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Abstract

Mass spectrometry (MS) instruments and experimental protocols are rapidly advancing, but the 

software tools to analyze tandem mass spectra are lagging behind. We present a database search 

tool MS-GF+ that is sensitive (it identifies more peptides than most other database search tools) 

and universal (it works well for diverse types of spectra, different configurations of MS 

instruments and different experimental protocols). We benchmark MS-GF+ using diverse spectral 

datasets: (i) spectra of varying fragmentation methods; (ii) spectra of multiple enzyme digests; (iii) 

spectra of phosphorylated peptides; (iv) spectra of peptides with unusual fragmentation 

propensities produced by a novel alpha-lytic protease. For all these datasets, MS-GF+ significantly 

increases the number of identified peptides compared to commonly used methods for peptide 

identifications. We emphasize that while MS-GF+ is not specifically designed for any particular 

experimental set-up, it improves upon the performance of tools specifically designed for these 

applications (e.g., specialized tools for phosphoproteomics).

Introduction

Mass spectrometry (MS) instruments and experimental protocols have greatly advanced over 

the last decade. New fragmentation technologies have emerged and high-precision mass 

spectrometers like Orbitrap have become widely available. While trypsin remains a 

dominant protease in proteomics studies, digesting proteins with diverse proteases is 

becoming popular [1]. Empowered by these changes, MS researchers now have diverse 

choices with respect to the questions: “what fragmentation method to use?”, “how accurate 

should be the measurements of the mass-to-charge (m/z) ratios?”, “what proteases to use?”, 

and “what post-translational modification (PTM) to focus on (e.g. phosphorylation)?”. 

Depending on these choices, the resulting tandem mass (MS/MS) spectra vary in 

fragmentation propensities and precision. Therefore, unlike in the past when low-precision 

Collision Induced Dissociation (CID) spectra of tryptic peptides dominated the field, 

spectral datasets generated today are very diverse. Unfortunately, the popular MS/MS 
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database search tools such as SEQUEST [2] and Mascot [3] have not kept pace with the 

increased diversity of the data. While several new MS/MS database search engines were 

recently developed including Andromeda [4], Morpheus [5], and MS Amanda [6]), they 

have resulted in only minor improvements as compared to SEQUEST and Mascot.

Many efforts have been invested into making existing MS/MS search tools compatible with 

new types of data. For example, several pre- or post-processing strategies have been 

proposed [7, 8], resulting in small improvement in the performance of database search tools. 

To further boost the performance, MS/MS database search tools are combined with 

statistical modeling tools like PeptideProphet [9], Percolator [10], and IDPicker [11]. These 

tools do not find new Peptide-Spectrum Matches (PSMs), but rather re-score PSMs reported 

by a database search tool using more complex scoring and output high-scoring PSMs. While 

they often improve the performance of a database search tool, their performance is 

negatively affected when the database search tool fails to find correct PSMs [12]. Another 

downside of the pre- or post-processing strategies and statistical modeling tools is that, since 

they are often not integrated into database search tools, using them complicates the analysis 

of MS/MS spectra. Moreover, since different laboratories employ different combinations of 

tools (see Figure 1), even for the same data, capabilities of analyzing the data vary widely 

and results obtained in one laboratory are often difficult to reproduce in another laboratory 

[13].

In a recent review, Noble and MacCoss pointed out that “the field (of MS) is still missing a 

generic analysis platform that can be adapted automatically and in a principled fashion to 

handle spectra produced by any given fragmentation protocol” [14]. Our MS-GF+ is a step 

towards achieving this goal, representing a universal database search tool that performs well 

for diverse types of spectral datasets. MS-GF+ works well (i.e., identifies more peptides than 

other MS/MS tools that we tested) for spectra generated using diverse configurations of MS 

instruments and experimental protocols. But the main contribution of the paper is not the 

increase in the number of identifications for dozens of various fragmentation methods and 

experimental protocols but rather the fact that it represents the first truly universal MS/MS 

database search tool. We emphasize that MS-GF+ is not customized for specific spectral 

datasets but rather uses a robust probabilistic model that works well across all datasets.

MS-GF+ is universal because it automatically derives scoring parameters from thousand 

PSMs without prior knowledge of the type of the spectra [12]. We represent various types of 

spectra as a graph where paths represent spectral types (Figure 1). For each spectral type, 

MS-GF+ learns scoring parameters separately and scores a PSM using a different set of 

scoring parameters depending on the spectral type. MS-GF+ can train scoring parameters for 

any spectral type (including spectral types not specified in Figure 1) or use pre-trained 

scoring parameters. It takes over the authority to train scoring parameters to the users and 

makes the training easy.

The key advantage of MS-GF+ over existing approaches is its ability to compute rigorous E-

values (using the generating function approach [15]) and thus to boost the number of peptide 

identifications. While the generating function approach from [15] worked well in a variety 

of studies [16, 17, 18, 19], the question of applying it to modified peptides and to high-
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precision MS/MS spectra remains open. In this paper, we address these issues, thus making 

the generating function approach applicable to all types of spectra.

We demonstrate the performance of MS-GF+ using various previously studied datasets [1, 

20, 21, 22, 23]: spectra of tryptic peptides generated using CID, Higher-energy Collisional 

Dissociation (HCD) and Electron Transfer Dissociation (ETD) in combination with either 

linear ion trap or Orbitrap readout; spectra of multiple enzyme digests; spectra of 

phosphopeptides; and spectra or a novel protease alpha-lytic protease (αLP). For all these 

datasets, we show that MS-GF+ outperforms popular tools for peptide identification such as 

Mascot+Percolator.

