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Abstract

Differential scanning fluorimetry (DSF) is a method to determine the apparent

melting temperature (Tma) of a purified protein. In DSF, the raw unfolding

curves from which Tma is calculated vary widely in shape and complexity.

However, the tools available for calculating Tma are only compatible with the

simplest of DSF curves, hindering many otherwise straightforward applica-

tions of the technology. To overcome this limitation, we designed new mathe-

matical models for Tma calculation that accommodate common forms of

variation in DSF curves, including the number of transitions, the presence of

high initial signal, and temperature-dependent signal decay. When tested these

models against DSFbase, an open-source database of 6235 raw, real-life DSF

curves, these models outperformed the existing standard approaches of sig-

moid fitting and maximum of the first derivative. To make these models acces-

sible, we created an open-source software and website, DSFworld (https://

gestwickilab.shinyapps.io/dsfworld/). In addition to these improved fitting

capabilities, DSFworld also includes features that overcome the practical limi-

tations of many analysis workflows, including automatic reformatting of raw

data exported from common qPCR instruments, labeling of data based on

experimental variables, and flexible interactive plotting. We hope that

DSFworld will enable more streamlined and accurate calculation of Tma

values for DSF experiments.
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1 | INTRODUCTION

Differential scanning fluorimetry (DSF) is an in vitro
method to determine the apparent melting temperature
(Tma) of a purified protein. In DSF, a protein solution,
typically at low micromolar concentrations, is combined

with a reporter dye, typically Sypro Orange, and heated
through unfolding in a standard qPCR instrument
(Pantoliano et al., 2001). The reporter dye fluoresces in
the presence of unfolded protein, producing a fluorescent
unfolding curve from which Tma can be calculated
(Semisotnov et al., 1991; Wu, Yu, et al., 2023). Common
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DSF applications include the assessment of ligand bind-
ing (Huynh & Partch, 2015; Ravalin et al., 2019) and opti-
mization of buffers for shelf-stability or structural
characterization (Boivin et al., 2013; Chari et al., 2015;
Reinhard et al., 2013; Ristic et al., 2015). The theory (Gao
et al., 2020; Wu et al., 2020), applications (Garlick &
Mapp, 2020; Scott et al., 2016; Simeonov, 2013), and pro-
tocols (Huynh & Partch, 2015; Wu, Hornsby, et al., Wu,
Hornsby, et al., 2023b) for DSF have all been extensively
reviewed.

However, despite the widespread use of DSF, the cal-
culation of Tma remains a major challenge. Tma is
defined as the midpoint of the unfolding curve and is tra-
ditionally modeled as a sigmoidal transition. However, in
reality, DSF curves are not strictly sigmoidal; rather, they
vary in shape and complexity, often including multiple
transitions and/or temperature-dependent effects
(Wu et al. see companion paper) that are not readily
ascribed to traditional two-state unfolding. Several soft-
ware packages for the analysis of DSF data have been
published, but these approaches either do not address
such non-canonical aspects of DSF data (Martin-
Malpartida et al., 2022; Phillips & Hernandez de la
Peña, 2011; Sun et al., 2020; Wang et al., 2012), reject
curves outside the most straightforward archetype (Rosa
et al., 2015), or coerce data into a simpler form by trunca-
tion or masking of less-sigmoidal data points (Lee
et al., 2019; Schulz et al., 2013). Thus, most modern DSF
analysis workflows rely on manual pre-processing steps
to make curves amenable to standard sigmoid fitting. In
addition to the challenges these manual steps can pose
for efficiency and reproducibility, both pre-processing
and subsequent sigmoid fitting perform inconsistently
between different applications or even on different curves
within the same experiment. As a result, DSF analysis
workflows can be fragile and unreliable, ultimately limit-
ing the uses of DSF technology as a whole.

