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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy
with a 5-year survival rate below 10%, thereby exhibiting the worst prognosis of all solid tumors.
Increasing incidence together with a continued lack of targeted treatment options will cause PDAC
to be the second leading cause of cancer-related deaths in the western world by 2030. Obesity
belongs to the predominant risk factors for pancreatic cancer. To improve our understanding of the
impact of obesity on pancreatic cancer development and progression, novel laboratory techniques
have been developed. In this review, we summarize current in vitro and in vivo models of PDAC
and obesity as well as an overview of a variety of models to investigate obesity-driven pancreatic
carcinogenesis. We start by giving an overview on different methods to cultivate adipocytes in vitro
as well as various in vivo mouse models of obesity. Moreover, established murine and human PDAC
cell lines as well as organoids are summarized and the genetically engineered models of PCAC
compared to xenograft models are introduced. Finally, we review published in vitro and in vivo
models studying the impact of obesity on PDAC, enabling us to decipher the molecular basis of
obesity-driven pancreatic carcinogenesis.

Keywords: pancreatic ductal adenocarcinoma; obesity; in vivo; in vitro

1. Introduction
1.1. Pancreatic Cancer

Pancreatic cancer is one of the most lethal cancers worldwide, associated with poor
survival rates due to frequently delayed diagnosis and limited treatment options [1].
Among pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) represents the most
common histological subtype, accounting for more than 90% of all cases [2]. Its incidence
is dramatically increasing in the Western world, for yet widely unknown reasons. With
survival rates only marginally improving, the 5-year survival rate is still appallingly low
around 9% [3]. Thereby, PDAC exhibits the worst prognosis among all solid tumors [4],
currently ranking as third leading cause of cancer-related deaths in the US [5]. By 2030,
it is expected to become the second leading cause of cancer-related deaths in Western
societies [4,6,7]. Approximately 10% of all PDAC cases are based on hereditary genetic
predispositions [8]. In addition, several lifestyle factors have been shown to significantly
increase the risk of developing PDAC. Besides smoking, chronic pancreatitis and diabetes
mellitus, obesity represents one of the most significant risk factors [9,10].
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1.2. Obesity

According to the World Health Organization (WHO), obesity is defined as an abnormal
or excessive fat accumulation posing a substantial health risk. Obesity is usually quantified
via the body mass index (BMI, defined as body mass divided by the square of the body
height, expressed in units of kg/m2). A BMI greater than or equal to 30 is considered as
obese [11]. Over the last years, the prevalence of obesity has steadily increased [12] and
almost tripled since 1975 [13]. In particular, the numbers of obese children and young
adults have dramatically increased during the last years, which potential aggravates the
issue of obesity-related secondary diseases in the next decades [14,15]. An increased intake
of high-caloric nutrition, combined with a decreased level of physical activity, are the two
essential factors causing obesity in the Western world [16].

In addition to its function as crucial energy storage, adipose tissue needs to be regarded
as important endocrine organ [17]. Hormones secreted from adipose tissue have been
termed “adipokines”. Besides the well-known adipokine leptin, several other members
such as adiponectin, resistin or visfatin belong to the adipokine family [18] and mediate
systemic effects of adipose tissues. In addition to adipocytes, immune cells are the most
abundant cell type within the adipose tissue [17] thereby determining its immunological
impact [19]. Obesity causes a repolarization of immune cells, which is associated with a
sterile inflammatory process within the adipose tissues [20–24], thereby inducing a systemic
and chronic low-grade inflammation [25].

1.3. Obesity and Cancer

Overweight and obesity have previously been reported as risk factors for a variety of
chronic and metabolic diseases such as type 2 diabetes mellitus, hypertension, cardiovas-
cular disease, and metabolic syndrome [26,27]. In addition, there is a clear link between
obesity and an increased risk for numerous malignancies [28,29], including pancreatic can-
cer [9]. Obesity is the most important avoidable risk factor for cancer [30], being responsible
for 14% of cancer deaths in men and 20% of cancer deaths in women worldwide [31]. In
Germany, it has been estimated that in 2018 around 7% of all newly diagnosed cancer cases
were caused by obesity [32]. There is mounting evidence that both incidence and mortality
of pancreatic cancer are significantly increased among obese individuals [9,33]. In line
with this, it has been shown that obese people are already at a higher risk of developing
pancreatic precancerous lesions [34]. The link between obesity and cancer seems to be
multifactorial. In addition to the influence of proinflammatory cytokines such as IL-6 or
TNF-alpha, growth-stimulating effects of various obesity-associated hormones such as
leptin, estrogen, or insulin have been well described [19,35–37]. In terms of pancreatic
cancer, coherences and mechanisms of obesity-driven carcinogenesis have been reviewed
previously [38–42].