Results

MS-GF+ scoring

Database search tools use a scoring function Score(P, S) to evaluate a PSM of a peptide P 
and a spectrum S, and further compute statistical significance of the resulting PSMs. In this 

paper, we use E-values to evaluate statistical significance of individual PSMs (referred as 

spectral E-values) and the target-decoy approach to estimate FDRs. See Gupta et al., 2011 

[24] for the details of our probabilistic framework.

Let PS be a peptide that generated S. A scoring function is adequate for S (with respect to a 

protein database ProteinDB) if the correct peptide attains the maximal score in the database, 

i.e., maxP∈ProteinDB Score(P, S) = Score(PS, S). A “good” scoring function should satisfy the 

following three conditions. First, it should be adequate for the great majority of spectra. 

Second, the algorithm for PSM scoring should be fast. Third, the algorithm for computing 

statistical significance (e.g. E-values) of PSMs should be fast and accurate.

MS-GF+ uses a very simple dot-product scoring Score(P, S) = P* · S* after converting 

peptide P and spectrum S into peptide vector P* and spectral vector S* (the spectral vector 

was called the prefix-residue-mass spectrum in the previous publications [12, 25]). 

Conversion of a spectrum S into a spectral vector S* uses a probabilistic model that ensures 

that the resulting dot-product scoring is adequate [26] (first condition). At the same time, it 

makes scoring and computing accurate E-values fast [15] (second and third condition). This 

simple “dot-product” scoring model contrasts with many other database search [2, 4, 27, 28] 

and re-scoring [9, 10] tools, using sophisticated scoring functions that often make it difficult 

to satisfy the third condition.

MS-GF+ workflow

MS-GF+ takes a spectral dataset Spectra and a protein database ProteinDB as an input and 

outputs a set of scored PSMs along with E-value estimates. It uses open source application 

programming interfaces jmzML [29], jmzReader [30], and jmzIdentML [31], and supports 

the HUPO Proteomics Standard Initiative standard file formats – mzML [32] and 

mzIdentML [33]. Due to these developments, MS-GF+ has been already adopted in many 

proteomics pipelines and post-processing tools.
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The workflow of MS-GF+ comprises the following 4 steps: generating spectral vectors, 

searching a protein database, computing E-values of PSMs, and estimating FDRs. Below, we 

describe each step as well as how MS-GF+ takes advantage of high precision spectra.

Generating spectral vectors

A (non-modified) peptide is defined as a string over the alphabet  of 20 standard amino 

acids. Let  be an extended amino acid set containing both unmodified and modified 

amino acids. For an (unmodified) amino acid , let Mod(a)  be the set that 

contains a and all its modified amino acids. For example, if T (Thr) and T* (phosphorylated 

Thr) are in , Mod(T) = {T,T*}. Given a peptide P = a1…ak, define PV = pv1 …pvk as a 

variant of P if pvi ∈ Mod(ai) for all i (1 ≤ i ≤ k).

MS-GF+ converts spectra into spectral vectors [12, 25]. A spectral vector of a spectrum S is 

an M-dimensional vector with integer values, where M = PrecursorMass(S) is the nominal 

precursor mass of S. Here, we consider nominal precursor masses representing the sum of 

nominal masses of amino acids of the peptide generated the spectrum. Since in many cases, 

the precise nominal precursor mass is unknown (e.g. MS instruments often choose 2nd or 

3rd isotope peak instead of mono-isotope peak from MS1 spectrum), multiple spectral 

vectors are generated separately for each possible nominal precursor mass, and the score of a 

peptide of mass M is computed from the spectral vector of precursor mass M.

The conversion from an experimental spectrum to a spectral vector proceeds as follows. A 

spectrum S = {(mz1, rank1),…, (mzl, rankl)} is represented as a set of ranked peaks where 

the ith highest intensity peak gets rank i (mzj and rankj represent m/z and rank of jth peak, 

respectively). An ion type is represented as a triplet of integers charge, of f set, and sign, 

where sign represents whether the ion type is a prefix ion (sign = 1) or a suffix ion (sign = 

−1). For example, singly-charged b-ions and y-ions correspond to ion types (1, 1, 1) and (1, 

19, −1), respectively. Neutral losses and hydrogen transfers are also considered as ion types, 

e.g. singly charged z· ions corresponds to (1, 3, −1). Given an ion type ion = (charge, of f set, 
sign), one can turn a spectrum S into Sion = {(mass1, rs1),…, (massl, rsl)} using the 

following transformation:

where [x] represents the closest integer to x, and RankScore(ion, rank) is a pre-computed 

function that takes an ion type ion and an integer rank and returns a probabilistic log-

likelihood score defined in [12, 26]. Note that 0.9995 is a rescaling constant for minimizing 

rounding errors (see Supplementary Table 1). In practice, RankScore(ion, rank) also 

accounts for the location of the observed peak and the precursor charge and mass of the 

spectrum, which are omitted here for simplification. Ion types contributing to scoring are 

selected from the training set as described in Kim et al., 2010 [12] Assume that ℐ is a set of 

ion types that are selected. The spectral vector of S (denoted by S = (s1,…, sM) is computed 

as follows:
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where RankScore(ion, ∞) represents the score given when ion is missing.

We also define a peptide vector of a variant as follows. Let Mass(a) be the nominal mass of a 

(possibly modified) amino acid a. For example, Mass(T) = 101 and the mass of 

phosphorylated Thr is Mass(T*) = 181. Given a variant PV = pv1 … pvk, define the mass of 

PV as . Given a variant PV = pv1 … pvk of mass M, we define 

its peptide vector (denoted by PV) as a 0–1 vector (m1, …, mM) with (n − 1) 1s, such that mi 

= 1 if i equals to Mass(pv1) + … + Mass(pvj) (1 ≤ j ≤ k).

