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The use of radiotherapy, either in the form of stereotactic radiosurgery (SRS) or

whole-brain radiotherapy (WBRT), remains the cornerstone for the treatment of brain

metastases (BM). As the survival of patients with BM is being prolonged, due to

improved systemic therapy (i.e., for better extra-cranial control) and increased use

of SRS (i.e., for improved intra-cranial control), patients are clinically manifesting late

effects of radiotherapy. One of these late effects is radiation necrosis (RN). Unfortunately,

symptomatic RN is notoriously hard to diagnose andmanage. The features of RN overlap

considerably with tumor recurrence, and misdiagnosing RN as tumor recurrence may

lead to deleterious treatment which may cause detrimental effects to the patient. In this

review, we will explore the pathophysiology of RN, risk factors for its development, and

the strategies to evaluate and manage RN.

Keywords: brain metastases (BM), stereotactic radiosurgery, whole brain radiation therapy, radiation necrosis,

MRI imaging techniques

INTRODUCTION

Radiotherapy is the cornerstone management for BM. Historically, WBRT was the only available
modality for management. Although it provides palliation of symptoms, the survival of patients
treated with WBRT alone remains poor (1, 2). Technological advancements have now made SRS
widely available, and the effectiveness of SRS in controlling BM is well-documented (3).

Often a combination of these two approaches are used, either upfront or as salvage. Prior
randomized controlled trials have shown that the addition of SRS to WBRT improves the local
intra-cranial control and survival for patients with a single brain metastasis (4, 5). In contrast,
patients treated with SRS (without WBRT), have a higher risk of distant intra-cranial relapse,
but no detriment in survival (3). Therefore, National Comprehensive Cancer Network guidelines
recommend that patients undergo routine surveillance MRI imaging every 2–3 monthly, especially
if treated with SRS alone1. Often, treatment-related changes, detected on follow-up scans, are

1https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf (Accessed June 2018).
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indistinguishable from tumor recurrence. This creates a
diagnostic dilemma for many clinicians, as the management
of each are vastly different. One of the feared complications
of BM treatment is symptomatic RN; this often affects patient
quality-of-life and can lead to significant morbidity.

In this review, we will explore the pathophysiology of RN, risk
factors for its development, and the strategies to evaluate and
manage RN.

INCIDENCE OF RN

Within the context of BM, the true incidence of RN is hard
to estimate and probably lies between 5 and 25% (6–10). The
definition of RN varies across studies, and only some required
histological confirmation. Moreover, the wide variation may be
attributable to improved quality and frequency of diagnostic
imaging, increased awareness (leading to better reporting) within
the oncology community and length of follow-up. For example, a
study by Chin et al. where pathological confirmation or temporal
resolution was required, the incidence was reported to be 7% (8).
In contrast, using primarily imaging-based diagnosis, Minniti
et al. reported a 24% incidence of RN (14% symptomatic, 10%
asymptomatic), for which they relied on imaging features, such as
increased contrast enhancement, non-progression of lesion over
4 months and reduced perfusion on dynamic MRI sequences (6).

PATHOPHYSIOLOGY OF RN

Early experiments were done on rats (11) and dogs (12)
with single-fraction brain radiation(10–25Gy). These
experiments showed that the radiation tolerance of the
brain was intricately linked to dose, volume of treatment
and was a function of time elapsed since radiation.
Histopathological analysis from these animal experiments
demonstrated changes in vasculature, as well as demyelination,
in the irradiated areas. Higher doses consistently led to
demyelination and necrosis, as well as an earlier manifestation of
necrosis.

There are two theories behind the pathophysiology of RN,
however it is likely that the true cause is multi-factorial (13).

1. Vascular injury theory

a. Radiation disrupts the blood-brain barrier, resulting in
increased capillary leakiness and vascular permeability
(14). Radiation, especially in large fraction sizes >8Gy,
activates acid sphingomyelinase and causes upregulation
of ceramide, which in turn causes endothelial apoptosis
(15). This leads to increased oxygen-free radicals, a pro-
inflammatory milieu (through release of Tumor-necrosis
factor and interleukin-1 beta) (16, 17), increased production
of vascular-endothelial growth factor (VEGF) (18) and
intercellular adhesion molecule (ICAM-1) (19). This
cascade leads to vessel narrowing and fibrinoid necrosis
of small vessels resulting in ischemia and cell death
(20).