However, the underlying molecular mechanisms linking obesity to PDAC develop-
ment and progression remain largely unknown. Therefore, it is crucial to develop realistic
and physiologically accurate models of obesity-induced pancreatic carcinogenesis. This
article aims to review current in vitro and in vivo models of PDAC and obesity and shed
light on the newest generation of preclinical models to investigate obesity-driven pancreatic
carcinogenesis (Figure 1).
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Figure 1. Overview of in vitro and in vivo models of obesity and PDAC.

Preadipocytes (blue) can be differentiated in vitro into adipocytes (yellow) with similar
characteristics compared to in vivo rose adipocytes. Otherwise, mature adipocytes can be
isolated out of the fat tissue and cultured for a couple of days (ceiling culture) or up to two
weeks (membrane mature adipocyte aggregate cultures = MAAC) until dedifferentiation.

Pancreatic cancer cell lines (red) or isolates can be cultured in 2D and 3D models.
Cancer associated fibroblasts (yellow) can be added for increased physiological relevance.
Individual advantages and disadvantages are summarized in Table 3.

Common murine obesity models are based on a genetically engineered deficit in
Leptin signaling (ob/ob and db/db mouse) or are the result of a high caloric diet (high fat
or western diet). Pancreatic cancer in mice can arise from genetically engineered pancreas-
specific mutations or induced by xenograft implantation of pancreatic cancer cells, tumor
chunks, as well as organoids.

The combination of in vitro and in vivo models allows the creation of models to study
obesity-driven pancreatic carcinogenesis. Individual advantages and disadvantages of the
chosen models should be considered with regard to the specific scientific question. The
figure was created by using BioRender (BioRender.com, accessed on 14 August 2022)

2. Review of Current Methodologies
2.1. Murine/Human Adipocyte In Vitro Models

The systemic impact of obesity is highly complex, with adipocytes interacting with
multiple other cell types directly or indirectly via secreted factors [17]. In obesity-associated
cancer, the crosstalk between adipocytes and immune cells is instrumental in modulating
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carcinogenesis and tumor progression [36]. Adipocytes account for 90% of the volume,
but only for 20–40% of the total cell number in adipose tissue [17,19]. The majority of
non-adipocyte cells in adipose tissues are immune cells [19]. Compared to normal-weight
individuals, immune cell composition is markedly different in obese persons [20,21,25].
Considering the importance of the different immune components in obesity-driven pan-
creatic carcinogenesis, exploring the dynamic interaction between the adipose tissue and
resident and/or infiltrating immune cells during tumor development and progression
would provide further insight into the pathogenesis and possibly open new therapeutic
avenues. Therefore, appropriate in vitro and in vivo models recapitulating obesity-driven
pancreatic carcinogenesis and tumor progression are urgently required.

Because of their functional relevance and high prevalence in obesity, this review fo-
cuses on white adipocytes. Dufau et al. have previously published a detailed overview
on different rodent and human adipose cell models [43]. Generally, in vitro differenti-
ated adipocytes must be distinguished from isolated mature primary adipocytes (Table 1).
In vitro differentiation is feasible both for murine embryonic fibroblast cell lines and pri-
mary isolated preadipocytes.

Table 1. Overview of different in vitro methods to culture adipocytes.

Method Description References

SVF

Stroma vascular fraction
isolated out of the adipose

tissue is differentiated in vitro
into adipocytes

Kilroy et al. 2018 [44]

Ceiling culture

Mature adipocytes cultured
under the upper plastic

surface of a flask due to the
floating characteristics of

adipocytes; dedifferenciate
within a few days

Dufau et al. 2021 [43];
Harms et al. 2019 [45]

mature adipocyte aggregate
cultures (MAAC))

Mature adipocytes cultured
under permeable small-pored
membrane insert; preserves

mature adipocyte identity and
function for up to 14 days

Harms et al. 2019 [45]

Standard mouse cell lines include 3T3-L1, 3T3-F442A, and C3H10T1/2 cells [46–48].
After reaching confluence, those fibroblasts can be differentiated into adipocytes by using
distinct hormonal differentiation stimuli [49]. The use of cell lines offers a highly repro-
ducible in vitro model, sparing the need to isolate primary adipose tissue. On the other
hand, the cell lines used are immortalized and therefore only partly representative for
primary adipocytes. In addition, several factors can influence the cell line’s capacity to
differentiate in vitro, including confluence, cell passage number, serum source and lot
number, contamination with mycoplasma, as well as reagent stability [48,50–52], creating
difficulties for comparison among different labs.