The MS-GF+ score of a PSM (PV, S) is defined as 

 if Mass(PV) = PrecursorMass(S) and −∞ 
otherwise. The MS-GF+ score represents the log likelihood ratio described in [26].

Searching a protein database

We define ProteinDB+ as the set of all variants (with respect to an extended amino acid set 

) derived from ProteinDB. The goal of MS-GF+ database search is to solve the following 

problem: Given a spectral dataset Spectra and a protein database ProteinDB, for each 

spectrum S ∈ Spectra find a variant PVS,ProteinDB such that

In contrast to a traditional spectrum-based MS/MS database search approach that compares 

each spectrum against all peptides, MS-GF+ uses an alternative peptide-based approach that 

computes the suffix array to compare each peptide against all spectra with the same 

precursor mass. See Supplementary Note 1 for the details of MS-GF+ approach to the 

database search.

Computing E-values of PSMs

The scores of PSMs reported by existing MS/MS database search tools are often poorly 

correlated with their E-values [34]. It is important to rank PSMs based on their E-values, 

because such ranking (rather than ranking based on “raw scores”) often dramatically 

increases the number of identified spectra under a given FDR [15, 35]. Many database 

search tools estimate an E-value of a PSM based on an approximation of a tail of the score 

distribution specific to the spectrum using peptides in the database [27, 28]. Since this 

approach is known to result in biased estimates of E-values [15], MS-GF+ adopted the 

generating function approach to rigorously compute E-values of PSMs using the score 

distribution of all peptides [15]. Our scoring model is essential here, because the generating 

function approach is easily applicable to the scoring functions that can be represented as a 

dot-product of vectors [24]. Adopting the generating function approach improves the 

Kim and Pevzner Page 5

Nat Commun. Author manuscript; available in PMC 2016 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



accuracy of E-value estimates and increases the number of identified peptides as was 

recently confirmed by an independent work on applying it to the XCorr score in SEQUEST 

[35].

Given a spectrum S, a score threshold t, an extended set of amino acids , and a database 

size N, we define E-value(S, , t, N) as the expected number of variants PV (as defined by 

) with MSGFScore(PV, S) ≥ t in a random protein database of size N. To compute E-

value(S, , t, N), we first compute spectral E-value E-value(S, , t), the expected 

number of variants PV with MSGFScore(PV, S) ≥ t given a single random peptide. A single 

random peptide models a random peptide starting at a fixed position in a random protein 

database.

We consider a set of all possible (unmodified) peptides of length k (where k is a large 

number) and select a random peptide uniformly from this set (i.e. the probability of selecting 

a peptide is ). In practice, to reflect different frequencies of amino acids in a database 

(e.g. Leu is usually more common than Trp), we define the probability of a peptide P = a1 … 

ak as , where Prob(a) is the frequency of amino acid a in a protein database. 

Note that this does not change the algorithm to compute the spectral E-values. We say that a 

peptide P produces a variant PV if PV is a variant of a prefix of P. For example, PEPT* and 

PEPTI are produced by PEPTIDE. Given a spectrum S, let  be the set of all variants 

PV with MSGFScore(PV, S) ≥ t. For every variant PV, there are 20k−|PV| peptides of length k 
producing a variant PV (|PV| stands for the number of amino acids in PV). Therefore, 

expected number of variants per random peptide with a score equal or better than t is

Since a variant is a string over the alphabet , this expression can be computed using the 

generating function approach [15]. Given a spectrum S with S = s1 … sM, consider a 

directed acyclic graph called an amino acid graph G(V, E, ) with V = {0, …, M} and E = 

{(i, j)|j − i ∈ Mass(a) for a ∈ }, where the score of a vertex i is defined as si, the 

probability of an edge is defined as , the score of a path is defined as the sum of scores of 

its vertices, and the probability of a path is defined as the product of probabilities of its 

edges. A path in an amino acid graph represents a variant. Therefore, E-value(S, , t) 
equals to the sum of probabilities of all paths from 0 to M with scores equal or better than t, 
and can be computed using parametric dynamic programming [15, 26, 36].

While spectral E-values are useful for evaluating statistical significance of individual PSMs 

(independently of the database), they need to be transformed into E-value(S, , t, N) to 

take into account the fact that the database search represents “multiple testing” where 

multiple variants (arising from different database peptides) are scored against a spectrum 

[37]. E-values can be approximated as follows:
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where N is the size of the database. Note that since protein databases contain many repeated 

peptides, it is important to reflect the effective size of the database that is estimated as the 

number of unique peptides of certain length.

Estimating FDRs

MS-GF+ estimates FDRs using the target decoy approach [38, 39]. See Supplementary Note 

2 for details.

From low-precision to high-precision MS/MS spectra

Mass spectrometers are usually divided into High-precision (denoted by H) and Low-

precision (denoted by L) instruments. Depending on whether the precursor and product ions 

are measured with Low or High-precision, the spectra are divided into LL, LH, HL, and HH 

spectra (LH spectra are hardly ever used in proteomics studies). While it may appear that 

extending the generating function approach from LL (as defined in [15]) to HL and HH 

spectra is a simple matter of tuning parameters that control the error tolerance, the situation 

is more complex. Here we explain how MS-GF+ takes advantage of high-precision product 

ion peaks.

