini dataset
consists of gene ITGAL and gene ITGB1 and their state transitions from time point 1 to time point 7. The bicluster from Goertsches dataset consists of
gene CASP5 and gene CASP1 and their state transitions from time point 1 to time point 3.
doi:10.1371/journal.pone.0058383.g002
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respectively, to discretize the expression matrix, and the remainder

may be deduced by analogy. First, we compared the classification

results of distinct discretization methods. The results (Table 1,

Table S1) indicate that the HMM/GMM hybrid model yields a

better classification performance. Furthermore, we demonstrated

the advantages of the GMM/HMM hybrid model in processing

time series data from the perspective of class distance. The

similarity among all good responders (Pos), among all bad

responders (Neg) and between good responders and bad respond-

ers (PosNeg) was computed according to Eq.4. D is the ratio of

average similarity among patients of the same class and that of

different classes. Table S2 indicates that the HMM/GMM hybrid

model bears the largest D value among all methods. In other

words, when the HMM/GMM hybrid model is employed, the

inter-class distances are much larger than intra-class distances,

thus leading to better classification results.

2. The biclustering procedure regards function-related
genes as a whole and takes the time course information
into consideration as well

Instead of using single gene markers that may be function-

related leading to degradation of classification result, the proposed

approach regards function-related genes as a whole through

biclustering. The biclustering procedure identifies groups of genes

that show similar expression patterns under a contiguous segment

of time points, which takes the time course information into

consideration as well. On average, the number of biclusters

inferred from Baranzini dataset is 24 per patient; the number of

biclusters inferred from Goertsches dataset is 64 per patient. We

randomly selected bicluster examples from each of the two

datasets, which are shown in Figure 2. As shown in Figure 2(A),

the expression values of gene ITGAL and ITGB1 are consistent

from time point 1 to time point 7. Therefore, the state transitions

of the two genes are the same, changing from state 1 to state 2 at

time point 5 (Figure 2(C)). The biclustering procedure identifies

the two genes as a whole from time point 1 to time point 7. In

order to check whether the two genes are function-related or not,

function enrichment analysis was conducted. As shown in Table

S3, ITGAL and ITGB1 share 8 functions (p-value,0.05).The

PPIScore of this bicluster from Baranzini dataset is 0.675. As is

shown in Figure 2(B), the expression values of gene CASP5 and

CASP1 are consistent from time point 1 to time point 3. Hence,

the state transitions of the two genes are the same, changing from

state 1 to state 2 at time point 3 (Figure 2(D)). These 2 genes share

6 functions (Table S3). The PPIScore of this bicluster from

Goertsches dataset is 1. It is worth mentioning that the expression

value of gene CASP5 increases significantly from 21 to 0.6 at time

point 4. In contrast, the expression value of gene CASP1 increases

marginally from 20.6 to 20.2 at time point 4. Therefore, the

biclustering procedure only regards the 2 genes as a whole from

time point 1 to time point 3.

Many works on static gene expression [8,36] have reported that

multi-gene modules can achieve higher accordance across

datasets. For example, Li et al. [36] achieved an average accuracy

of 70% across static microarray datasets in prediction of colorectal

cancer. Here, we also tested the proposed approach across

Figure 3. Prediction accuracies of integration (PPI-SVM-KNN)
and non-integration (SVM-KNN) of a PPI network. The bars and
error ticks represent mean values and standard deviations respectively.
The blue bar represents the accuracy of integration PPI network. The
orange bar represents the accuracy of non-integration of PPI network.
doi:10.1371/journal.pone.0058383.g003

Figure 4. Classification accuracies of PPI-SVM-KNN with the
change of parameter K from 3 to 9. The bars and error ticks
represent mean values and standard deviations respectively. (A) shows
the result for Baranzini dataset. (B) shows the result for Goertsches
dataset.
doi:10.1371/journal.pone.0058383.g004
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Baranzini dataset and Goertsches dataset although they are based

on different platforms. The two independent datasets were mixed.

We randomly selected 75% of the mixed dataset (3 folds) as

training set and tested the proposed model on the remaining data

(1 fold of the mixed dataset). Ten repetition experiments were

executed. Our method achieved an average Accuracy of 77.02%,

Precision of 80.12%, Recall of 85.21% and F1Score of 82.15%.

These results suggest our prediction through biclustering, which

regards function-related genes as a whole, can achieve highly

reproducible and acceptable performance across different time

series datasets. We also trained the proposed model on Baranzini

dataset and tested it on Goertsches dataset, and vice versa. The

proposed model achieved an average accuracy of 64.80% and

52.69%, precision of 64.13% and 66.37%, recall of 94.00% and

51.82%, and F1Score of 76.22% and 58.17%. When the model

was trained on Goertsches dataset and tested on Baranzini dataset,

we found that the average test accuracy is lower than the average

training accuracy (which is as high as 80%). One possible reason is

that the number of training samples (25) is far less than that of test

samples (52). The heterogeneity of the two datasets further

aggravates this problem.