For the study of primary preadipocyte cells, the most frequently used method is the iso-
lation of stromal vascular fraction (SVF) from the rodent adipose tissues for which several
protocols have been established [53]. The stromal vascular fraction contains heterogeneous
cells, including adipose-derived stem cells (ADSCs), endothelial and mesenchymal progen-
itor cells, immune cells [44] and epithelial cells, which may limit the initial purity of the
preparations. The proportion of those cell populations might vary between isolations and
is affected by several factors like age, sex and nutritional stage [54,55]. In addition, different
protocols used for in vitro differentiation have been shown to affect the phenotype and
molecular profile of the differentiated adipocytes [51]. Nevertheless, the primary isolation
of SVF from genetically modified mice enables adipocyte-specific studies on the impact of
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specific genetic alterations. Compared to cell line-based in vitro differentiated adipocytes,
the biology and metabolism of SVF-based adipocytes are closer to that of primary mature
adipocytes [56].

Compared to primary SVF preadipocytes, isolation and culture of primary mature
adipocytes is experimentally challenging: these cells have a short ex vivo life span and
are fragile, thereby handling can be demanding [49]. Additionally, the high lipid content
causes floating of the cells, necessitating a special ceiling culture [43], for which flasks are
completely filled with media and floating adipocytes attach to the upper plastic surface. A
caveat of culturing mature adipocytes is their rapid dedifferentiation into fibroblast-like
cells [45]. To extend the time span for culturing and decrease dedifferentiation, Harms et al.
developed a new method called membrane mature adipocyte aggregate cultures (MAAC),
in which mature adipocytes are cultured under a transwell membrane, thereby preventing
dedifferentiation up to two weeks [45]. While this method works sufficiently for human
mature adipocytes, murine mature adipocytes are even more challenging to culture [45].

Other methods to culture mature adipocytes are tissue explant cultures, which are often
used to investigate adipose tissue-derived inflammation and metabolic activity [43]. As it
is the case for most primary cells, these cultured adipocytes also change their phenotype
after a few days ex vivo [45].

The availability of murine adipose tissue compared to human primary material is
apparently much simpler, and murine adipose cell models have traditionally been most
commonly utilized. However, translating results from murine-based experiments to hu-
mans also requires in vitro models using human cells. To this extent, a handful of human
cell lines are available. Yet, those cell lines result from artificial immortalization or are
based on pathological conditions of the donor, which might affect the generalizability of
results [43]. As described for mice, adipose-derived stem cells (ASCs) can also be isolated
from human adipose tissues and differentiated in vitro into adipocytes [57,58]. However,
results obtained with human adipocytes might be significantly affected by interindividual
differences between the different donors [57]. In addition to ASCs, isolation and culture of
mature adipocytes is also feasible but underlies similar challenges as in mice [45].

Three-dimensional (3D) culture of in vitro differentiated adipocytes enables higher
differentiation rates and unilocular lipid storage [43]. Disadvantages of this technique are
the underlying experimental challenges as well as the higher culturing costs.

Taken together, all in vitro models have inherent limitations, most prominently the
missing complex interaction of adipocytes with other organs and cell compartments. There-
fore, animal models are still necessary to investigate the effects of obesity and get a better
understanding of the pathological changes.

2.2. Murine In Vivo Obesity Models

Since mice are the most widely used in vivo models, we focus in this review on murine
obesity models. In general, either genetically modified or diet-induced mouse models have
been commonly used to study the impact of obesity on a broad variety of diseases. In
comparison, surgical (e.g., by inducing hypothalamic lesions) or drug-induced models play
a minor role [59]. Lutz et al. [59], as well as Suleiman et al. [60], reviewed different obesity
mouse models in great detail. In brief, the most commonly used genetic mouse models
are based on modifications in leptin, its receptor or downstream signaling (Table 2). These
mice develop obesity due to increased food intake and reduced energy expenditure [61,62].
Limitations of these models are obesity-independent leptin effects on several other cell
types. In particular, leptin has a significant influence on the immune response [36,63,64]
which can impact the phenotype of these mouse models, especially when studying the
impact of obesity on carcinogenesis [63].
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Table 2. Overview of the characteristics of common genetically engineered mouse models (=GEMM)
of obesity and pancreatic cancer.