Let RMass(a) be the real mass of an amino acid a. For a variant PV = pv1 … pvk, let 

, RMass(pvi), and RPrecursorMass(S) be the real precursor 

mass of a spectrum S. We previously assumed that Mass(PV) and PrecursorMass(S) are 

integers and defined MSGFScore(PV, S) = PV· S if Mass(PV) = PrecursorMass(S) and −∞ 
otherwise. Note that this condition, while appropriate for LL spectra, is weak for HL and 

HH spectra, because it may be satisfied even when the real mass RMass(PV) significantly 

deviates (e.g. up to 0.5 Da) from RPrecursorMass(S). Let  represent the condition |a − 

b| < Δ. To take advantage of accurate precursor masses in HL and HH spectra, the condition 

Mass(PV) = PrecursorMass(S) has to be redefined to , 

where Δ is the precursor mass tolerance. The database search problem with this modified 

definition of MSGFScore, is now described by the following equation:

(1)

where SpectraRMass(PV) represents the set of spectra S ∈ Spectra satisfying 

.

The key part of the generating function approach is the assumption that amino acids have 

integer masses (otherwise the parametric dynamic programming is difficult to implement). 

However, rounding amino acid masses to integers introduces errors. These rounding errors 

reduce after rescaling by 0.9995, making them appropriate for LL and HL spectra. However, 
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for HH spectra, the rounding errors remain too large even after rescaling, prohibiting MS-GF

+ from benefiting from precise product ion peaks. A larger rescaling constant could better 

accommodate the mass accuracy, e.g. the rescaling constant 274.335215 allows one to model 

spectra with 2.5 ppm accuracy [40]. However, since the time complexity of the generating 

function algorithm is proportional to the rescaling constant, this rescaling makes computing 

E-values prohibitively slow.

Here we present a new scoring algorithm taking advantage of the accurate product ion 

masses while not substantially increasing the running time of MS-GF+. In [26], we 

introduced an abstract model (seemingly unrelated to mass spectrometry) that described a 

probabilistic process of transforming a Boolean string (peptide vector) into another Boolean 

string (spectral vector). This model, while adequate for low-precision spectra, needs to be 

modified for high-precision spectra. Here we model a peptide as a Boolean string (as before) 

but model a spectrum as a directed acyclic graph (DAG) and further apply a transformation 

of a Boolean string into a DAG for scoring real PSMs (see Methods for details).

Our new idea behind the DAG modeling is as follows. Consider peaks at masses 100.01 and 

157.4 that will be transformed into integer bins 100 and 157 in the Boolean string 

representation of the spectrum. After this transformation, we lose information about the 

exact difference between these two masses. However, in our new spectral DAG model, this 

information is retained in edges of the spectral DAG and used in the scoring.

Datasets

Overall, we used 19 datasets (≈ 2.83 million spectra from human, yeast, mouse, and 

Schizosaccharomyces pombe) reflecting the diversity of MS data, corresponding to 17 

distinct spectral types shown in Figure 1 (see Methods for details on the datasets). For all 

these datasets, we benchmarked MS-GF+ against popular tools for peptide identification 

such as Mascot+Percolator.

Comparison of MS-GF + with Mascot+Percolator

We compared the numbers of identified PSMs at 1% FDR for MS-GF+ and Mascot

+Percolator (i.e., PSMs reported by Mascot and re-scored by Percolator). Mascot+Percolator 

(Mascot version 2.3.02 integrating Percolator) was used for the comparison because it 

represents a popular choice for peptide identification. We also tested several other tools like 

SEQUEST, InsPecT [25] and OMSSA but do not report their results because they identified 

significantly fewer PSMs as compared to Mascot+Percolator. See Supplementary Table 2 for 

database search parameters.

For all the 19 datasets, MS-GF+ identified significantly more PSMs compared to Mascot

+Percolator (Figure 2). Figure 3 (a) shows the benchmarking results for the five human 

datasets generated with varying fragmentations and instruments [20]. Percolator greatly 

increased the number of identifications as compared to Mascot, but for all these datasets, 

MS-GF+ identified significantly more PSMs (17–38%) than Mascot+Percolator (see 

Supplementary Fig. 1 for Venn diagrams of MS-GF+ and Mascot+Percolator 

identifications). We also compared the number of identifications reported by the original 

study [20] which also used Mascot+Percolator along with in-house pre- and post-processing 
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tools. In this comparison, MS-GF+ also showed an improved performance (identifying 16–

55% more PSMs).

To figure out how each tool benefits from high-precision product ion peaks, for the 3 out of 

5 human datasets representing HH spectra, we ran MS-GF+, Mascot+Percolator, and Mascot 

using the parameters for HL spectra, i.e., using 0.6 Da fragment mass tolerance for Mascot 

and Mascot+Percolator, and using the scoring model for low-precision spectra for MS-GF+. 

For every tool, the number of identifications was higher when the parameters for HH spectra 

were used, but the difference varied depending on the dataset (Figure 3 (b)), and was 

negligible for ETD spectra.

Figure 3 (c) shows the comparison for the ten yeast datasets generated with varying 

fragmentations (CID or ETD) and enzymes (Trypsin, LysC, ArgC, GluC, or AspN) [1]. 

Again, for all these datasets, MS-GF+ identified significantly more PSMs (34–168%) than 

Mascot+Percolator (Figure 3 (c)). In [1], using OMSSA (and in-house tools for pre- and 

post-processing), the authors reported the number of identified peptides at 1% peptide-level 

FDR that are matched to proteins identified at 1% protein-level FDR. We compared these 

numbers with the numbers of identified peptides at 1% peptide-level FDR using MS-GF+ 

(Figure 3 (d)). Note that this comparison is unfair because peptide identifications by MS-GF

+ were not filtered out according to the protein that they are matched to. However, even after 

considering that, the results show that for most of the datasets, MS-GF+ identified many 

more peptides than the original report.