We envisioned that an improved DSF analysis tool
would incorporate a broader and more well-informed
range of mathematical fitting models, accounting for the
non-canonical features seen in real-world DSF data, such
as multiple transitions, high initial fluorescence and
temperature-dependent fluorescence decay. Towards that
goal, we developed four models using a subset of
347 curves available in DSFbase, an open-source database
of raw DSF data (Wu et al., n.d see companion paper).
Then, the performance of the final models was tested
using 5749 entries in DSFbase representing legitimate
DSF curves (canonical and noncanonical subsets). The
1023 entries included to represent potentially uninterpre-
table (speculative subset) or entirely artifactual (errata
subset) data were excluded from this analysis. To our
knowledge, DSFworld is the only DSF analysis tool to be

developed and tested on a diverse set of DSF data, as
previous software typically reports the use of 1–2 proteins
in development and testing, while DSFbase includes
data from a large, diverse set of >50 proteins. We named
this analysis tool DSFworld, which is freely available
online (https://gestwickilab.shinyapps.io/dsfworld/). Since
its initial pre-publication launch (Wu, Hornsby, et al.,
2023b), DSFworld has averaged over 1000 h of use per
month.

In addition to expanded and improved curve fitting
capabilities, DSFworld also supports practical steps of
data analysis. These applications were identified in our
own workflows as being gaps in current methods, includ-
ing automatic reformatting of exported files from several
common qPCR software (Biogen, Roche, qTower, Viia),
labeling of data with experimental conditions, and inter-
active plotting of results. We hope that DSFworld can
support efficient and consistent analysis of Tma data for
a broad range of DSF experiments.

2 | RESULTS

Creation of DSFworld models. To determine the com-
mon points of variation between DSF data, we began by
assembling a panel of 347 raw DSF results for 35 proteins
that vary in molecular weight, biological activity, fold,
and oligomeric state. In addition, these results included
experimental variation in buffers, pH, concentrations of
known ligands, SYPRO Orange concentrations, and heat-
ing rates. From these 347 DSF curves, four archetypes
were visually identified (Figure 1a): a single transition
with low initial fluorescence (Model 1), a single transi-
tion with high initial, decaying fluorescence (Model 2),
two transitions with low initial fluorescence (Model 3),
and two transitions with high initial, decaying fluores-
cence (Model 4). These archetypes were then mathemati-
cally defined as follows:

RFU Tð Þ¼ Sig1 Tð Þ Model 1ð Þ

RFU Tð Þ¼ Sig1 Tð Þþ Id Tð Þ Model 2ð Þ

RFU Tð Þ¼ Sig1 Tð ÞþSig2 Tð Þ Model 3ð Þ

RFU Tð Þ¼ Sig1 Tð ÞþSig2 Tð Þþ Id Tð Þ Model 4ð Þ

where the general form of the decaying sigmoids,
Sigi Tð Þ, is:

Sigi Tð Þ¼ Ai

1þe Tmai�Tð Þ=scali �ed� T�Tmaið Þ
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• Sigi Tð Þ is the RFU value at temperature T;
• Ai is the scaling factor for the final sigmoid;
• Tmai is the Tma;
• scali controls the slope of the transition;
• d is the magnitude of the temperature-dependent RFU

decay.

And where the general form of the initial decaying
fluorescence, Id Tð Þ, is:

Id Tð Þ¼C�e T�idð Þ

• Id Tð Þ is the RFU of the initial fluorescence at tempera-
ture T;

• C is the starting value of the initial fluorescence;
• id defines the rate and linearity of the decay from C.

The final fitting procedure is described in detail in
Appendix S1. Briefly, (1) both raw RFU and measured

FIGURE 1 Summary of DSFworld models. Visual guide to the four DSFworld models, and the impact of changing key parameters.

(a) Visual description of the separable components in each of the four DSFworld models (green: transition(s), blue: initial signal). The

components are added together to produce the final model (black lines). (b and c) Impact of changing specific parameters on model results.

Curves were generated by varying individual parameter values to either DSFworld Model 2 (b) or Model 4 (c). Varied parameters shown are

left: slope (scal1), middle: Temperature-dependent signal decay (d1), and right: initial signal (id_d1, with id_b1 = �3).

