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Background: Alcohol dependence (AD) remains one of themajor public health

concerns. Impulsivity plays a central role in the transfer from recreational

alcohol use to dependence and relapse. White matter dysfunction has been

implicated in alcohol addiction behaviors and impulsivity. However, little is

known about the role of systematic striatal structural connections underlying

the mechanism of impulsive traits in AD.

Methods: In our study, we used seed-based classification by probabilistic

tractography with five target masks of striatal circuits to explore the di�erences

in white matter integrity (fractional anisotropy, FA) in ADmale patients (N= 51)

and healthy controls (N = 27). We mainly explored the correlation between FA

of the striatal circuits and impulsive traits (Barratt Impulsiveness Scale, BIS-11),

and the mediation role of impulsivity in white matter integrity and the severity

of alcohol dependence.

Results: Compared with healthy controls, AD showed much lower FA in the

left and right striatum–supplementary motor area (SMA) and left striatum–

amygdala. We also found the decreased FA of right striatum-vlPFC was

correlated with higher impulsivity. Besides, the relationship between reduced

FA of right striatum-vlPFC and severity of dependence could be mediated

by impulsivity.

Conclusion: In our study, we found disrupted white matter integrity in

systematic striatal circuits in AD and the decreased FA of right striatum-

vlPFC was correlated with higher impulsivity in AD. Our main findings provide
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evidence for reduced white matter integrity of systematic striatal circuits and

the underlying mechanisms of impulsivity in male AD individuals.

KEYWORDS

alcohol dependence, impulsivity, systematic striatal circuits, probabilistic

tractography, di�usion tensor imaging

Introduction

Alcohol dependence (AD) is a chronic relapsing disease

characterized by an impaired ability to control alcohol

consumption despite adverse consequences (1, 2). As the

most prevalent drug of all substance use disorders, alcohol

use disorder (AUD) is one of the leading global causes of

disease burden and substantial health loss. A high proportion

of disease burden is attributable to complex outcomes,

including unintentional injuries, cancer, cardiovascular and

cerebrovascular diseases, cirrhosis, and suicide (3, 4). The risk

of mortality is positively associated with the level of alcohol

consumption, which is potentially harmful at any level (5).

It has been reported the prognosis of AD was unfavorable

after patients achieve abstinence, which attributed to a high

risk of relapse (6). Impulsivity plays a central role in the

transfer from recreational alcohol use to alcohol dependence

and relapse. Impulsivity increases the risk of relapse which

may be related to impaired inhibitory control and enhanced

motivation after cue exposure, leading more serious state of

alcohol dependence (7). Impulsivity is a complex structure

including impulsive traits and impulsive behavior, and there

are some relationships between subtypes of impulsivity, with

evidence of go/no-go performance and Barratt Impulsiveness

Scale scores (8). Previous studies found multiple subtypes

of impulsivity were associated with a common biological

factor: low dopamine D2 receptor function in striatum (9).

The striatum is a complex structure interconnected with the

cerebral cortex, projecting in “loops” to executive, motor,

and limbic regions of the brain (10). The impulsive system

includes amygdala–striatum regions, reflective system which

contains the prefrontal cortex, and insula cortex which

plays a key role in modulating the dynamics between these

two systems (11). It was reported that individuals with

more severe alcohol dependence exhibit weaker frontal (e.g.,

the insula, medial prefrontal cortex, and anterior cingulate)

functional connectivity with the striatum, and these networks

are important for response inhibition. These findings suggest

the fronto-striatal pathway underlying inhibition control is

weakened in AD (12). Thus, a network of interacting brain

regions and associated circuits has been shown to mediate

impulsivity and inhibition control behaviors of AD, including

striatum, dorsolateral prefrontal cortex (dlPFC), ventrolateral

prefrontal cortex (vlPFC), supplementary motor area (SMA),

insular, and amygdala (9, 13, 14).

White matter (WM) structures efficiently propagate neural

signals between spatially distinct cortical regions and then

improve brain connectivity (15, 16). WM damage is one of the

characteristic injuries of AD (17, 18). The clinical features and

pathological behaviors in alcoholics are related to the integrity of

WM (19, 20), especially more evidence of the structural damage

on prefrontal–striatal circuits was found in AD. The reduced FA

value of the orbitofrontal cortex and nucleus accumbens (OFC-

NAcc) network suggests structural network alterations in AD.