To see whether our scoring model can capture the fragmentation propensities specific to 

phosphopeptides, we generated a scoring parameter set for (CID, Low, Phosphorylation, 

Trypsin). For the mouse dataset corresponding to (CID, Low, Phosphorylation, Trypsin), we 

compared the numbers of identified PSMs for MS-GF+ with and without using the 

phosphorylation-specific parameter set, Mascot+Percolator, and InsPecT equipped with a 

dedicated scoring model for (CID, Low, Phosphorylation, Trypsin) [41] (Supplementary Fig. 

2 (a)). Interestingly, without phosphorylation-specific scoring parameters, MS-GF+ 

outperformed both tools, identifying 37% and 44% more PSMs than Mascot+Percolator and 

InsPecT, respectively. With phosphorylation-specific parameters, MS-GF+ identified 9% 

more PSMs (and 12% more PSMs of phosphopeptides), confirming that our scoring model 

successfully captures phosphorylation-specific fragmentation propensities.

A similar result was obtained for a (CID, Low, Ubiquitination, Trypsin) dataset 

(Supplementary Fig. 3). We emphasize that MS-GF+ does not “know” anything about the 

peculiarities of the phosphorylation or ubiquitination, and simply trains the scoring 

parameters in exactly the same way it does for other spectral types. This ability to easily 

train modification-specific scoring parameters for any modification will greatly benefit MS 

researchers studying post-translational modifications.

MS-GF+ for identifying peptides produced by a new protease

αLP is a new protease with cleavage specificities somewhat “orthogonal” to trypsin [23]. 

MS-GF+ was applied to the study of αLP using two S. pombe datasets corresponding to 

(CID, Low, Standard, αLP) and (ETD, Low, Standard, αLP). We ran Mascot+Percolator, 
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OMSSA, and MS-GF+ by specifying ‘None’ as an enzyme. Since αLP produces peptides 

with different fragmentation propensities than tryptic peptides, Mascot+Percolator and 

OMSSA performed very poorly for this novel spectral type. In contrast, MS-GF+ identified 

3,535 and 2,829 PSMs from the (CID, Low, Standard, αLP) and (ETD, Low, Standard, 

αLP) dataset using the scoring parameters for (CID, Low, Standard, Trypsin) and (ETD, 

Low, Standard, Trypsin), respectively (Supplementary Fig. 2 (b)). The superior performance 

of MS-GF+ over Mascot+Percolator and OMSSA is because its scoring function is adequate 

for αLP peptides (correct peptide attains the maximal score) for a large portion of the 

spectra even when the search space is large (i.e. no enzyme is specified). In fact, for the 

human dataset corresponding to (ETD, Low, Standard, Trypsin), when no enzyme was 

specified and precursor mass tolerance 2.5Da was used, MS-GF+ identified 10,937 PSMs, 

only 34% less as compared to the fully-tryptic search with 7 ppm precursor mass tolerance.

Using the identified PSMs by MS-GF+, we trained scoring parameters for (CID, Low, 

Standard, αLP) and (ETD, Low, Standard, αLP). When these αLP-specific scoring 

parameters were used, the number of identified PSMs further increased to 4,788 (+35%) and 

3,313 (+17%) for (CID, Low, Standard, αLP) and (ETD, Low, Standard, αLP), respectively, 

showing the usefulness of MS-GF+ for studies of new proteases.

Thus, αLP represents a new alternative to trypsin, greatly increasing the PTM and protein 

sequence coverages, but generating spectra with unusual fragmentation propensities. We 

emphasize that the capabilities of αLP are not obvious when Mascot+Percolator or another 

tool is used, because it fails to identify αLP peptides. The details on αLP protease have been 

discussed in a separate paper [23].

Running time of MS-GF+

We measured the running time of MS-GF+ and Mascot+Percolator for LL, HL, and HH 

spectra for various spectral types. For all the searches, MS-GF+ and Mascot+Percolator 

showed similar running times (Supplementary Fig. 2 (c,d)).

Discussion

Our analysis and recent independent studies [42, 43, 44, 35] showed that for diverse types of 

spectral datasets, MS-GF+ identifies more PSMs as compared to existing database search 

tools like Mascot, X!Tandem, OMSSA, Crux, Comet, and InsPecT, and statistical modeling 

tools like Percolator. We emphasize that the generating function approach for accurately 

computing E-values significantly contributes to the improved performance of MS-GF+. For 

example, when E-values instead of MS-GF scores were used to cut-off the results, the 

number of identified PSMs increased approximately by 70%, 50%, and 20% for LL, HL, 

and HH spectra, respectively.

While we focused on demonstrating MS-GF+ as a stand-alone tool, we emphasize that MS-

GF+ can be combined with various other proteomics analysis tools. Since we have decided 

to release MS-GF+ in 2012 well before this paper was prepared for a journal submission, 

MS-GF+ has already been integrated into the following pipelines and statistical modeling 

tools: Trans-Proteomics Pipeline [45], Galaxy-P [46], ProteoSuite [47], IDPicker [11], 
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SearchGUI [48], Scaffold [48], ProteoSAFe, Skyline [49], and Percolator [10, 50]. Peptide 

identification tools that combine the results of multiple database search tools such as 

MSblender [51], Peptide-Shaker [52], and PepArML [53] also currently support MS-GF+. 

MS-GF+ is freely available at http://proteomics.ucsd.edu.