2. Glial cell theory

a. Radiation can also damage glial cells. Damage to
oligodendrocytes and their progenitors result in
demyelination (21). Hypoxia caused by endothelial
cell damage leads to liberation of hypoxia-inducible factor
1α and VEGF. VEGF induces neo-angiogenesis, but these
tend to be leaky capillaries; resulting in perilesional edema
and contrast extravasation.

RISK FACTORS FOR RN AND MITIGATION
STRATEGIES

A direct cause-effect relationship for RN is hard to establish,
but many risk factors have been identified. These include tumor
volume, prescribed dose, fraction size, volume of normal brain
irradiated, previous use of radiation and the use of concurrent
systemic therapy (22). Many of these risk factors were established
in patients being treated for arterio-venous malformations and
gliomas, but can be extrapolated to BM.

1. Dose-volume interplay

a. Early studies from RTOG 90-05 recommended the
maximum safe radiation dose to be based on tumor volume
(23). The 12-months cumulative incidence of RN was
8%, with larger tumors having increased rates of RN. For
example, lesions below ≤20mm were safely treated with
24Gy, 21–30mm with 18Gy and 31–40mm with 15Gy.
However, this data is based on a mixture of recurrent
primary and secondary brain tumors, and all patients had
prior radiation.

b. For patients undergoing SRS (with or without WBRT), the
volume of brain parenchyma receiving higher than 10 or
12Gy (V10 and V12, respectively) has been correlated to
RN. Blonigen et al reported that the risk of RN is higher
when V10 > 10.5 cm3 or V12 > 7.9 cm3 (9). The use
of V10 and V12 corroborates with studies in AVM (24)
and other intracranial tumors (25). It remains unclear
how this volume should be defined, in particular if the
gross tumor volume should be excluded from normal brain
parenchyma. Fractionated stereotactic radiotherapy has
been proposed to mitigate this risk, but strong comparative
evidence is still lacking (26, 27).

2. Prior radiation exposure

a. The use of prior WBRT or SRS and the time interval
between re-irradiation influences the risk of RN. For
example, the risk of RN with SRS in the setting of prior SRS
(to the same lesion) was reported to be 20% at 1 year, 4%
when prior WBRT had been used and 8% when concurrent
WBRT is used (22). The risk was reported to be 3% when no
prior irradiation had been given (22). In the setting of prior
WBRT, it is unclear if the fraction size of WBRT influences
the risk.

3. Chemotherapy

a. The use of chemotherapy in the setting of primary brain
tumors increases the risk of RN (28). Within the context of
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BM, the use of capecitabine within 1month of SRS appeared
to increase the risk of RN (22).

4. Location

a. Extrapolating from AVM studies, certain locations within
the brain may have higher risk of RN. The frontal cortex
appears to carry the highest risk for RN while the brainstem
is more resistant to developing RN (24).

b. Japanese investigators suggest that superficial lesions are
at a lower risk of RN, because of the dose spillage to
extraparenchymal tissue (skull vault, skin, etc.) (29).

5. Histology

a. Miller et al suggest certain histological subtypes to have
a higher risk of RN (30). These include renal carcinoma,
lung adenocarcinoma (ALK rearrangement specifically),
HER2-amplied breast cancer, and BRAF V600 wild-type
melanoma.

6. Planning Target Volume (PTV) margin

a. While a larger GTV (gross tumor volume) to PTV margin
would allow for setup and positional uncertainties, the
consequence is that target volume increases significantly
and larger volume of normal brain parenchyma is
included in the prescription isodose. In a randomized trial,
comparing 1 and 3mm GTV-PTV expansion, the local
control was similar in both groups, however the 3mm
group had a higher incidence of biopsy-proven RN (12.5 vs.
2.5%, p= 0.1) (31). Although clinically significant, statistical
significance may not have been reached due to the low
patient number.

7. Intrinsic radiosensitivity

(a) Data from AVM treatment suggest that patients who
developed RN had an increased sensitivity to radiation.
This was demonstrated using survival curves (in vitro)
from skin fibroblasts obtained from patients who
developed RN (32). Although intrinsic radiosensitivity
may be a risk factor, there are no practical methods to
quantify this in the clinics.

DIAGNOSIS AND INVESTIGATIONS FOR
PATIENTS WITH SUSPECTED RN

• Imaging

Magnetic resonance (MR) imaging is the most commonly used
modality to investigate RN. However, the imaging features of
radiation necrosis and tumor recurrence overlap considerably,
with both entities demonstrating some degree of contrast
enhancement and perilesional edema (33, 34). Most of the time,
there is a combination of both entities (35).

