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Abstract: In the present study, the accumulation and degradation of testosterone by Chlorella vulgaris
were studied. The results showed that C. vulgaris has a significant ability to eliminate testosterone by
bioaccumulation and biodegradation, and during the 96 h experimental period, the data demonstrated
that the accumulation of testosterone followed a sigmoidal accumulation pattern. At the end of the
experiment, the bioconcentration percentages of testosterone by C. vulgaris in the high-concentration
group and the low-concentration group were 11.49 + 2.78% and 40.10 + 1.98%, respectively, and
the biodegradation percentages of testosterone were 69.64 + 4.33% and 42.48 + 1.92%, respectively.
The rate of biodegradation of testosterone by C. vulgaris mainly depended on the relative initial
concentration of testosterone. When the relative initial concentration of testosterone increases,
the degradation may gradually change from zero-order kinetics to second-order kinetics.

Keywords:  bioaccumulation; biodegradation; testosterone; environmental androgens;
Chlorella vulgaris

1. Introduction

Environmental androgens are a class of typical endocrine disruptors [1,2] that can interfere with the
normal endocrine system of organisms even at trace levels [3,4]. Moreover, environmental androgens
are detrimental to the reproductive development of aquatic organisms, affecting the structure and
function of microbial communities [5-8]. Environmental androgens have a wide range of sources [9-14]
and can migrate to subterranean and surrounding environments through infiltration and runoff [15,16],
thereby increasing the risk and scope of contamination.

Testosterone, as a representative environmental androgen, is mainly derived from human
and vertebrate emissions [13,17]. In recent years, due to the continuous discharge of pollution
sources, testosterone has been detected and reported in various environmental media (surface water,
groundwater, river, sediment, etc.) in many countries and regions [13,17,18]. The ecological risk
can therefore not be underestimated. Studies have shown that testosterone can interfere with the
normal endocrine system of aquatic organisms, causing a high proportion of males in some aquatic
organisms [19], the appearance of male secondary sexual characteristics in female fish, the inhibition
of vitellogenin induction, and the reduction of reproductive capacity [5,20]. Testosterone can also
cause masculinization to arise in mammals [21,22]. Therefore, the migration and accumulation of
testosterone in environmental media poses a serious threat to the health of the ecological environment.
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Research by Jacobsen et al. [23-25] showed that biodegradation is the major process for the removal of
environmental androgen. Therefore, research on the biodegradation of testosterone is of profound
significance for pollutant treatment and ecological risk assessment.

As a primary producer of aquatic ecosystems, single-cell microalgae can quickly accumulate
pollutants from the water. In addition, as a point of entry of pollutants within trophic nets,
the accumulation and degradation of pollutants by single-cell microalgae will have an impact on
organisms of higher trophic levels. Therefore, research on the bioaccumulation of environmental
androgens in microalgae can provide a scientific basis for the study of the ecological effects of
environmental androgens.

Many studies have reported the removal and biodegradation of organic contaminants by
microalgae. For example, Raphidocelis subcapitata has been used to remove 17f(3-estradiol and
diethylstilbestrol [26], and Scenedesmus obliquus has been shown to have the ability to remove and
degrade climbazole [27]. Additionally, S. quadricauda, Chlorella vulgaris, Ankistrodesmus acicularis, and
Chroococcus minutus have a reported rapid and high ability to remove nonylphenol [28]. However, few
studies on the migration and degradation of environmental androgens in aqueous environments have
been reported.

C. vulgaris is a single-cell green microalga commonly found in freshwater environments that is
easy to grow in the laboratory and is widely used in organic pollutant treatment research, which has
provided excellent results in recent years [29]. For example, C. vulgaris showed potential removal
capability for potassium cyanide, with a maximal removal rate of 61% [30]. The biotransformation and
bioconcentration of natural and synthetic steroid estrogens by C. vulgaris has also been reported [31].
Therefore, C. vulgaris has the potential ability to remove testosterone. The present study aimed
to investigate the testosterone bioaccumulation and biodegradation capacity of C. vulgaris under
monoalgal culture conditions and to briefly explore the degradation kinetics.

2. Materials and Methods

2.1. Algae and Culture Condition

Chlorella vulgaris was obtained from the Institute of Hydrobiology, Chinese Academy of Sciences,
Wuhan, Hubei, China. The unialgal stock was maintained in 250 mL flasks containing 150 mL of BG11
medium [32] at 25 + 1 °C under a 12 h:12 h light:dark cycle with 60 umol photon m~2s~! during the
light period in an illumination incubator. The glassware was washed to remove possible contaminants,
thoroughly rinsed with distilled water, and then autoclaved at 121 kPa for 30 min.