Methods

Spectral DAG model

Given an extended alphabet , we first explain how to convert a spectrum S into a labeled 

DAG G. G = (V, E) has a vertex set V = {0, …, M = PrecursorMass(S)} and an edge set 

. For simplicity, suppose that the set of ion types 

ℐ = {(1, 0, 1)} (i.e. only singly charged prefix ions with an of f set zero contribute to the 

scoring). Given a constant δ called a fragment mass tolerance, two peaks of S with m/z x 
and y form a duo if y − x is approximately equal to a mass of an amino acid, i.e., 

. The vertex label si and the edge label si,j of G are defined 

as follows: si = 1 if there exists a peak of mass x satisfying [0.9995 · x] = i and si = 0 

otherwise; si,j = 1, if there exists a duo of peaks with masses x and y such that [0.9995 · x] = 

i and [0.9995 · y] = j, and si,j = 0 otherwise (see Figure 4 for an example).

Let P = p1 … pM be a Boolean string representing a peptide. Similar to Kim et al., 2009 [26] 

where a peptide string generates a spectrum string, we now assume that a peptide string 

generates a DAG. The probability of a peptide P generating a DAG G is defined as follows:

where Prob(x|y) is a 2 × 2 matrix representing the probability of a peptide character y (0 or 

1) generating a vertex label x, and Prob(x|y, z) is a 2 × 4 matrix representing the probability 

of a pair of peptide characters y and z generating an edge label x (Table 1). In practice, β1 ≈ 
β2 ≈ β3 (see Table 1 (b)).

When applying this model for scoring a peptide P and a DAG G, we consider a test 

comparing two hypotheses: one assuming G is generated by P and the other assuming G is 

generated by an “empty” string consisting of all zeros (denoted by O). The log-likelihood 

score of (P, G) (denoted Score(P, G)) is defined as follows (see Figure 5 for an example):

Kim and Pevzner Page 11

Nat Commun. Author manuscript; available in PMC 2016 September 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://proteomics.ucsd.edu


(2)

Note that the last equation assumes that only the edges (i, j) with pi = pj = 1 contribute to the 

edge scoring because β1 ≈ β2 ≈ β3.

In practice, we generate multiple DAGs for a single spectrum, one for each ion ∈ ℐ. To 

generate an ion DAG for ion = (charge, of f set, sign) with a real of f set r of f set, (e.g. real 

of f set of the singly-charged b-ion is 1.008), we first convert S = {(mz1, rank1), …, (mzl, 
rankl)} into S′ = {(mass1, rank1), …, (massl, rankl)} using the following transformation:

Each peak of S representing ion corresponds to a peak of this converted spectrum S′ 

representing an ion type (1, 0, 1). Therefore, the vertex and edge labels of the ion DAG for 

ion are defined as outlined before, but using S′ instead of S (Figure 4).

In reality, vertex and edge labels in the ion DAGs are integers rather than Boolean values. 

Given a converted spectrum S′, we first remove all peaks (x, rank) if there exists another 

peak (x′, rank′) where [0.9995 · x] = [0.9995 · x′] and rank > rank′. The vertex label si is 

defined as follows: si = rank if there exists a peak (x, rank) satisfying [0.9995 · x] = i and si = 

0 otherwise. For an integer m, let AminoAcid(m) be the set of amino acids 

satisfying Mass(a) = m (e.g. AminoAcid(128) = {Gln, Lys}). The edge label si,j is defined as 

follows: si,j = [100 · mina∈AminoAcid(j−i)(y − x − RMass(a))] if there exists a duo of peaks 

with masses x and y such that [0.9995 · x] = i and [0.9995 · y] = j, and si,j = ∞ otherwise. 

The constant 100 is multiplied to discretize the real-valued errors into bins of size 0.01 Da.

In this ion DAG representation, vertex labels encode the information on the intensities of 

individual peaks, and the edge labels encode the information on the mass errors of pairs of 

peaks assuming they represent consecutive peaks of the same ion type. Note that edge labels 

take into account the spacing between peaks but do not take into account the peak 

intensities.

Supplementary Note 3 describes how to integrate information from various ion DAGs into a 

single spectral DAG.
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Human datasets with varying fragmentations and instruments

Five human datasets corresponding to the spectral types (CID, Low, Standard, Trypsin), 

(CID, High, Standard, Trypsin), (ETD, Low, Standard, Trypsin), (ETD, High, Standard, 

Trypsin), and (HCD, High, Standard, Trypsin) contain 38,401, 33,586, 30,451, 25,734, and 

37,810 spectra respectively. These datasets are generated in the Heck laboratory (Utrecht 

University). HEK293 whole cell lysates were digested by trypsin and analyzed by LTQ-

Orbitrap Velos (Thermo Fisher Scientific, Bremen), using combinations of one of the 3 

fragmentation modes CID, ETD, and HCD, and either ion trap or Orbitrap readout for 

product ion m/z. The detailed experimental procedures are described in [20].