The increased OFC-NAcc functional connection is associated

with craving (19). Besides, frontal reduced WM integrity as

predictors of the alcohol treatment outcome (21). Diffusion

tensor imaging (DTI) is a quantitative non-invasive method

to assess the integrity of WM mainly by using the value of

fractional anisotropy (FA). The reduced FA can be attributed

to degradation of both myelin sheaths and axonal membranes

(22, 23). Tract-based spatial statistics (TBSS) is generally used

for voxel-wise analysis of whole-brain white matter (24). In spite

that TBSS has advantages over other methods such as voxel-

based morphometry, however, TBSS also has limited anatomical

specificity and lack of information between different regions

of interest (ROI) (25, 26). As a result, we will utilize the

probability tractography to detect the white matter differences

within specific tracts in our study.

Most prior studies have employed TBSS analysis to

investigate the relationship between FA and impulsivity (27,

28). In addition, the exact relationship between WM integrity

and impulsivity is still inconsistent in AD. Our previous

TBSS analysis found there is no relationship between FA

of whole-brain skeleton and impulsive trait (BIS-11) (27).

Another tractography-based segmentation study found higher

impulsivity level was associated with lower FA in corpus

callosum extending to the orbitofrontal cortex in AD (29).

So far, it is still unclear whether abnormal FA of systematic

striatal circuits is associated with impulsivity and the severity

of dependence in AD. The aim of our study was to investigate

the integrity of striatal circuits by using seed-based classification

with DTI probabilistic tractography and its relationship with

impulsivity and severity of alcohol dependence in AD.

The aim of our study was to investigate the integrity of

striatal circuits by using seed-based classification with DTI
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probabilistic tractography and its relationship with impulsive

trait and severity of alcohol dependence in AD.

Materials and methods

Subjects

A case–control, cross-sectional study was conducted in the

Peking University Institute of Mental Health. Diagnostic and

Statistical Manual of Mental Disorders-IV (DSM-IV) criteria

were assessed with the mini-international neuropsychiatric

interview. Fifty-one males meeting the DSM-IV criteria for AD

were recruited, and the age range was 31 and 59 years old. All AD

participants were patients in hospital of the Peking University

Sixth hospital. AD patients had finished acute withdrawal with

abstinence for at least 2 weeks. In the study sample, the average

Michigan Alcoholism Screening Test (MAST) score of all 51

subjects was 13.51± 4.15 (1–40) (see Table 1). Inclusion criteria

included male, aged 30–60, right-handed, meeting the DSM-IV

diagnostic criteria for AD, and the score of the Clinic Institute

Alcohol Withdrawal Syndrome Scale (CIWA-AR) was less than

seven. Exclusion criteria included any other Axis I psychiatric

disorder or other substance use disorder (except for nicotine),

any systemic or neurological disease, claustrophobia, or any

other contraindication for magnetic resonance examination

(MRI). Meanwhile, a total number of age- and gender-matched

27 participants were involved as healthy control (HC). The

control participants were recruited from the community and,

based on structured interview, had never met DSM-IV criteria

for AD or any other DSM-IV Axis I disorder. All participants

completed informed consent.

Procedure

Our study consisted of two sessions. General and

clinical data were collected in the first session including

sociodemographic, alcohol use-related, and clinical

characteristics. Trait impulsivity was measured by the BIS-

11, which is one of the most widely used self-report measures

of impulsivity trait. It includes 30-item self-administered

questionnaire (30). MAST was used as a severity index for

alcohol dependence in our study. MAST is a rapid, reliable,

inexpensive measure of a severity index for alcoholism (31).

CIWA-Ar was used for clinical quantitation of the severity of the

alcohol withdrawal syndrome in the baseline measurement (32).

A neuropsychological assessment of cue reactivity paradigm

was made. Participants were exposed to visual, olfactory,

and proprioceptive stimuli associated with the beverage in

alcohol cue trial. Alcohol-related cue reactivity was assessed by

subjective responses (visual analog scales of craving, C-VAS, and

Alcohol Urge Questionnaire, AUQ) and physiological responses

(heart rate, HR; systolic blood pressure, SBP; and diastolic blood

pressure, DBP) before and immediately after alcohol exposure.

All subjects were requested to evaluate the intensity of their

craving of alcohol consumption on a 100-point Visual Analog

TABLE 1 Demographics and clinical traits of AD and HC individuals.