GEMM Description References

ob/ob

Leptin deficiency-induced
obesity due to increased food
intake and decreased energy

expenditure; reversible by
leptin substitution

Halaas et al. 1995 [61]

db/db

Leptin receptor defect causes
obesity due to increased food
intake and decreased energy

expenditure; leptin
substitution cannot rescue

the defect

Coleman et al.1978 [62]

KC (KrasG12D, Pdx1 Cre)

month-long development of
PanIN (all grades), in some

cases development of
invasive PDAC

Hingorani et al. 2003 [65]

KPC (KrasG12D, tp53R175H,
Pdx1 Cre)

Rapid development of PanIN
lesions and invasive PDAC

with high penetrance,
metastasis to the liver, lung

and peritoneum

Hingorani et al. 2005 [66]

Given these limitations, diet-induced obesity (DIO) mouse models are most commonly
used, especially since they readily recapitulate the most common, hyperalimentation-
induced cause of obesity [59]. By chronic exposure to a high-calorie diet, mice gain weight
and develop obesity [67]. One limitation of these models is the fact that the various diets
in use differ in their nutritional content. The most commonly applied diet is a high-fat
diet, in which 20–80% of its calories are based on fatty acids [67–69]. Due to differences in
the typical human diet in the Western world, which is predominantly carbohydrate-based,
some researchers use a Western diet which more closely reflects the human dietary habits
in developed Western countries [70]. A limitation of all DIO models is the uncertainty
if effects are caused by obesity directly or by other factors like nutritional content or
obesity-associated stress [67]. All mouse models allow the study of complex metabolic
effects in vivo. Although animal models of obesity and related metabolic illnesses provide
valuable insights, it must be kept in mind that their transferability to the human situation is
limited due to variations in metabolism and physiology between mice and humans [57,59].
An example in this context is the basal metabolic rate, which is seven times higher in mice
than in humans, which causes differences, e.g., in senescence [71].

3. Pancreatic Ductal Adenocarcinoma (PDAC)

PDAC is the most common histological type of pancreatic cancer [2]. Approximately
90% of all PDACs in humans are characterized by activating mutations in the proto-
oncogene Kras as key driver [2,72], among them 98% exhibiting missense mutation in
one of the three mutational hot-spots: glycine-12 (G12), glycine-13 (G13) or glutamine-71
(Q61), all causing a permanent activation of Kras [73]. Kras mutation is one of the earliest
genetic events in PDAC carcinogenesis but is insufficient to drive PDAC development
alone. Therefore, several additional genetic or epigenetic hits are required [74]. PDAC
usually develops via different pancreatic precursor lesions, including mucinous cystic
neoplasms (MCN), intraductal papillary mucinous neoplasms (IPMN) and pancreatic
intraepithelial neoplasias (PanIN). Most PDACs develop from microscopic PanINs, which
cannot be detected by conventional imaging methods [75]. Based on their histological
appearance PanIN can be categorized into PanIN grades 1–3 [76–78], with PanIN 1 lesions
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already exhibiting Kras mutations [74]. During progression to invasive PDAC, additional
inactivating mutations in tumor suppressors such as CDK2N2A, SMAD4 or TP53 are
frequently acquired [72,74]. Suitable in vitro and in vivo models have been developed to
recapitulate human pancreatic carcinogenesis and characterize the underlying molecular
driver events in detail.

Several integrated genomic studies provided molecular PDAC classifications and
correlated the probability of treatment response and survival to those categories [72,79,80].
Among them, the two major categories have been termed “classical epithelial” and “basal-
like” (also called quasi-mesenchymal or squamous) subtypes [79,81]. Human tumors and
PDAC cell lines frequently represent a heterogeneous continuum of subtypes rather than
a constant state [81]. Interestingly, chemotherapy treatment may trigger shifts between
subtypes [81]. Knowledge of the respective subtype of a certain cell line is important for
interpreting in vitro results. For example, the most common human PDAC cell lines Panc-1
and MiaPaca2 are classified as basal-like subtypes, whereas Capan2 and HAPFII are classi-
fied as classical epithelial subtypes [81]. In humans, the molecular subtypes have gained
increasing attention as predictive tools for selecting molecularly guided (neo)adjuvant or
palliative treatment regimens [82].