Yeast datasets with varying enzymes

Ten yeast datasets corresponding to the spectral types (CID, Low, Standard, Trypsin), (CID, 

Low, Standard, LysC), (CID, Low, Standard, ArgC), (CID, Low, Standard, GluC), (CID, 

Low, Standard, AspN), (ETD, Low, Standard, Trypsin), (ETD, Low, Standard, LysC), 

(ETD, Low, Standard, ArgC), (ETD, Low, Standard, GluC), and (ETD, Low, Standard, 

AspN), contain 333,203, 278,336, 114,351, 81,669, 251,974, 72,463, 246,428, 204,860, 

88,403, and 262,635 spectra, respectively. These datasets were generated in the Coon 

laboratory (University of Wisconsin Madison). Yeast whole cell lysates were digested 

separately, with either trypsin, LysC, ArgC, GluC, or AspN, separated into 12 fractions via 

strong cation exchange (SCX) chromatography and analyzed in triplicate with an ETD-

enabled LTQ-Orbitrap mass spectrometer, where peptide fragmentation was accomplished 

either with CID or ETD using the decision-tree acquisition mode [54]. We downloaded 180 

(5 enzymes × 12 fractions × 3 replicates) spectrum files (Thermo RAW format) and 

converted each raw file into two mgf files one containing CID and the other containing ETD 

spectra using “msconvert” in ProteoWizard [55] with “no filtering” option. The conversion 

was unsuccessful for 6 out of 180 files (5 from Arg-C and 1 from Glu-C digests). These 6 

files were removed in the further analyses. The detailed experimental procedures are 

described in [1].

Mouse dataset of phosphopeptides

A mouse dataset corresponding to the spectral type (CID, Low, Phosphorylation, Trypsin) 

contains 181,093 spectra. This dataset was generated from the Gygi laboratory (Harvard 

Medical School). Nine mouse organ proteins were digested with trypsin and the resulting 

peptides were fractionated via SCX. Phosphopeptides were enriched via immobilized metal 

affinity chromatography and analyzed in duplicates via LC-MS/MS on an LTQ-Orbitrap 

mass spectrometer. Out of 9 organ tissues analyzed, we used the spectra generated from the 

brain tissue. The detailed experimental procedures are described in [21].

S. Pombe datasets with αLP digest

Two datasets corresponding to the spectral type (CID, Low, Standard, αLP) and (ETD, 

Low, Standard, αLP) contain 49,167 spectra each. These datasets were generated in the 

Komives laboratory (University of California, San Diego). The detailed experimental 

procedures to generate these datasets are as follows. Wild-type S. pombe cells were lysed in: 

50mM Tris-HCl pH: 8.0; 150mM NaCl; 5mM EDTA; 10% Glycerol; 50mM NaF; 0.1mM 
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Na3VO4; 0.2% NP40 and stored at −80°C. The debris was pelleted and then the supernatant 

was collected. The pellet was extracted according to [56]. Briefly, the pellet was 

resuspended in 200 ul of 0.1 M NaOH, 0.05 M ETDA, 2% SDS, and 2% beta-

mercaptoethanol and incubated at 90°C for 10 minutes. Acetic acid was added to 0.1M and 

vortexed followed by an additional incubation at 90°C for 10 minutes before clarification by 

centrifugation and Methanol/chloroform extraction. The pellet was resuspended in 100 mM 

Tris containing 0.1% sodium deoxycholate with TCEP at 5 mM. Free thiols were capped 

with n-ethylmaleimide. Excess reagent was removed by ultrafiltration with amicon-4 10 kDa 

centrifugal devices. The protein was then quantified and exchanged into 6M guanidine for 

digestion overnight by αLP. The digests were quenched by the addition of formic acid to 

1%, followed by desalting by sep-pak (Waters, Milford, MA). Peptides were then 

fractionated with Electrostatic Repulsion-Hydrophilic Interaction Chromatography [57]. 

Fractions were assayed for protein concentration using a BCA assay and pooled into 18 

fractions of equal protein concentration, evaporated to dryness and resuspended in 100 uL of 

0.2% FA. Nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was 

performed with a LTQ XL mass spectrometer equipped with ETD. 10 ul of each fraction (≈ 
1 ug) was injected onto a 12 cm × 75 um I.D.C18 column prepared in house and eluted in 

0.2% FA with a gradient of 5% to 40% ACN over 60 min followed by wash and re-

equilibration totaling 90 minutes of MS data per run. The flow was split about 1:500 to a 

flow rate of about 250 nL/min. A survey scan was followed by data dependent fragmentation 

of the 4 most abundant ions with both CID and ETD with supplemental activation. The 

maximum MS/MS ion accumulation time was set to 100 ms. Fragmented precursors were 

dynamically excluded for 45 seconds with one repeat allowed.

Training scoring parameters

At the beginning of this study, we had 5 scoring parameter sets used in [12] for the following 

5 spectral types: (CID, Low, Standard, Trypsin), (CID, Low, Standard, LysN), (ETD, Low, 

Standard, Trypsin), (ETD, Low, Standard, LysN), and (ETD, Low, Standard, LysC). For this 

study, we constructed 20 new parameter sets using these 5 parameter sets as a starting point 

using a newly developed program called ScoringParamGen within the MS-GF+ package. To 

train scoring parameters for a new spectral type, MS-GF+ was run with an existing 

parameter set to identify PSMs at 1% FDR threshold, and using the identified PSMs as a 

training set, a new parameter set was constructed. Supplementary Fig. 4 shows the scoring 

parameter sets contained in MS-GF+ and how they were constructed. We also tried to 

construct another generation of parameter sets using the existing parameter sets for the same 

spectral types, but this “iterative training” hardly changed the number of identified PSMs.