AD HC Z/t/χ2 p-value

(n = 51) (n = 27)

Age (years) 41.00 (37.00, 49.00) 37.00 (33.00, 47.00) −1.136 0.256

Education (years) 12.00 (9.00, 15.00) 12.00 (10.00, 16.00) −0.712 0.476

Marital status 0.052 0.819

Married 44 (86.3) 12 (81.5)

Others 7 (13.7) 5 (18.5)

Age at first use (years) 18.00 (16.00, 20.00) 21.00 (18.25, 36.50) −2.366 0.018*

Duration of dependence 6.58± 4.40 –

Mean ethanol intake (g/d) 188.35± 100.91 –

Duration of abstinence (d) 16.00 (14.00, 29.00) –

CIWA-Ar 1.80± 1.47 –

MAST 13.51± 4.15 0.33± 1.18 −6.436 <0.001***

Smoking 40.074 <0.001***

Yes 46 (90.2) 4 (18.5)

No 5 (9.8) 17 (81.5)

FTND 6.00 (5.00, 7.25) 2.50 (0.50, 5.25) −5.897 <0.001***

BIS-11 (Total) 53.00 (42.00, 65.00) 45.00 (41.00, 55.00) −1.404 0.160

CIWA-AR, Alcohol Withdrawal Syndrome Scale; MAST, Michigan alcoholism screening test; FTND, Fagerström test for nicotine dependence; BIS-11, Barratt impulsiveness scale, 11th

version. Indexes indicate a statistically significant difference between the two groups with a p-value<0.05. * and *** indicated group differences at the p< 0.05 and 0.001 values, respectively.
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Scale (VAS) ranging from zero (not at all) to 100 (extremely

high). The AUQ was also used to evaluate the level of intensity

of alcohol craving (33). FTND is a widely used test for assessing

physical nicotine dependence (34). FTND was used to assess

dependence of nicotine in this study. After 15min of rest, a

second session was finished by the MRI scan.

MRI data acquisition

The experiment was carried out on the GE Discovery

MR750 3.0T at the Peking University Sixth Hospital. The three-

dimensional (3D) T1-weighted images were acquired using an

MPRAGE pulse sequence with a voxel size of 1 × 1 × 1 mm3

[repetition time (TR) = 6.7ms; echo time (TE) = 2.9ms; data

matrix =240 × 240 mm2; slices = 170; field of view (FOV) =

240× 240 mm2]. DTI data were collected through a single-shot

EPI sequence with a voxel size 2× 2×2mm3 (TR= 8,900ms, TE

= 92ms, data matrix= 120× 120, FOV= 240× 240 mm2, slice

=72). To improve the signal-to-noise ratio, 64 repeats of the 32

non-collinear directions (b = 1,000 s/mm2) were applied with

eight acquisitions without diffusion weighting (b= 0 s/mm2).

TBSS analysis

A voxel-wise analysis (TBSS) along whole-brain WM tracts

was applied to detect the difference on the diffusivity parameters

(such as FA and MD) among AD and HC. After preprocessing,

we visually checked all FA maps of subjects for data quality

insurance. The FA image was first normalized into to the

standard MNI (Montreal Neurological Institute) space by using

the fnirt command implemented in FSL. Then, an averaged FA

map was created for skeleton generation step. Those voxels that

lower on 0.2 in FA value were excluded based on prior research

(24). Finally, FA image of each subject was projected onto the

FA skeleton image. A permutation t-test was used to test FA

differences between groups in FSL (FSL randomize procedure).

The threshold-free cluster enhancement at P-value <0.05 (5,000

permutations) was used to control the Type I error induced by

multiple comparisons across voxels.

Striatum structural connectivity analysis

Masks of target regions, including four cortical regions

[dlPFC (3,7/4, 8), vlPFC (7,15/10, 16), SMA (19/20), and

insula (29/30)] and one subcortical region [amygdala (41/42)],

and mask of seed region [striatum (71,73/72,74)] were

extracted from the standard Anatomical Automatic Labeling

(AAL) template (https://www.gin.cnrs.fr/en/tools/aal/) and then

were applied to individual brain space through a two-

step normalization of ANTs tool (Advanced Normalization

Tools, https://github.com/ANTsX/ANTs) to build white matter

connectivity within striatum (35).

Probabilistic tractography

Preprocessing steps of diffusion images in FDT (FMRIB’s

Diffusion Toolbox, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT)

included image quality check, 8 b0 images averaging, eddy

current correction for distortions coming from EPI artifacts and

motion correction, a rotation of b-vector, and tensor fitting, to

eventually obtain FA maps.

Probabilistic tractography method based on seed was

used to tract fibers between striatum and target regions.