2.2. Experimental Design

The testosterone (Sigma-Aldrich, purity >98%, St.Louis, MO, USA) toxicity experiment on
Chlorella vulgaris was conducted previously. Experimental data showed that half of the maximum
effective concentration (EC50) of testosterone that induced the inhibition of growth of C. vulgaris was
approximately 58 mg/L after 96 hours and that at a concentration of 3 mg/L (ot = 0.05) the testosterone did
not show significant inhibiting effects. Therefore, also considering the environmental concentrations of
testosterone, two treatment groups were created: a high-concentration group and a low-concentration
group, with initial testosterone concentrations of 0.2 mg/L and 0.02 mg/L respectively. The initial
density of the algal cells was 5 x 10° cell/mL. The cells were cultured under identical conditions as the
stock culture. Three control groups were established simultaneously, Control I and Control II without
algal cells to rule out the natural degradation of testosterone, and Control III receiving only algal cells
to be a control for algae growth and to rule out the testosterone from the surrounding air and the
algae and liquid culture media for inoculation. The other conditions were the same as those of the
experimental groups (Table 1).
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Table 1. Experimental design.

Groups Testosterone Concentration (mg/L) Initial Density of Algal Cells (cell/mL)
High-concentration 0.2 5 x 10°
Low-concentration 0.02 5 x 10°

Control I 0.2 O1

Control 11 0.02 O
Control IIT O 5% 10°
O: Null.

At specific time points (O h, 0.5h, 1 h,3h, 6 h, 12 h, 24 h, 48 h, and 96 h), samples were collected to
analyze the density of algal cells and testosterone concentrations both in the water and in the cells.
The reported values are the average observed values of three parallel samples.

2.3. Algal Density

A spectrophotometer (METASH, UV6100A, ShangHai, China) was used to scan the characteristic
absorption wavelengths of the algal cell suspensions and measure the absorbance in different algal
suspension densities (wavelength = 680 nm) [33]. At the same time, a hemocytometer was used to
count the number of algal cells per unit volume under a microscope. Then, a standard curve was
established between the algal cell number per unit volume and the absorbance (R? = 0.999).

2.4. Dry Weight of Algal Cell

A 10 mL algal suspension with known density was centrifuged in tubes that had been pre-dried
to a constant weight at 103 °C. Then, the centrifuge tubes were dried to a constant weight again, cooled
in a vacuum desiccator, and weighed to obtain the total dry weight. The cell number of the algae pellet
at the bottom of the centrifuge tubes was calculated by the difference of the observed number of the
algal cells in the algal suspension before and after centrifuging. The dry weight of a single algal cell
was determined by dividing the total dry weight by the number of algal cells.

2.5. Determination of Testosterone in Algal Cells

The centrifuge tube that contained 5 mL algal suspension was centrifuged at 4000 rpm for 5 min
to eliminate the supernatant. The algae pellet at the bottom of the centrifuge tube was extracted
using 3 mL of n-hexane (repeated three times) after abrading by a pestle at 1000 rpm for 10 min.
The testosterone-n-hexane solution was filtered through a 0.22 um membrane and analyzed via
HPLC-MS. The average extraction recovery was 86.23 + 1.33%. The dry weight of an algae pellet at the
bottom of the centrifuge tube was calculated by the dry weight of a single algal cell multiplying by the
algal cell number of the algae pellet. Then the concentration of testosterone in algae (dry weight) could
be calculated.

2.6. Determination of Testosterone in Water

The filtrate from 5 mL of the algal suspension filtered with a 0.45 um membrane was extracted by
sonicating with 3 mL of n-hexane for 3 min for a total of three repetitions. Then, the testosterone-n-hexane
solution was filtered through a 0.22 um membrane and was determined via HPLC-MS. The average
extraction recovery of the analytical methods was 92.59 + 1.23%, which was subsequently used to
correct the observed testosterone concentrations in the experiments.

The concentration of testosterone in the algae-water system is the sum of testosterone measured
in the water and algal cell fractions.
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2.7. HPLC-MS Conditions

Testosterone levels were quantified using a Waters UPLC-Q-TOF-MS ACQUITYUPLC system
(Waters Corp., Milford, MA, USA) in positive electrospray (ESI) and sensitivity mode. An ACQUITY
BEH Cjg column (100 mm in length with an inner diameter of 2.1 mm, 1.7 um particle size, Waters Corp,
Milford, MA, USA) was used at a constant flow rate of 0.4 mL/min. The mobile phase consisted of 0.1%
formic acid in Milli-Q water (A) and acetonitrile (B). The injection volume was 1.5 uL. The capillary
voltage and cone voltage were 3000 V and 40 V, respectively, while the desolvation temperature and
source temperature were 400 °C and 120 °C, respectively. The gas flows of the cone and desolvation
were 50 L/h and 800 L/h, respectively. The collision energy ramp for the high energy function ranged
from 20 to 40 eV. All the sample data were processed using MassLynxTM4.1 software (Waters Corp.,
Milford, MA, USA).