In addition to a complex and heterogeneous genetic background, the tumor microenvi-
ronment in PDAC exerts an important, yet still controversial, impact on cancer development
and chemoresistance, comprising up to 90% of the tumor volume [83–87]. Stromal compo-
nents include immune cells, cancer-associated fibroblasts (CAF), endothelial and nerve cells
as well as numerous extracellular matrix (ECM) components [85]. ECM is mainly produced
by CAFs [88], but also by cancer cells themselves. Collagens, integrins, proteases, and
proteoglycans are the predominant components of ECM [87]. It still remains inconclusive
under which exact spatial and temporal circumstances ECM can support or suppress cancer
progression [89]. Targeted depletion of ECM components has been shown to increase
intratumoral chemotherapy concentrations in murine PDAC models [90]. However, in
contrast to the expectations, pharmaceutical depletion of ECM has resulted in a more
aggressive disease in clinical trials underlining the complexity of this interaction [89,91].
CAFs are usually derived from pancreatic stellate cells (PSC) [92]. Based on their secretory
and local functions, they can be classified as myofibroblastic CAFs (myCAF) and inflam-
matory CAFs (iCAF). MyCAFs mediate direct juxtacrine interactions with cancer cells and
therefore are frequently located in direct tumor cell contact [84]. They are characterized
by a high expression level of alpha-smooth muscle actin (α-SMA) [84]. In contrast, iCAFs
are spatially distant from cancer cells, but their induction depends on secreted cancer
cell-derived mediators [84]. In turn, iCAFs can induce STAT3 signaling in PDAC [84]
by producing pro-inflammatory cytokines, especially IL-6 [82] which is known to also
cause several systemic effects of PDAC like cachexia [93] and decreased immunotherapy
response [86,94].

All in all, there is a complex interaction between PDAC and its microenvironment.
Relevant preclinical models and clinical trials must recapitulate this complex interplay,
providing preclinical in vivo platforms to evaluate combinatorial targeting approaches of
both tumor cell autonomous and non-autonomous components.

3.1. PDAC In Vitro Models

Numerous human and murine cell lines are available to study pancreatic carcino-
genesis [95]. Most murine cell lines have been isolated from primary invasive murine
PDACs [96]. Those PDACs were derived either from mouse models with a defined Kras-
driven genetic background [65,66,77,97] or from chemically induced PDACs [98]. Many
of the murine cell lines are not commercially available and have to be requested from the
respective laboratories.

In contrast to murine PDAC, a wide variety of human PDAC cell lines are commercially
available. In addition to varying age and sex of the donors, they also differ in their anatomic
origin (primary tumor vs. metastasis) [95]. Among the most commonly used human
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PDAC cell lines, Panc1 and MiPaca2 were both isolated from primary tumors of male
donors and are classified as poorly differentiated [99,100]. Because of the lack of human
preinvasive PanIN cell lines, several attempts have been made to create cell lines resembling
preinvasive PanIN cells, including a method using a lentiviral-based approach developed
by Lee et al. [101].

Traditionally, all those cell lines are cultured in 2D. However, during the last years,
several methods have been developed to establish 3D cultures of pancreatic cells, either
alone or together with other cell types (Table 3):

Table 3. Common 2D and 3D cell culture methods of pancreatic cancer.

Method Description References

monolayer
Simple and common way to grow

cell lines; less physiological because
of lack of tumor microenvironment

Heinrich et al. 2021 [102]

spheroid
Spontaneous 3D formation; CAFs

can be added; unphysiological
configuration of PDAC and CAFs

Ware et al. 2016 [103]; Gündel et al.
2021 [104]; Lee et al. 2017 [101];

Öhlund et al. 2014 [85]

organoid
Single cell-based 3D formation with
physiological structures; ambitious

technique and costly

Gündel et al. 2021 [104]; Boj et al.
2015 [105]; Driehuis et al. 2019 [106]

Since most tumor tissues consist of ECM and numerous cellular stromal components
with a close crosstalk between the tumor microenvironment and cancer cells, the devel-
opment of co-culture models is instrumental to recapitulate the tumor–stroma interaction
in vitro.

In a low-adherence environment, PDAC cell lines spontaneously form 3D structures
through establishment of strong cell-cell connections instead of adherence to a plastic
surface [103,104,107]; they start to produce ECM [103], allowing more physiological in vitro
studies compared to 2D cultures [102].