Temporal changes alone (i.e., increase in size over time) is
not specific to either entity. While certain enhancement patterns
described in the literature as “Swiss cheese,” “soap bubble,” or “cut
green pepper” were initially thought to favor radiation necrosis,
these have only a 25% positive predictive value (36). Dequesada et

al. noted that gyriform lesions and edema with marginal or solid
enhancement suggested at least some viable tumor, adding that
a lesion quotient (LQ) (which is the ratio of the nodule on T2
sequence to the total enhancing area on T1 sequence) of >0.6
was suggestive of tumor recurrence, while an LQ of <0.3 favored
radiation necrosis alone (36). Other authors however found this
feature to be only 8% sensitive (37).

In practice, the low predictive value of conventional MR
features prompted the need for more advanced tools, such as
MR spectroscopy (MRS), MR perfusion, and Positron Emission
Tomography (PET) to help increase diagnostic confidence. These
three advanced techniques are discussed below.

MR Perfusion
Viable tumor has intact vasculature and thus higher perfusion
and blood volume than necrotic tissue. An increased relative
cerebral blood volume (rCBV) based on dynamic susceptibility-
weighted MRI has been used for differentiating tumor from
necrosis (38–40). Unfortunately, published data have been
inconsistent. Hu et al reported rCBV of <0.71 as 92% sensitivity
and 100% specificity for radiation necrosis, while another
suggested a rCBV cutoff of<2.1 (100% sensitivity and specificity)
(38, 41). Barajas et al reported significant overlap in rCBV values
and proposed using the percentage of signal-intensity recovery
(PSR) (33). Furthermore, rCBV values vary between machines,
depend on the acquisition methods and are confounded by
signal-intensity pileup artifacts, and susceptibility artifacts from
blood and contrast pooling within the lesions. Intravoxel
incoherent motion (IVIM) is another method that provides
quantitative diffusion and perfusion measurements based on a
diffusion-weighted imaging (DWI) MR acquisition. IVIM has
been shown to be superior to rCBV for distinguishing recurrent
tumor fromRN (42) and has been validated against gold standard
histopathology (35).

MR Spectroscopy
Assessment of the metabolite composition within BM is another
useful method that has published threshold values. Increased
choline-creatinine (Cho:Cr) and choline–N-acetyl aspartate
(Cho:NAA) ratios may favor tumor recurrence (43). Zeng et al
found that when both Cho:Cr and Cho:NAA were above 1.71,
sensitivity, specificity and diagnostic accuracy were 94.1%, 100%,
and 96.2%, respectively (44). In contrast, an elevated lipid-lactate
peak and generalized decrease in other metabolites supported
radiation necrosis (45). MRS is limited by voxel size, often
requiring the lesion to be larger than 1 cm3, and is also affected
by sampling errors within heterogeneous tumors. Chemical
exchange saturation transfer (CEST) is a novel method that is
sensitive to mobile proteins and peptides and has shown early
promise as well in identifying recurrent tumor after SRS (46).

PET-CT
PET imaging has better spatial resolution and coverage than
MRS and use of Fluorodeoxyglucose (FDG) PET in this clinical
setting was first proposed in 1982, relying on the presumed
increased glucose metabolism in tumors (47). However, multiple
studies have shown FDG-PET unhelpful for diagnosing RN
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FIGURE 1 | (A) (i) T2 weighted (ii) post-contrast T1 weighted and (iii) rCBV MR perfusion sequences of a lesion seen within the left temporal lobe. The lesion quotient

is calculated using the ratio of the hypointense nodule on T2W imaging to the total enhancing area on T1W imaging. This case showed a lesion quotient of 0.71 and

increased rCBV is suggestive of tumor recurrence. (B) (i) rCBV and (ii) post-contrast T1 weighted sequences showing increased blood flow within the periphery of the

lesion. This was a tumor recurrence proven by histopathology. (iii) rCBV and (iv) post-contrast T1W sequences of another patient showing no increased blood flow

within the periphery in keeping with radiation necrosis. (C) (i, ii) MR spectroscopy and (iii) post-contrast T1 weighted sequences of a growing pericallosal lesion