2.8. Statistical Analysis

Statistical analysis was performed using SPSS 23.0 statistical software (SPSS Inc., Chicago, IL,
USA). The experimental data were analyzed using one-way analysis of variance (ANOVA), followed
by Dunnett’s test to compare the significance of the treatments. Significance testing was performed
on all data and the significance level used for all statistical tests was 0.05. The data are shown as the
means + standard errors (SE).

3. Results

3.1. Algal Cell Growth

The algae cells were sampled and tested nine times. The algal density of Chlorella vulgaris under
different concentrations of testosterone is presented in Table 2. No statistically significant differences
were observed among the treatment groups and the Control III group with regard to algal cell growth
during the experimental period (p > 0.05). Thus, the test concentrations of testosterone in the following
experiment of accumulation and degradation were reasonable.

Table 2. The algal density of Chlorella vulgaris under different concentrations of testosterone.

Density of Cells (10° cell/mL)

Time (h)
Control III Low-Concentration Group High-Concentration Group
0 518 +0.04 5.21 +0.05 5.23 +0.02
0.5 5.28 +0.02 521 + 0.05 5.30 + 0.02
1 543 +0.10 521 +£0.05 5.43 +0.02
3 6.02 + 0.40 6.09 + 0.00 6.18 + 0.10
6 7.38 +0.17 7.44 + 0.08 7.46 + 0.09
12 9.99 +0.15 10.18 + 0.05 10.53 + 0.10
24 13.71 £ 0.06 13.89 + 0.04 14.29 + 0.19
48 30.82 £ 0.15 30.70 + 0.56 30.40 + 0.66
96 52.83 + 0.42 52.18 + 0.41 52.49 +0.32

3.2. Accumulation of Testosterone in Chlorella Vulgaris

The dynamic variation in the amount of accumulated testosterone in algal cells over time
is presented in Figure 1. In the treatment groups, both the high-concentration group and the
low-concentration group demonstrated a sigmoidal accumulation pattern for testosterone (Figure 1a,
Figure 1b). During the 96 h experimental period, there was a significant and rapid accumulation
during the initial phase, and the concentration of testosterone in the algae (dry weight) reached a
maximum at the 0.5 h sampling points for both the high-concentration group and low-concentration
group (Figure 1). Then, the concentration of testosterone in the algae began to decline at the end
of the initial rapid sorption process, after which a slower accumulation process began to dominate.
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At the last sampling point of the experiment, compared to the initial concentration, the testosterone
amounts of the high concentration group and the low concentration group detected in algal cells were
11.49 + 2.78% and 40.10 + 1.98%, respectively. Testosterone was not detected in the Control III group.
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Figure 1. (a) The processes of testosterone accumulation by Chlorella vulgaris in the high-concentration
group. (b) The processes of testosterone accumulation by C. vulgaris in the low-concentration group.
The vertical bars represent the standard error. For the data points without an error bar, the error bar is
smaller than the symbol.

3.3. Degradation of Testosterone by Chlorella Vulgaris

The variation in the total testosterone concentrations in the algae-water systems are shown in
Figure 2. During the 96 h test period, the testosterone concentrations in the high-concentration group
and low-concentration group were reduced by 69.64 + 4.33% and 42.48 + 1.92%, respectively, compared
with the initial concentration.
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Figure 2. (a) The processes of testosterone biodegradation by Chlorella vulgaris in the high-concentration
group. (b) The processes of testosterone biodegradation by C. vulgaris in the low-concentration group.
The vertical bars represent the standard error. For the data points without an error bar, the error bar is
smaller than the symbol.

3.4. The Kinetics Equation of Degradation

Yan et al. [34] suggested that the biodegradation rate of hydrophobic organic chemicals (HOCs)
is affected by the algal cell density and growth rate at different growth stages based on the tests on
the degradation of three lipid compounds by Chlorella pyrenoidosa. For the results of this experiment,
a second-order reaction kinetics equation was used to determine the testosterone biodegradation
characteristics. The kinetics equation for the testosterone degradation speed was expressed as follows:

d[Tes|
dt

= KNr 1)

where [Tes] is the testosterone concentration, K is a constant, N is algal cell density, and r is the rate of
algal growth.
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An enhancement was made to Equation (1) in which r was expressed as dN/dt. After solving
Equation (1), then:

d[Tes]  dN
o KNG @
fd[Tes] —KdeN ©)]
[Tes] = %KNz +C (4)

where C is a constant.