The 3D cultures of (primary) cancer cells, together with cocultured stromal cells
such as PSCs or inflammatory cells, are usually referred to as spheroids [103,104,108].
The addition of PSC causes higher secretion of ECM, and therefore, higher density of
the spheroids [109], which enables a more realistic study of metabolism or response to
chemotherapy [103]. Compared to 2D, culturing spheroids do not require many changes in
culture conditions [104]. However, fibroblasts tend to form a core surrounded by cancer
cells, which represents a rather unphysiological aggregation [102]. Organoids enable the
prolonged ex vivo culture of healthy pancreatic cells [110] or PDAC cells over several
passages [105]. Cryopreservation is also feasible [105]. Organoids usually require primary
preinvasive pancreatic cells or invasive cancer cells, which can be of murine or human ori-
gin [104]. Human tissue samples can be obtained from surgeries, biopsies [106] or even fine
needle aspirates [111]. Cells are cultured in an artificial extracellular matrix (e.g., Matrigel)
containing hundreds of secreted proteins [112]. Matrigel enables the self-organization of a
3D structure that mimics physiological pancreatic histology [105]. Organoids are derived
from single cells of murine and human tumors and recapitulate the physiological structure
and tumor progression in vitro [104,105]. When PSCs are added to these spheroids, they
differentiate into the two CAF subtypes: myCAFs and iCAFs [84,113], mimicking the
human situation. Since organoids are usually derived from primary tumors or metastases,
they represent suitable ex vivo models for personalized drug screening and may improve
further personalized PDAC treatment strategies [106]. Disadvantages are high material
costs and sophisticated, as well as time-consuming, culture methods [104,111].

An alternative is organotypic slice cultures. Slices of tumor tissues are cultured,
thereby robustly recapitulating the individual tumor heterogeneity [104] while also en-
abling personalized drug screening [114]. However, slice culture preserves their biological
characteristics only for a few days [115].
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Furthermore, facilitated by novel technologies, innovative approaches like bioprint-
ing [116] or organs on a chip have been developed recently. Bioprinting allows exact
embedding of cells in gels and therefore leads to high controllability of the 3D structure,
which mimics the physiological histology more accurately [117]. So far, the common use is
complicated due to the limited availability of the required devices. Haque et al. developed
a PDAC-based cancer-on-a-chip, which includes CAFs and macrophages recapitulating the
tumor microenvironment [118]. However, so far this model is limited to cell lines, limiting
its use [118]. At present, both methods seem to be promising opportunities but still need to
be refined for routine use.

3.2. Murine PDAC In Vivo Models

Regarding murine in vivo models, we generally must differentiate between genetically
engineered mouse models (GEMM) developing PDAC based on specific genetic mutations,
and xenograft-based mouse models where PDAC develops after subcutaneous or orthotopic
injection of tumor cells.

Regarding GEMMs, the traditional Cre/LoxP system is a powerful tool to edit mam-
malian gene expression and is the most commonly used site-specific recombinase system
in mice [119,120]. By recognizing the specific loxP DNA segment the Cre recombinase me-
diates a targeted deletion of the DNA sequence between two loxP sides [121–123]. Thereby,
the knock-out of a certain gene is possible. To control the activation of an artificially modi-
fied gene (e.g., mutated Kras), a stop codon flanked with two loxP (=lox-stop-lox; LSL) is
placed in front of the gene [65,124]. Once the Cre/loxP recombinase deletes the stop codon,
the expression of the modified gene is initiated. While an unspecific Cre/loxP recombinase
deletes loxP floxed genes in the whole body, tissue-specific Cre/loxP is linked to a certain
promotor [120]. LoxP-dependent gene editing occurs only in tissues or cells which express
the relevant promotor gene. Several pancreas-specific Cre mice are commercially available.
In context of PDAC, Pdx1 and p48 are the most commonly used promotors. Both result in a
pancreatic deletion of loxP flanked DNA sequences [120]. Another milestone in the context
of genetic mouse models was the introduction of an inducible Cre recombinase which is
unable to enter the nucleus, and therefore remains inactive until a certain treatment (e.g.,
tamoxifen) is systemically applied [125].