3. Integration of PPI network into classification of time
series gene expression data significantly improves
prediction performances

We next investigated the contribution of integrating PPI

network in our method. In the proposed method, we regarded

genes that had a similar expression pattern (bicluster) as a whole.

Because genes showing similar expression pattern are likely, but

not certain to be, function-related, we integrated a PPI network

into our approach, weighting a bicluster according to its genes’

connection in the network. The more closely connected the genes,

the more likely the genes share a common biological function and

the higher the weight. We compared the results of integrating a

PPI network (PPI-SVM-KNN) to those obtained when no PPI

network was integrated (SVM-KNN). As shown in Figure 3 (Table

S4), prediction performances are much improved when integrating

a PPI network with all other parts unchanged. Integration of PPI

network into our approach therefore plays an important role in

improving prediction results. Complex diseases arise from the

accumulation of both genetic factors and environmental exposi-

tion. The environmental signals change the biological information

at each level of the hierarchical life system. Data integration

approach [37] minimizes the noise that is inherent in data

generated through large scale, high-throughput biology. This

might explain that integration of PPI network improves prediction

performance.

4. PPI-SVM-KNN bears clear advantages in classification of
time series gene expression

PPI-SVM-KNN employs the HMM/GMM hybrid model to

explore the time-dependence property of the data and integrates

PPI networks favoring those biclusters that are more likely to share

a common biological function, resulting in clear advantages in the

classification of time series gene expression. We next demonstrated

its advantages in the following aspects: Sensitivity, Accuracy,

Precision, Recall and F-measure.

We first checked the influence of parameters C and K on

classification performances. The parameter C of PPI-SVM-KNN

trades off between maximizing the margin and fitting the training

data (minimizing the error). The larger the value of C is, the less

likely the classifier is to misclassify samples in the training set. The

parameter K specifies the classifier’s dependence on choice of the

number of neighbors. When K is small, the algorithm behaves like

a straightforward KNN classifier. When K is large enough, our

method is totally an SVM. As shown in Figure 4 and Figure 5

(Table S5 and Table S6), classification results hardly vary and

therefore are not very sensitive to the changes of K and C,

respectively. In terms of the Baranzini dataset, the accuracy of our

approach tends to increase modestly with the growth of C. On the

contrary, with regard to Goertsches dataset, the accuracy of our

approach tends to decrease marginally with the growth of C. In

other words, in order to achieve high accuracy on Goertsches

dataset, we need to allow misclassification of some samples in the

training set in order to maximize the margin. This, to some extent,

indicates that Goertsches dataset might contain noise or that

outliers exist in the dataset. Hence, samples in the Goertsches

dataset are difficult to classify. Many papers [38,39,40] reported

that gene expression measurement of a sample between RT-PCR

and Affymetrix microarrays often had reduced agreement,

especially for those genes with high or low levels of expression.

Here, those samples of Baranzini dataset and Goertsches dataset

are different. The disagreement between the two dataset might be

more obvious. This might be a reason for the different transition of

accuracy on the two datasets with the growth of parameter C. It is

Figure 5. Classification accuracies of PPI-SVM-KNN with the
change of parameter C. The bars and error ticks represent mean
values and standard deviations respectively. (A) shows the result for
Baranzini dataset. (B) shows the result for Goertsches dataset.
doi:10.1371/journal.pone.0058383.g005
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worth mentioning that, in all other experiments of this work, the

parameter C and K are selected by cross validation.

Table 2 demonstrates the classification accuracy of distinct

methods in 2 different MS patient response datasets. We

compared our method with several state-of-the-art algorithms

[12,17,41,42,43,44], as well as with standard classifiers SVM and

random forest (The results of other common classifiers on

Baranzini dataset have been reported in the work of Carreiro et

al. [42]). The dataset used in standard classifiers consists of a single

matrix where each row represents the data for a single patient.

The results of all those methods listed here are based on 70 genes

(Baranzini dataset) or 58 genes (Goertsches dataset) without any

further feature selection, with the exception of the IBIS method,

which used only the first time point expression data and 3 selected

genes. The source code of IBIS is not available and the

HMMConst3 source code does not work; hence, we listed only

their original results on the Baranzini dataset. For other

approaches that were available, we evaluated them on both the

Baranzini and Goertsches datasets. As shown in Table 2, PPI-

SVM-KNN outperformed previous methods that are based solely

on gene expression profiles with regard to accuracy. As for

Goertsches dataset that is noisier than the Baranzini dataset and

consists of fewer samples, the classification accuracy of the dsSVM,

HMMClass, SVM methods is markedly low. However, PPI-SVM-

KNN still achieved good classification performance on the noisier

and smaller Goertsches dataset. Hence, compared with previous

approaches, our method achieved more stability in prediction

accuracy across 2 different datasets.