The constant K and the constant C can be obtained by a linear regression of Equation (4) between
the observed concentrations of testosterone and the square of the observed densities of C. vulgaris cells
at different periods. Changes in the testosterone concentration in the algae-water system with time
can be imitated by Equation (4) after substituting the obtained K and C values.

The relationships between [Tes] and ¢, both the observed values and predicted values, are shown in
Figure 3. The results calculated by Equation (4) indicate that the relative mean deviation of testosterone
concentration in the algae-water system of the 0.2 mg/L group between the calculated values and
the observed values was 0.79%, r = —0.999. This result suggests that this kinetic equation could well
describe the process of testosterone biodegradation by C. vulgaris with the experimental data of the
0.2 mg/L group. In the 0.02 mg/L group, the relative mean deviation and r value were 4.14% and
—0.962, respectively (Figure 3). This poor accuracy and objectivity were obviously due to the relatively
low testosterone concentrations in the lab samples. Under this circumstance, the rate of testosterone
biodegradation is presumed to be minimally affected by the density of the algae cells. Even when the
testosterone concentration is very low, the growth rate of the algal cells could also be negligible. Under
that assumption, differential Equation (1) can be reduced to:

d[Tes|

Fra Kr (5)

or A[Tes]

es
i K. (6)

Solving Equations (5) and (6) gives
[Tes] = KN +C @)
or

[Tes] = Kt +C. 8)

The relationships between [Ies] and ¢, both the observed values and predicted values, are shown
in Figure 4.
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Figure 3. (a) The processes of testosterone biodegradation by Chlorella vulgaris with observed values and

predicted values fit by Equation (4) in the high-concentration group. (b) The processes of testosterone

biodegradation by C. vulgaris with observed values and predicted values fit by Equation (4) in the

low-concentration group.

The results calculated using Equations (7) and (8), shown in Figure 4, indicate that the relative
mean deviations of the testosterone concentrations in the algae-water system of the 0.02 mg/L group
between the calculated values and the observed values were 1.55% and 1.18%, » = —0.992 and —0.996,
respectively. Kinetic Equation (8) could better describe the process of testosterone biodegradation
by C. vulgaris for the 0.02 mg/L group. Therefore, for a relatively low testosterone concentration, our

assumption may be accurate.

The growth equation of algae can be expressed by logistic equations [35] as follows (Equations (9)

and (10)):
For the 0.2 mg/L group:
N — 56.7577
] 4 ¢0.0493(t-45.12811)
For the 0.02 mg/L group:
N 56.01572

- 1+ 6_0‘05069(t_44'35943) ’

©)

(10)
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After substituting the algae growth equation, changes in the testosterone concentration in the
algae—water system with time can be imitated by Equations (11) and (12):

2
56.75577
_ -5
0.2mg/L [Tes} = -2.6828 x 10 1 000493145 12811 + 0.2060 (11)
0.02 mg/L [Tes] = —9.2176 x 10~°t + 0.01995. (12)
0.020 —e— Observed values
0018 --o-- Equation 7
= o .
-é g 0ol6h Equation 8
Lo
g E o014}
§ p_,EJ 0.012 F
g 4
S @ 0010f
L O
g ‘§ 0.008 |
2 §D 0.006 -
é = 0.004
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Figure 4. The processes of testosterone biodegradation by Chlorella vulgaris with observed values and
predicted values fit by Equations (7) and (8).

4. Discussion

The present research is the first to study the accumulation and degradation of testosterone by
algae. The results showed that Chlorella vulgaris had a significant ability to remove testosterone by
bioaccumulation and biodegradation. For both the high-concentration group and the low-concentration
group, there was a significant and rapid accumulation at the initial phase of the experiment, followed
by a rapid decline of testosterone in algae. The accumulation kinetic of testosterone by C. vulgaris is in
agreement to the previous report for the accumulation process of several HOCs by phytoplankton [36],
which indicated that accumulation occurs in multiple compartments. Considering the testosterone
accumulation curves of C. vulgaris in Figure 1, the results suggest that there are three stages in the
testosterone accumulation process.