Reflecting the high occurrence of Kras mutations in human PDAC [2], most GEMMs
are based on a Kras mutation as key driver (Table 2). Initially developed in the Tuveson
laboratory, the PDX-1-Cre;LSL-KRASG12D and p48-1-Cre;LSL-KRASG12D are the most
common mouse models expressing mutant KrasG12D in a pancreas-specific manner [65].
These mice develop PanIN lesions which progress over time and can proceed to invasive
PDAC [65]. Adding the inactivating TP53R175H mutation to these mouse models results
in earlier and more frequent PDAC development [66]. Like human disease, metastases
occur to the liver, lung, and peritoneum [66]. Less commonly used GEMMs employ other
Cre promotors or genetic modifications, resulting in different behavior in terms of latency,
penetrance, histological appearance and progression [126]. During recent years, tamoxifen-
inducible mouse models facilitated the targeted activation of mutant pancreatic Kras in
adult mice and, therefore, the possibility to study the earliest steps of PDAC carcinogenesis
during adulthood, most closely resembling the human situation [127].

As an alternative to genetically engineered mouse models, various xenograft models
have been used for decades. In general, the utilization of murine and human cell lines,
organoids or tumor chunks for xenografting is possible. However, human material re-
quires the use of immunocompromised mice [128–130], causing potential unphysiological
results due to the lack of immune response during tumor progression. Still, patient-derived
xenografts, being tumor samples grown subcutaneously or orthotopically in immunocom-
promised mice, allow experimental in vivo studies with a human tumor in situ [131].

When using murine PDAC cells or tumors for engraftment, immunocompetent mice
can be used. This enables the use of mouse lines modified with specific genetic alterations
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of interest which can be grafted subcutaneously or orthotopically in otherwise syngeneic
murine hosts [97].

In general, different injection/implantation sites and strategies are available, each
carrying different advantages and disadvantages (Table 4) [97,132]. Subcutaneous injection
in the flank is technically feasible without serious effort and allows an uncomplicated
measurement of tumor growth [133]. However, the unphysiological localization and lack of
pancreatic microenvironment might affect tumor behavior [134] and metastasis does usu-
ally not occur [135]. Moreover, intraperitoneal injection of cancer cells is technically easy to
perform. In this case, peritoneal and liver metastasis can frequently be observed [134]. The
most physiological site is the orthotopic injection into the pancreas, creating an endogenous
pancreatic environment [97]. The surgical implantation which is most used for orthotopic
implantation requires an experimenter experienced in performing laparotomy [136]. Al-
ternatively, an ultrasound-based injection is also feasible. These are clearly less invasive,
carrying less complications, but also require well-trained operators and are associated with
a higher risk of mislocalization of the inoculated tumor cells compared to laparotomy [137].
Metastases at physiological sites frequently occur following orthotopic injections [97,134].

Table 4. Comparison of different injections in xenograft-mouse models of pancreatic cancer. Injection
sides induce diverse characteristics with individual advantages and disadvantages.

Implantation Side Description References

subcutaneous

Allow direct observation of tumor
growth; unphysiological

localization; lack of pancreatic
microenvironment affecting

tumor behavior; no metastasis

Garrido-Laguna et al. 2011
[133]; Michaelis et al. 2017

[134]; Killion et al. 1998 [135]

intraperitoneal
Peritoneal and liver metastasis;

lack of pancreatic
microenvironment

Michaelis et al. 2017 [134]

pancreas

Pancreatic microenvironment
present; metastasis into liver and

lung; requires surgery or
ultrasound-based implantation

Erstad et al. 2018 [136]

Portal vein
injection/Hemispleen

injection

Liver metastasis model, requires
extensive surgery

Mallya et al. 2021 [97];
McVeigh et al. 2019 [138];

Au-Soares et al. 2014 [139]

As an alternative to injections into the pancreas, direct liver injection, portal vein
injection, or hemispleen injections have been used as liver metastasis models but also
require a surgical procedure [97,138,139]. The technically most challenging model is the
direct injection of organoids into the bile duct [140,141]. In this context, the direct injection
of PanIN organoids into the bile duct has been described as an interesting tool to the study
of early PDAC carcinogenesis [141].

Taken together, several murine PDAC models with distinct advantages and limitations
have been developed during the last two decades, which should be selected in the context
of the specific scientific question under consideration.