Because the prediction accuracy per se is insufficient to

comprehensively measure the quality of a classifier, other

commonly used performance criteria such as Recall, Precision,

and F-measure [45] were tested. We noticed, however, that only

prediction accuracy was reported in the papers of the state-of-the-

art methods. Recall is the ratio of correctly detected good

responders to all patients that actually are good responders.

Precision is the ratio of correctly predicted good responders to all

predicted good responders. F-measure is the harmonic mean of

precision and recall. As shown in Figure 6, our approach

performed well with regard to all of the above metrics, and

outperformed other methods in terms of F-measure and Precision.

The Recall value of our approach on Goertsches dataset is slightly

lower than that of dsSVM and SVM. In other words, compared

with dsSVM and SVM, the prediction of a truly good responder as

a bad responder would more likely happen in our approach. In

general, the approach we report here is an improvement on other

previous methods based on overall consideration of Accuracy,

Precision, Recall, and F-measure.

5. PPI-SVM-KNN achieved better prediction results on
early-stage data

Considering that accurate prediction from early-stage data is of

great significance in clinical diagnosis, we evaluated the influence

of the number of measurements on classification performances and

compared it with other methods. We repeated our classification

experiment considering the first n measurements (for all n $ 3). As

expected, classification performances increase as the number of

measurements grows (Figure 7, Table S7). In comparison with

other methods, our approach almost outperformed them at all

values of n. We emphasize that our method achieved good results

even on early-stage data (n = 3, 4), implying the potential of our

approach in practical prediction. After patients have been treated

with rIFN-b for a short period, for example, (n = 3), our approach

can predict their probable responses, offering suggestions to those

patients as to whether they should continue to receive the drug

therapy or not.

Table 2. Classification accuracies of distinct classification
methods for Baranzini dataset and Goertsches dataset:
average (AVG) and standard deviation (SD).

Method AVG/SD Reference

Baranzini dataset

IBIS 74.20 Baranzini, et al., 2004

dsSVM 73.44/2.56 Borgwardt, et al., 2006

Meta-Profiles 59.42/6.17 Carreiro, et al., 2011

HMMConst3 81.38/10.00 Costa, et al., 2009

HMMClass 78.42/3.44 Lin, et al., 2008

uHONMFtf 60.97/2.91 Li and Ngom, 2011

Random forest 70.19/5.39

SVM 67.47/1.90

PPI-SVM-KNN 86.20/2.98

Goertsches dataset

dsSVM 55.75/3.28 Borgwardt, et al., 2006

Meta-Profiles 64.00/4.62 Carreiro, et al., 2011

uHONMFtf 53.37/6.94 Li and Ngom, 2011

HMMClass 45.82/4.30 Lin, et al., 2008

Random forest 52.39/3.24

SVM 57.26/4.21

PPI-SVM-KNN 78.57/8.19

doi:10.1371/journal.pone.0058383.t002

Figure 6. Precision, Recall and F-measure of different classifi-
cation approaches. The bars and error ticks represent mean values
and standard deviations respectively. (A) shows the result for Baranzini
dataset. (B) shows the result for Goertsches dataset.
doi:10.1371/journal.pone.0058383.g006
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6. Discussion and future work
Personalized medicine, the use of marker-assisted diagnosis and

targeted therapies derived from individual’s molecular profile, is

involving in the pharmaceutical industry and medical practice and

it is likely to affect many aspects of society[46]. Currently, many

works have been proposed to predict individual’s therapy response

based on static gene expression [47,48], including the work of

Ruiz-Peña et al. [49], which has been put into clinical practice.

However, the accuracy of those approaches is, at best, at the 80

percent level. Further improvements are required before these

methods can be widely used in clinical application. The main

challenges in personalized medicine are as follows. Firstly, gene

signatures have been developed using a number of different

platforms and with samples coming from different clinical series

[50]. Secondly, in clinical studies, samples are often limited. Noise

is inherent in data generated through large-scale, high throughput

experiments. Finally, complex diseases arise from the accumula-

tion of both genetic factors and environmental exposition. The

environmental signals change the biological information at each

level of the hierarchical system. Therefore, understanding of

complex disease requires the integration of different data types

arising from DNA, RNA, protein, metabolites, small molecules

and many different aspects of phenotype [37,51].