Calculation of fiber orientation distribution for each voxel

through BEDPOSTX (GPU version) (36) was then used in

fiber tracking from seeds to targets (one seed and one target

at a time) by the probtrackx algorithm (GPU version) with

the following parameters: streamlines = 5,000; step length =

0.5mm; curvature threshold = 0.29 (35, 37). Tractography was

separately conducted for each hemisphere. Voxels in fiber that

had streamlines below the threshold of 5% of the maximum

streamlines from seed to target were excluded by fslstat function

(37). Eventually, we kept those voxels beyond threshold as a fiber

mask in individual diffusion space to compute the mean FA as

FA measurement of the fiber.

Statistical analysis

The statistical analyses were conducted using SPSS, version

24 (IBM, Armonk, NY). Independent t-tests, Kruskal–Wallis

test, and chi-square test were used to compare demographic

and clinical characteristics between AD and HC. Then, we

further employed correlations analysis to test the relationship

between BIS-11 and clinical and behavioral data (such as alcohol

use features and cue reactivity) in AD. We included age and

education as covariates in DTI data. TBSS and seed-based

probabilistic fiber tracking method were used to compare the

FA of whole-brain skeleton and striatal circuits in AD and

HC. After that, we employed partial correlations analysis to

test whether the FA of striatal circuits and abnormal FA values

of TBSS were associated with BIS-11 in AD and HC. To

investigate the relationship between white matter integrity of

striatal circuits and severity of alcohol dependence (MAST) (38),

we performed a single-level mediation analysis with impulsivity

as a mediator. We tested whether the association between FA

of right striatum-vlPFC (X) and severity of alcohol dependence

(Y), measured by the MAST, was mediated by self-reported

impulsivity (M), measured by the BIS-11. This tests whether FA

reduction is associated with impulsivity, which in turn leads to

severer drinking behavior. A false discovery rate (FDR) method
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was used to control the rate of type I error caused by multi-

comparisons in all statistics.

Results

Demographics, clinical characteristics,
and behavior data

There are no significant differences in age, education, and

marital status between the two groups. The onset of alcohol use

in AD patients is earlier (Z = −2.366, p < 0.05), and the score

of MAST is much higher than HC [t (76) = −6.436, p < 0.001].

The nicotine use in AD is much more serious than HC [t (76)=

−5.897, p < 0.001] (Table 1).

The correlation analyses weremade between impulsivity and

alcohol-related cue reactivity (subjective responses, e.g., C-VAS

and AUQ, physiological responses e.g., HR and blood pressure)

and alcohol use features (mean ethanol intake per day and age

at first use) in AD. Significant positive correlations were found

between the BIS-11 and cue-induced craving changes (C-VAS:

r = 0.332, p = 0.021; AUQ: r = 0.302, p = 0.031). The mean

alcohol intake per day is also significantly positively correlated

with impulsivity (r= 0.353, p= 0.011) (Supplementary Table 1).

However, the correlations between BIS-11 and cue-induced

craving variations were not significant after FDR correction.

There is no significant relationship in HC.

Integrity di�erence between AD and HC
in the whole-brain WM skeleton and
correlation with impulsivity

Patients with AD had reduced FA of widespread

microstructural compared with HC at p < 0.05, corrected

for FDR (Figure 1), mainly located in the forceps minor, forceps

major, left superior longitudinal fasciculus, and right inferior

frontal-occipital fasciculus (Supplementary Table 2).

Considering the impact factors of white matter integrity, age,

education, and nicotine use were controlled in partial correlation

analysis. All tracts with a significant difference between the

two groups in the above TBSS analysis were included in the

partial correlations with impulsivity (BIS-11). Our results found

a positive correlation between FA of forceps minor (cluster with

local maxima coordinates: x = 71.9, y = 178, z = 78.2, R =

0.548, p < 0.05 and cluster with local maxima coordinates: x

= 76.4, y = 175, z = 58.6, R = 0.606, p < 0.05) with BIS-

11 in HC (Figure 2; Supplementary Table 3). However, there is

no correlation between FA of WM skeleton and BIS-11 in AD

(Supplementary Table 4).

WM integrity di�erence in the striatal
circuits and the correlation with
impulsivity

Compared with HC, AD showed much weaker white matter

integrity in the left (t = 0.218, p = 0.011, FDR p = 0.037) and

right (t=−3.251, p= 0.002, FDR p= 0.010) striatum–SMA, left

striatum–amygdala (t=−3.492, p= 0.001, FDR p= 0.010), and

right striatum–insular (t = −2.181, p = 0.032, FDR p = 0.080)

(Figure 3).