3.3. Utilization of In Vitro and In Vivo Models of Obesity Associated PDAC

Obesity affects cancer development and progression in multiple ways [17]. Overall,
the interaction of several obesity-associated mediators significantly increases the risk
of tumor development and systemic tumor spread [36,142]. Notably, obesity-induced
systemic alterations include impaired nutritional parameters (e.g., blood glucose level
or free fatty acids [143]), hormonal disorders (e.g., insulin, leptin, estrogen [24,144,145]),
chronic inflammation [22,24,146] with restricted immune competence [147], as well as
alterations within the tumor microenvironment including increased desmoplasia and
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activation of PSCs [148]. The combination of relevant in vivo and in vitro models of both
obesity and PDAC enables the study of basic molecular mechanisms underlying obesity-
induced pancreatic carcinogenesis.

In this context, Mendonsa et al. confirmed the expression of leptin receptors in
several PDAC cell lines on protein level [149]. Furthermore, leptin treatment caused
a significant increase in PDAC cell proliferation and migration [149]. By co-culture of
in vitro differentiated adipocytes and (preinvasive) pancreatic cancer cell lines, Meyer et al.
demonstrated an increased proliferation of PDAC and PanIN cells addicted to an adipocyte-
dependent transfer of glutamine [150]. Conversely, transwell co-culture of adipocytes and
PDAC cells confirmed an impaired adipocyte morphology and metabolism induced by the
presence of PDAC cells [151].

Orthotopic implantation of PDAC cells, organoids, or tumor chunks in mouse models
of diet-induced obesity, or genetically induced obesity, allows us to study effects of preex-
isting obesity on PDAC progression. After the orthotopic implantation of PanIN organoids
in obese mice, Lupo et al. observed increased grades of dysplasia [152]. Moreover, obesity
caused an accelerated tumor growth of implanted PDAC organoids [152]. Another way
to study the effects of obesity on PDAC is to induce obesity in GEMM of PDAC. There,
diet-induced obesity led to enhanced PanIN progression in a genetic PanIN mouse model
(KC mice), eventually also resulting in more frequent development of invasive PDAC [153].
In line with these findings, both genetic (AAV-leptin-based) and diet-induced weight loss
were able to abolish obesity-driven PDAC development [154]. For this study the authors
applied the genetic obesity mouse model based on a leptin deficiency (=ob/ob). The appli-
cation of adeno-associated virus-sustained leptin secretion causes a rapid weight loss of
obese ob/ob-mice, which was associated with a reduction in PDAC tumor size [154].

Based on the simultaneous utilization of in vitro and in vivo models of both obesity
and PDAC, new preliminary insights on obesity-driven PDAC carcinogenesis have been
obtained. However, given the dramatically increasing prevalence of obesity in the Western
world, it is of utmost importance to further refine our understanding of the underlying
molecular mechanisms of obesity-driven pancreatic carcinogenesis, allowing the effective
development of preventive strategies and identification tools for early diagnosis.

4. Conclusions and Future Perspectives

Obesity has been associated with a significantly increased risk of pancreatic cancer
and contributes to poor prognosis and survival. Pathways and mechanisms to clarify this
association are still not well understood. Reducing the prevalence of obesity should be the
ultimate goal. Therefore, intensified population-wide education on a healthy lifestyle is
crucial. However, it is clear that education alone will not suffice to achieve the goal of a
population-wide weight optimization. Therefore, the investigation of druggable targets
to reduce body weight is also necessary to reduce the risk of obesity-related diseases
including pancreatic cancer. There is hope that a better understanding of the molecular
interactions between obesity and PDAC development could open new avenues to improve
diagnostic and therapeutic modalities in PDAC. However, reliable pre-clinical models
that adequately depict the biology of the disease in patients are required to assess the
effectiveness of new diagnostic and therapeutic approaches. Different PDAC-, obesity- and
obesity-driven PDAC models are already available and must be selected with respect to
their individual advantages and disadvantages. For early diagnosis of PDAC in obese high-
risk individuals, multiparametric prediction models for obesity-driven early carcinogenesis
based on transcriptomic, epigenomic, proteomic and metagenomic screening approaches
may be identified in appropriate murine in vitro and in vivo models, and these must be
validated in human samples ex vivo before entering clinical validation. For studying the
impact of obesity, diet and physical activity as predictors of therapy response and tumor
progression, a similar sequential combination of preclinical in vitro and in vivo approaches
has to be utilized before validation in translational programs of clinical trials. Lastly, the
therapeutic targeting of obesity-driven carcinogenesis as the ultimate goal also requires
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a concerted effort using multiomics screens to identify druggable targets dependent on
obesity-driven key signaling cascades which provide novel avenues to tackle and improve
the still dismal prognosis of pancreatic cancer.
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