post-WBRT. (i) typical high lipid-lactate peak seen in radiation necrosis at the right cingulum while (ii) shows increased Cho:Cr and Cho:NAA ratios suggestive of tumor

recurrence over the left cingulum. (D) (i) F-18 FET PET showing intense amino acid tracer uptake within the enhancing lesion seen in (ii) post-contrast T1 weighted

sequence. This is suggestive of tumor recurrence and found to be recurrent RCC metastasis on histology.
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FIGURE 2 | (A) Brain tumor resection specimen from a patient with known metastatic breast carcinoma 6 months after Gamma knife SRS (20Gy to 50% isodose

line). The area of necrosis appears hypocellular and sharply demarcated from the surrounding gliotic brain. Few necrotic, hyalinized blood vessels (yellow arrows) are

present, as well as scattered reactive astrocytes (green arrows). Overall features are those of a radiation necrosis. (B) Foamy macrophages are often present. The

capillaries appear ectatic and congested. (C) Focal area shows increased cellularity with more nuclear pleomorphism in an otherwise hyalinised background, raising

the possibility of residual viable tumor. (D) Immunostain (brown) with GATA3 labels numerous viable tumor cells. Nuclear pleomorphism appears more prominent and

highlighted by this nuclear stain.

(48, 49). Amino acid tracers then became particularly useful in
PET imaging because of high amino acid utilization in tumors
for cell proliferation and extracellular matrix production (50).
Moreover, normal brain tissue has relatively lower amino acid
uptake, and this provides good tissue contrast. Tracers including
Carbon-11 methionine (MET), Fluoro-l-thymidine (FLT) and
Fluoroethyltyrosine (FET) have been used with promising results
(51–54). Of particular interest is FET-PET, where the addition
of dynamic data analysis reported a sensitivity of 100% and
specificity of 93%, comparable to some MRS results (55).

Figure 1 illustrates several examples where the above
modalities have been used to evaluate RN. For now, there is no
single modality that has been shown to accurately differentiate
tumor recurrence from radiation necrosis, and biopsy is still
regarded as the diagnostic gold standard. In view of the
limitations of each modality, a multi-modality approach may be
warranted to improve diagnostic confidence.

• Pathological assessment

Histopathology from surgically resected lesions after SRS
commonly shows a mix of residual tumor cells and RN (56–
60). Endothelial cells, which are most susceptible to radiation
damage, often manifest with fibrinoid necrosis, hemorrhage,
hyalinization and thrombosis of the blood vessels, resulting
in hypoxic injury to the surrounding tissue (61). The area

of necrosis is usually paucicellular, surrounded by highly
gliotic brain tissue consisting of GFAP-reactive astrocytes
demonstrating prominent cytoplasmic ramification. Foamy
macrophages and hemosiderophages are often encountered,
occasionally with dystrophic calcification. In addition, radiation-
induced cytologic atypia maybe seen, featuring cytomegaly
with bizarre “bubbly” nuclei, maintaining an overall low
nuclei-cytoplasmic ratio. In contrast, in recurrent tumor, tumor
necrosis often appears cellular with ghost-outline of the tumor
cells, demonstrating high nucleo-cytoplasmic ratio. Careful
examination of the blood vessels is important as residual viable
tumor maybe present around the Virchow Robin spaces or
as intravascular clusters, reminiscing the hematogenous route
taken by the tumor. In the setting of suspected tumor recurrence
with superimposed radiation-induced damage, a limited panel
of immunohistochemistry, depending on the known primary
tumor types, can be helpful in highlighting the viable tumor
which may not be obvious on hematoxylin-eosin stained slides.
Histo-pathological assessment of a patient with RN is shown in
Figure 2.

MANAGEMENT OF RN

The management of RN primarily depends on the presence
of symptoms. Symptomatic patients may experience headaches,
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nausea, cognitive impairment, seizures or focal deficits relating
to the location of the lesion.

Data from patients with nasopharyngeal carcinoma with
radiological RN suggest that one third or less of patients have
spontaneous regression over time, and that it is not always
an irreversible progressive process (62). As such, observation
is a viable treatment option for small and/or asymptomatic
RN. However, closer clinical and radiological monitoring is
warranted (e.g., every 6–8 weeks, and then extending to 12–16
weeks once the lesion is stable/regressed). Patel et al. reported
that approximately one-third of patients treated with SRS have
increase in lesional size during follow-up (63), occurring between
6 weeks and 15 months post-SRS. Counterintuitively, patients
with lesion progression had the longest survival compared to
patients with stable or decreased lesional size. They hypothesized
that post-SRS lesional growth may be due to brisk reactive
immune response, rather than tumor recurrence. However, this
has to be interpreted with caution, as there is an inherent
selection bias.