Partial correlation was analyzed between FA of striatal

circuits and BIS-11 in the fifty-one AD patients. The FA

of the right striatum-vlPFC (r = 0.413, p = 0.003, FDR

p = 0.030) and left striatum-vlPFC (r = −0.347, p =

0.015, FDR p = 0.075) was negatively associated with BIS-

11 (Figure 4; Supplementary Table 5). However, there is no

significant relationship between the FA of striatal circuits and

BIS-11 in HC (Supplementary Table 6).

Mediation analysis

We also performed a mediation analysis to test whether

the association between reduced white matter integrity of the

right striatum-vlPFC and severity of alcohol drinking (MAST

score) could be mediated by impulsivity (BIS-11). We found

the relationship between reduced FA of right striatum-vlPFC

and MAST score was mediated by impulsivity [β = −41.3184

Boot 95% CI (−75.1251∼−19.3450)] p = 0.012. However, the

reduced FA could not directly predict the severity of alcohol

use [β = −30.0038 Boot 95% CI (−86.2956∼26.2880)] p =

0.856 (Figure 4). Considering the power to test the mediation

analysis of right striatum-vlPFC, impulsivity, and AD severity,

we calculated the post-hoc power through power Mediation

package in R. The result of post-hoc power analysis indicated that

the moderate sample size of the AD (n= 51) can achieve 0.75.

Discussion

In our study, we found widespread abnormal white matter

integrity of whole-brain skeleton and striatal circuits in AD

compared with HC. We also found a negative relationship

between FA of right striatum-vlPFC and BIS-11 in AD.

Furtherly, the relationship between reduced FA of right

striatum-vlPFC and severity of dependence was mediated by

impulsive trait. Our study may provide the role of WM

disruption of striatal circuits underlying the mechanism of

impulsivity in AD.

In our study, we found mean alcohol intake per day

was significantly positively correlated with impulsivity in AD.

Our findings are consistent with some prior studies (9, 39).

Higher impulsivity with the BIS-11 shows higher levels of
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FIGURE 1

Di�erences between alcohol dependence (AD) cohorts and healthy controls (HC) in the white matter skeleton. Tract-based statistical analysis

shows cross-sectional di�erences in the white matter skeleton between controls and the AD cohort undergoing di�usion tensor imaging for

fractional anisotropy. AD had widespread microstructural abnormalities, namely reduced FA compared with controls at p < 0.05.

FIGURE 2

Correlation between FA of WM skeleton and BIS-11 in HC. (A) A positive correlation between FA of forceps minor (cluster with local maxima

coordinates: x = 71.9, y = 178, z = 78.2) with the impulsive trait (BIS-11); and (B) A positive correlation between FA of forceps minor (cluster

with local maxima coordinates: y = 175, z = 58.6) with the impulsive trait (BIS-11).
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FIGURE 3

White matter integrity of striatal circuit structural connection comparisons between AD and HC. (A) The comparisons of FA of left and right

striatum–supplementary motor area between two groups; (B) The comparisons of FA of left and right striatum–ventrolateral prefrontal cortex

between two groups; (C) The comparisons of FA of left and right striatum–dorsolateral prefrontal cortex between two groups; (D) The

comparisons of FA of left and right striatum–amygdala between two groups; and (E) The comparisons of FA of left and right striatum–insular

between two groups. The * and ** symbols indicate the group di�erences at the p < 0.05 and p < 0.01 respectively.

FIGURE 4

Correlation between FA of striatal circuits and impulsivity and mediation role. (A) Visualization of white matter connectivity target from the

striatum to the ventrolateral prefrontal cortex; (B) Scatter plot with a significantly negative correlation between FA of right striatum–dorsolateral

prefrontal cortex tract and BIS-11 score; and (C) Mediation analysis of FA of right striatum-vlPFC, impulsivity (BIS-11), and severity of alcohol

dependence (MAST score).

cue reactivity than less impulsive drinkers (40). Impulsivity is

generally described as a construct consisting of a predisposition

toward rapid, unplanned reactions to internal or external

stimuli without regard to the negative consequences (41). Thus,

impulsivity has an influence on almost all stages of alcohol

use and exacerbate disease progression (42, 43). Therefore, it

is necessary to investigate the mechanisms of impulsivity to

improve the prognosis of AD.