Here, we developed a novel method to predict the MS patients’

response to IFN-Beta, which is a work toward personalized

medicine. The proposed approach is based on the idea of

integrating two hierarchies of life system-gene and protein. For this

specific MS prediction problem, we did not design a feature

selection component. The 70 genes were selected by Baranzini

[17] on the basis of their presumed biological action. The feature

set includes genes coding for type I and II IFN-responsive

molecules, cytokine receptors, members of the interferon (IFN)

signaling and apoptosis pathways, and several transcriptions

factors involve in immune regulation. In a word, the author

selected the genes that are closely related to MS and the medicine

(IFN-Beta). It is worth pointing out that the feature selection

component is needed when the proposed method is applied to

other prediction problems. Feature selection can be performed

either by the similar method mentioned in the work of Baranzini,

or by some other widely used methods in clinical studies [2], such

as ‘‘N’’ t test statistics [52], cluster index scores [53] and the

modified t test statistics [54]. In addition, in order to achieve better

prediction on the patients’ therapy response, we are striving to

integrate metabolic profiles into our model since metabolomics is

considered the one that comes closest to expressing phenotype

[55].

Conclusion

In this paper, we presented a sound and reliable methodology

for the classification of clinical time series data based on the novel

idea of integrating biological networks. Admittedly, there are few

points that we would like to improve in the near future. For

example, during the process of data discretization (HMM/GMM

hybrid model), time course information of the data is, more or less,

lost. However, our method outperformed prior approaches that do

not consider biological networks with regard to various perfor-

mance criteria. Compared with other approaches, our method

achieved more stability in prediction across 2 different datasets.

Moreover, the proposed method achieved high accordance in

prognosis prediction across independent time series datasets.

Finally, we found that our approach achieved better prediction

performances on early-stage data, implying that our method has

great potential in clinical prediction. All the results on the 2

independent datasets have indicated that integration of the

network into classification of time series significantly improves

prediction performance, which is similar to that of static gene

expression demonstrated by recent research groups [8].

Supporting Information

Figure S1 The selected binary protein protein interac-
tion network. Each node represents a gene. Each edge

represents a protein protein interaction, i.e. there exists a

interaction between the two proteins which are encoded by the

two genes the edge connects.

(PDF)

Figure S2 Biclustering process. Biclusters were extracted

from (A) the gene state matrix. In order to differentiate specific

time point, a transformation is introduced, appending time point

to each gene state (B). Biclusters extracted from gene state matrix

are shown in (C).

(PDF)

Figure S3 Functional enrichment analysis of genes in
each Bicluster. The function of genes in each bicluster was

analyzed. (A) is the result of Baranzini Dataset; (B) is the result of

Goertsches Dataset. In (A) and (B), the horizontal axis represents

the range of function count; the left vertical axis represents the

number of biclusters; the right vertical axis represents the

cumulative frequency. The height of each bar represents the

number of biclusters. The x-axis label of each bar represents

function counts (e.g. the left most bar of (A) indicates that there are

nearly 30% biclusters associating with 1,50 functions). The line

Figure 7. Prediction accuracies of different classification
approaches with the change of measurements. The points in
the figure represent mean values. (A) shows the accuracies from time
point 3 to time point 7 for Baranzini dataset. (B) shows the accuracies
from time point 3 to time point 5 for Goertsches dataset.
doi:10.1371/journal.pone.0058383.g007

Classification of Time Series Gene Expression

PLOS ONE | www.plosone.org 10 March 2013 | Volume 8 | Issue 3 | e58383



represents cumulative frequency of corresponding bar in the

Figures.

(PDF)

Table S1 Precision, Recall and F-measure of different
discretization methods on Baranzini dataset and
Goertsches dataset: average (AVG) and standard devia-
tion (SD).
(PDF)

Table S2 Patient similarity of different discretization
methods on Baranzini dataset and Goertsches dataset.
(PDF)

Table S3 Function enrichment analysis of the bicluster
examples on Baranzini dataset and Goertsches dataset.
Gene functions with p-value ,0.05 are selected here.

(PDF)

Table S4 Precision, Recall and F-measure of integra-
tion versus non-integration of PPI network on Baranzini
dataset and Goertsches dataset: average (AVG) and
standard deviation (SD).
(PDF)

Table S5 Precision, Recall and F-measure of PPI-SVM-
KNN with the change of K from 3 to 9: average (AVG)
and standard deviation (SD).
(PDF)

Table S6 Precision, Recall and F-measure of PPI-SVM-
KNN with the change of C from 0.1 to 1000: average
(AVG) and standard deviation (SD).

(PDF)

Table S7 Precision, Recall and F-measure of distinct
approaches with the change of measurements: average
(AVG) and standard deviation (SD).

(PDF)

Supplemental Material S1 1. Complexity analysis of the
proposed biclustering algorithm and its comparison
with CCC-Biclustering; 2. Function enrichment analysis
of bicluster; 3. Kernel validation.

(PDF)
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