For symptomatic patients, oral corticosteroids (such as
dexamethasone) is the preferred first line. Corticosteroids reduce
the inflammatory signals and cytokines produced by the necrotic
tissue and reduce the leakiness of the blood-brain barrier (64).
Due to resolution of the edema, most patients experience rapid
improvement once steroids are initiated. There are no studies
guiding the dose of steroids. In our practice, we prefer to use
dexamethasone (4–8mg per day), with a gradual taper of the
dose. Unfortunately, many patients will require steroids for a long
duration and are subject to steroid-toxicity, such as myopathy,
iatrogenic Cushing’s syndrome, gastric ulcers etc.

As VEGF has been shown to be a key mediator in RN
(65), there is considerable interest in the use of bevacizumab
(humanized monoclonal antibody against VEGF) to treat
steroid-refractory RN. A pooled analysis involving 71 patients,
showed that the use of bevacizumab had a radiographic response
rate of 97% and clinical improvement rate of 79% with a mean
decrease in dexamethasone of 6mg (66). The median decrease
in FLAIR signal and enhancing-volume was ∼60%. One small
randomized study has been performed using bevacizumab for
RN that allowed a cross-over from the placebo group (67). All
14 patients eventually ended up receiving bevacizumab, and all
patients showed radiographic response. No differences could be
demonstrated in symptomatology, however the majority of the
patients on dexamethasone were able to reduce their doses. As
such, bevacizumab appears to be a promising agent; however, the
durability of response and toxicities associated with bevacizumab,
such as hemorrhage, thrombosis and impaired wound healing
must be taken into account.

Anticoagulants and medications which moderate perfusion
have been tested in RN, but are not routinely used. For example,
oral pentoxifylline and vitamin E were evaluated in 11 patients,
with their MRI FLAIR volume changes recorded over time (68).
Although there was an overall average decrease in edema, some
patients had an increase in edema.

In another study, heparin and warfarin were evaluated in
eight patients, with slightly over half showing some functional

recovery (69). However, it is unclear if anticoagulation needs to
be continued indefinitely.

Hyperbaric oxygen therapy (HBOT) is designed to promote
perfusion and angiogenesis. The use of HBOT in RN is mostly
limited to case reports where the efficacy is not well-documented
(70–72). Investigators have also studied the use of HBOT as
prophylaxis, and have shown promising results (73). However,
HBOT is expensive, requires specialized facilities and involves a
significant time commitment with prescribed treatment ranging
from 20 to 40 sessions.

For patients who remain symptomatic despite conservative
management, or in whom there is diagnostic uncertainty,
surgical resection can be considered. The main advantages of
surgical resection are relief of any mass effect and histological
confirmation. This influences subsequent treatment decisions
and can help with prognostication. Removing the nidus of
necrotic tissue responsible for the peri-lesional edema will
provide patients symptomatic relief, and allow weaning off
steroids. Patient selection remains an important consideration,
and includes surgical accessibility, overall performance status and
life expectancy. Early reports suggest a high risk of morbidity
with surgical resection, but it remains to be seen if these risks
still persist in the modern era (74). In situations where there is
necrotic tissue admixed with viable tumor, clinical judgment is
required to decide on further management.

Novel techniques, such as laser interstitial thermal therapy
(LITT) are emerging as treatment options. LITT is an image-
guided approach which generates high temperatures using a laser
fiber, and facilitates ablation of both tumor tissue, or VEGF-
producing reactive glial cells (75). A prospective study has shown
this to be safe and allow weaning of steroids in a third of patients
(76).

CONCLUSION

RN will be increasingly encountered due to the widespread use
of SRS. Symptomatic RN can cause significant morbidity and
should be managed pro-actively. There is no single modality
which can reliably distinguish RN from recurrent tumor, and
a multi-modal approach is often required. For patients with
symptomatic RN, oral corticosteroid therapy and bevacizumab
are both effective. A minority of patients, with an unclear
diagnosis, or refractory symptoms, will require surgical resection.
As RN proves to be a challenging condition to diagnose and
manage, risk factor mitigation becomes important in clinical
decision making.
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