We found widespread WM skeleton microstructural

differences in patients with AD compared with HC, mainly

in the corpus callosum, frontal area, and association fibers,

which were in agreement with two previous literatures (44, 45).

Interestingly, a positive correlation was found between FA

of forceps minor and BIS-11 in HC; however, there is no

correlation found in AD. Impulsive traits are not necessarily

pathological and likely reflect the desire/motivation to obtain

high salience outcomes (46, 47). Thus, this may suggest higher

WM integrity in the frontal portion of the corpus callosum may

promote adaptive social behavior in HC. The forceps minor is a

large fiber bundle that connects the bilateral prefrontal cortices

(48), which play an important role in motor control (49). A

recent study found WM reduced along the forceps major and

forceps minor and the FA was negatively correlated with the

impulsivity score in attention deficit hyperactivity disorder (50).
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Similar finding not found in AD in our study may attribute to

the severe disruption effect of alcohol on callosum forceps.

We also found weaker WM integrity of striatal circuits in

AD compared with HC, including left and right striatum–SMA,

and left striatum–amygdala. Alcohol produces dysfunctions in

functional connectivity between the striatum and other cortical

areas (51, 52). Our DTI findings of decreasing microstructural

connectivity of striatal circuits in AD performed a useful

complement to previous work. As TBSS analysis fails to cover

specific tracks between striatum and related ROIs, therefore,

we selected ROIs associated with impulsive trait, including

frontal cortex and the limbic basal ganglia. Specifically, the

prefrontal cortex (dlPFC and vlPFC) has been linked to “top-

down” cognitive control of inhibiting impulse that promotes

risky behaviors and SMA has been related to the inhibition of

motor impulse (53, 54). Striatum acts in concert with portions of

the PFC to modulate impulsive behavior (55, 56). Insular cortex

specifically outgoing projects to the striatum is also necessary

for executive “top-down” control (57, 58). The amygdala

receives input frommidbrain dopamine neurons and innervates

the striatum, which regulates risky reward seeking (59). The

disrupted functional and structural connectivity of cortico-

limbic-striatal systems may be the mechanism of impulsive

reward seeking in AD.

In our study, a negative correlation was found between WM

integrity of right striatum-vlPFC connection and BIS-11 in AD.

The vlPFC has been proposed as a key area for inhibitory control

of inappropriate impulse (60, 61). A recent study found AD

displayed less modulation of activation in PFC when deciding

to take risk decisions (62). Thus, diminished FA of striatum-

vlPFC may presumably reflect ineffective PFC control over

the striatum, which may account for disruption in inhibition

control and impulsive behavior in AD. Our findings of abnormal

microstructure of vlPFC to striatum were consistent with some

functional MRI results (56). A previous study also found the

reduced tract strength of striatum-vlPFC was associated with

abstinence-induced increases in craving and the relapse in

nicotine-dependent (37). Furthermore, we also found increased

impulsivity mediated the correlation between lower FA of

right striatum-vlPFC and the severity of alcohol dependence.

This may suggest that WM disruption of certain cortico-

striatal circuits could potentially reflect a vulnerability factor

with increased impulsivity, which may promote severe alcohol

consumption. It has been suggested that higher impulsivity

may stem from the neurobiological effects of alcohol intake

or, conversely, may be a premorbid deficiency of inhibitory

control (13). However, more evidence is needed to address this

causality relationship.

The strengths of this study were listed as follows. First, we

explored the mechanisms of WM microstructures underlying

impulsive trait in AD. Second, we addressed the WM integrity

of striatal circuits by utilizing probabilistic tractography in AD

to find the exact relationship with impulsive trait. However,

there are also some limitations in our study. First, in spite

that we examined the connectivity of the striatum circuits in

AD, however, the segmentation of the striatum (e.g., ventral

and dorsal striatum) may provide more information (10).

Second, future studies with larger sample sizes could explore

several other striatal tracts that might also be important for

impulsive traits (63, 64). Finally, like most of clinical studies, our

study was a cross-sectional study. We cannot directly address

the causal relationship between impulsive trait and long-term

alcohol dependence.

Conclusion

In summary, we found abnormal white matter

microstructure of striatal circuits in male AD patients. We

also found a negative relationship between FA of right striatum-

vlPFC and BIS-11 in AD. Meanwhile, the impulsive trait played

a mediating effect between FA of striatum-vlPFC and severity

of dependence. Thus, our findings could provide system-level

insights into the abnormal integrity of striatal circuits in

alcoholics and their potential roles as neuroimaging biomarkers

for impulsive traits.
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