For some datasets, the same dataset was used for both training and testing of the 

performance, raising concerns about over-fitting. However, as shown in [12], MS-GF+ 

scoring parameter set characterizes a particular spectral type and is rather stable with respect 

to specific data sets. For example, for the Human (CID, Low, Standard, Trypsin) dataset, 

when the scoring parameter set trained from the same dataset was used instead of the dataset 

used in [12], the number of identified PSMs hardly changed.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Various spectral types. Spectral types are represented as paths in the graph representing 

possible choices of the fragment method (Fragmentation), the instrument measuring product 

ion m/z (Instrument), the protocol used to prepare a sample (Protocol), and the enzyme used 

to digest proteins (Enzyme). ‘Low’ in Instrument indicates low-resolution instruments (e.g. 

linear ion-trap), ‘High’ indicates high-resolution instruments (e.g. Orbitrap), and ‘TOF’ 

indicates time-of-flight instruments. ‘Phosphorylation’ and ‘Ubiquitination’ in Protocol 

indicate that spectra are generated from phosphopeptides and ubiquitinated peptides, 

respectively. A path in the graph represents a spectral type. For example, the green path 

(CID, Low, Phosphorylation, Trypsin) represents low-precision CID spectra of trypsin 

digests generated from a sample enriched for phosphopeptides. The blue, red, green, and 

magenta paths represent spectral types of the datasets used in recent studies by Frese et al. 

[20], Swaney et al. [1], Huttlin et al. [21], and Starita et al. [22], respectively. Different 

combinations of analysis tools were used for different studies. Frese et al. used an in-house 

tool for peak filtering, de-isotoping, and charge deconvolution, Mascot for database search, 

Percolator for re-scoring, and RockerBox [58] for peptide-level FDR control. Swaney et al. 

used an in-house tool for peak filtering, OMSSA [27] for database search, and an in-house 

tool for both peptide- and protein-level FDR control. Huttlin et al. used an in-house tool for 

re-calibrating peak masses, SEQUEST for database search, an in-house tool for re-scoring, 

and peptide- and protein-level FDR control. Starita et al. used the Trans-Proteomics Pipeline 

[45] along with SEQUEST for database search. The same datasets were analyzed by MS-GF
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+ without using any additional tool with scoring parameters trained separately for different 

spectral types.
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Figure 2. 
Benchmarking MS-GF+ against Mascot+Percolator. Percent increases in the number of 

identified PSMs for MS-GF+ compared to Mascot+Percolator for all 19 datasets. Each bar 

represents a spectral dataset of a specified spectral type. For (CID, Low, Standard, Trypsin) 

and (ETD, Low, Standard, Trypsin), there are two corresponding datasets, one from human 

and the other from yeast. We distinguish them by adding ‘*’ to the yeast datasets. For the 

(CID, Low, Phosphorylation, Trypsin) and (CID, Low, Ubiquitination, Trypsin) datasets, the 

number of phosphorylated and ubiquitinated PSMs were counted instead of the number of 

all identified PSMs. For the (ETD,Low,Standard,αLP) dataset, Mascot+Percolator identified 

no PSM.
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Figure 3. 
Comparison of MS-GF+ and other tools for diverse spectral types. The numbers of identified 

PSMs (a–c) or peptides (d) at 1% FDR are shown. Numbers above bars represent the 

percentages of increase in the number of identifications for MS-GF+ compared to other 

tools. (a) Results for the human datasets with varying fragmentations and instruments. MS-

GF+, Mascot+Percolator, and Mascot results are shown along with the results in [20]. 

Percolator greatly increased the number of identifications as compared to Mascot, but MS-

GF+ outperformed Mascot+Percolator for all the datasets. (b) Increase in the number of 

identifications due to the availability of high-precision product ion peaks. For the three 

human datasets representing HH spectra, MS-GF+, Mascot+Percolator, and Mascot were 

run using search parameters for HL spectra. The results of these searches (denoted by HL) 

are compared with the numbers of identifications for the regular searches (denoted by HH). 

HH searches identified more PSMs than HL searches for every tool and every dataset. The 

difference was larger for CID and HCD than ETD spectra. (c) Results for the yeast datasets 

with varying fragmentations and enzymes. MS-GF+ and Mascot+Percolator results are 
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shown. MS-GF+ outperformed Mascot+Percolator for all these datasets. (d) Comparison of 

MS-GF+ and the results in [1] that used OMSSA along with in-house post-processing tools 

for the yeast datasets. The numbers of (unique) peptides at the peptide-level 1% are shown. 

In [1], only the number of identified peptides matched to proteins identified at 1% protein-

level FDR was counted while for MS-GF+, the number of identified peptides was counted 

regardless of their matched proteins.
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Figure 4. 
Constructing a Directed Acyclic Graph (DAG) in the case of two “amino acids” with real 

masses 2.012 and 2.996. Assume that only singly-charged b-ion with a real of f set 1.008 

contributes to the scoring. The spectrum S is converted into S′ by shifting each peak by 

1.008 to the left. Each arrowed line in S′ represents a pair of peaks separated approximately 

by 2 Da (blue) or 3 Da (red) that form a duo (solid) or does not form a duo (dashed) for a 

fragment mass tolerance 0.01 Da. A DAG G is constructed from S′. The number in the 

vertex represents its label. The color of the edge represents its label (0 for dashed grey and 1 

for solid black).
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Figure 5. 
Illustration of the MS-GF+ Directed Acyclic Graph (DAG) scoring. The peptide ABAA is 

converted into its Boolean string P = 010010101 and the spectrum S is converted into a 

labeled DAG G as described in the text. The number in the vertex represents its label. The 

color of the edge represents its label (0 for grey and 1 for black). The vertex i is colored 

depending on the peptide character i (white for 0 and black for 1). We also color vertex 0 as 

black. The procedure to compute Score(P, G) is illustrated. All edges are partitioned into 8 

classes depending on si,j, pi, and pj. For example, there are 5 edges with si,j = pi = pj = 0.
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Table 1

Probability table for generating directed acyclic graphs. (a) Probability Prob(x|y) of a peptide character y generating a vertex lavel x. (b) Probability 
Prob(x|y, z) of peptide characters generating an edge label x.
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