In the first stage, when the density of the algal cells and the rate of algal growth are small,
the accumulation is primarily due to surface adsorption. The testosterone diffuses into the algal cell
surface quickly while the biodegradation rate is relatively small, which causes the concentration of
testosterone accumulated by algae to increase rapidly. In the second stage, the rate of algal growth
becomes larger and algal growth has a diluting effect. As a result, the concentration of testosterone
accumulated by the algae declines rapidly and reaches its minimum. In the third stage, the rate of
algal growth is slower than that in the second stage. With the reduced diluting effects of algal growth,
the concentration of testosterone accumulated by the algae increases gradually with time.

It has been suggested that the accumulation of organic compounds in algae is the first step of
biomagnification in food webs [37]. This study indicated that a rapid accumulation was found in the
early stage of the experiment, and then the concentration of testosterone accumulated by the algae
declined rapidly because of the dilute effect of algal growth. However, if the grazing pressure is high
in the aquatic ecosystem, there might be significant biomagnification of testosterone along the food
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chain. Based on the serious threat of environmental androgens to aquatic organisms [5,19,20], a better
understanding of trophic transfer of testosterone along food webs will help to assess its ecological risk.

Figure 2 shows that the concentration of total testosterone in the algae-water system significantly
decreased with time, indicating that C. vulgaris does have a degradation effect on testosterone (p < 0.01).
Several processes might be involved in the testosterone removal processes, including photodegradation,
sorption, and biodegradation [28]. However, little variation in testosterone concentrations in Control
I and Control II demonstrates that the phytodegradation plays a small role in the dissipation of
testosterone. The results show that the removal of testosterone by algae was mainly caused by
biodegradation (69.64% and 42.48%), rather than by accumulation in algal cells. Thus, the testosterone
removal mechanisms may involve two processes, a rapid initial adsorption followed by absorption,
accumulation and degradation processes.

Many researchers have studied the biodegradation kinetics of organic pollutants by microalgae;
however, the biodegradation feature is still a matter of debate. Some researchers reported that
the biodegradation by microalgae followed a first-order kinetic model [27,38], whereas some other
researchers found that a second-order kinetic equation could describe the biodegradation process
better [34].

The degradation results in this study (Figure 2) show a noticeable difference in the degradation
between the high-concentration group and the low-concentration group at the end of the experiment,
although 0.02 and 0.2 mg/L testosterone had no significant influence on the growth of C. vulgaris.
Therefore, it is reasonable to suspect that at an equal algae density, different initial concentrations of
pollutant could affect the degradation characteristics of the microalgae.

Based on the fitting effects of different dynamic equations on the experiment results, the following
hypotheses can be made: the biodegradation rate of testosterone is not only affected by the density of
algal cells (N) and the growth rate (r) of the cells at different growth stages, but it also depends on the
relative initial testosterone concentration.

At a high initial testosterone concentration, the biodegradation rate varies with the algal cell
density (N) and growth rate (r). However, at lower testosterone concentrations, the reaction becomes
independent of N and r (zero-order kinetics). In the present study, Equation (11) and Equation (12)
could well demonstrate the dynamic process of testosterone biodegradation by C. vulgaris with high
and low testosterone concentrations, respectively. When the initial testosterone concentration is in
the middle range, the reaction (relative to N and r) may be a mixed-stage reaction. Furthermore, at
a certain initial testosterone concentration, as the algal cell density (N) and growth rate (r) increase,
the reaction may gradually change from second-order kinetics to zero-order kinetics.

The biodegradation of organic contaminants by algae has been demonstrated in several studies.
C. vulgaris is ubiquitous in water environments and exhibits outstanding potential in the purification
of pollutants. Researchers showed that the nonylphenol degradation percentage by C. vulgaris was
68.8% [28] and the florfenicol removal efficiency could reach 97% by Chiorella sp. L38 [38]. Although
the concentrations of testosterone used in the present study are unlikely to be detected in an aquatic
ecosystem, C. vulgaris demonstrated a high potential capability for testosterone removal, indicating
good prospects for use in wastewater treatment.

With respect to the product of biodegradation, research on the biotransformation of steroid
estrogens by C. vulgaris indicated that the transformation product exhibited a preference to polar
metabolites. Conjugation, which is a rapid detoxification mechanism by increasing the polarity of
organic contaminants, plays a major role in biotransformation [31]. To identify the major metabolic
products and the biodegradation pathways of testosterone by microalgae, further studies are needed.

5. Conclusions

Chlorella vulgaris has a significant ability to bioaccumulate testosterone. The experimental data
on the amount of testosterone accumulated by algae reveal a sigmoidal pattern, and the degradation
of testosterone by C. vulgaris was significant. Thus, the algae are useful in testosterone removal.
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The biodegradation rate of testosterone is not only affected by algal cell density (N) and growth rate (r)
at different growth stages, but it also depends on the relative ratio of the testosterone concentration
and algal cell density.
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