WU ET AL. 3 of 11



temperatures are normalized to a range of 0–1. This nor-
malization step minimizes inconsistencies in fitting intro-
duced by arbitrary differences in measured temperature
ranges and magnitudes of RFUs reported from different
qPCR instruments. (2) From the normalized raw data,
first- and second-order derivatives are calculated with
respect to temperature using a Savitsky-Golay filter, and
a smoothed, interpolated version of the first- and second-
derivative data are then calculated using a Loess filter of
span 0.1. The use of a Savisty-Golay filter offers robust
smoothing and derivative calculation across a wide range
of noise levels, which can vary between experiments and
instruments. At this step, Tma values are calculated as
the maximum of the smoothed, interpolated first deriva-
tive. (3) Starting parameters are estimated for each curve
(see Appendix S1) based on local maxima and minima in
the first and second derivative data for Tma, and the
magnitude of the initial fluorescence is estimated as
the first relative fluorescence unit (RFU) value in the
dataset. (4) Models are fit to each input curve, and the
final model parameters are then used to generate curves
for each individual component of the full fit (i.e., initial
signal, each individual transition). (5) Finally, Tma is cal-
culated by taking the maximum of the first derivative of
each isolated sigmoid component. This approach is anal-
ogous to separating a complex melting transition into its
most likely individual unfolding transitions, followed by
using the currently accepted methods of Tma calculation.
This way, the DSFworld analysis leverages the temperature-
dependent fluorescence decays necessary for robust fitting
of complex transitions while using practices consistent with
existing DSF data analysis approaches. To visualize the
impact of individual fitting parameters on curve shape, we
varied the slope of the melting transition, the rate of decay
of the fluorescence curve and the magnitude of the initial
fluorescence and then plotted the corresponding results for
Model 2 (Figure 1b) and Model 4 (Figure 1c). These results
illustrate how the models incorporate the non-canonical
portions of the curves into the overall fitting while also
maintaining sigmoidal fits for the Tma values.

The script and all associated functions to implement
and modify this analysis outside of DSFworld are avail-
able on GitHub at https://github.com/gestwicki-lab/
dsfworld. For more details, caveats and other consider-
ations, see Appendix S1.

2.1 | Performance of DSFworld models
with DSFbase

To test the performance of the models with a larger,
diverse set of real-world DSF curves, each was then used
to calculate Tmas for the data within DSFbase (Wu et al.,

see companion paper). DSFbase is a recently developed,
open-access dataset containing 6235 raw DSF curves
from over 50 different proteins across 79 different experi-
ments, which vary in buffer, heating rate and other
experimental variables. Buffer is a particularly important
variable as some, such as Tris, are temperature depen-
dent. DSFbase is intended to support the development of
improved DSF analyses and interpretations, and it offers
a highly diverse collection of raw DSF unfolding curves.
In particular, DSFbase includes two subsets: “canonical”
results (4144 entries), which are described as single-
transitions and “non-canonical” results (1605 entries),
which contain features such as multiple transitions
and/or high initial signal. To test performance head-to-
head, the 5749 raw DSF curves in DSFbase were fit using
the four new models and the results compared to the use
of the traditional sigmoid model. The data was truncated
at the highest RFU value in the traditional sigmoidal
model, consistent with standard practice.

We found that the traditional sigmoid fit failed in
17.2% of the tested cases, while the DSFworld models
achieved a complete success rate (0% failure) (Figure 2a).
In addition, the DSFworld models produced lower total
residuals and had better model quality by Bayesian infor-
mation criterion (BIC) (Figure 2b). This outperformance
is particularly notable, as the sigmoid fitting procedure is
given a considerable advantage by the truncation of the
raw data to exclude the data points least amenable to sig-
moid fitting. These results suggest that the DSFworld
models are not only more robust, but also better describe
DSF data.

As expected, fitting performance with DSFbase was
readily optimized by choosing the best DSFworld model
for each curve using the BIC. Among the options,
Models 2 and 4 were selected as the superior model
most frequently (41.2% and 31.4% of entities respec-
tively), followed closely by Model 3 (22.3%) (Figure 2c).
Comparatively, Model 1 was selected rarely (5.1%). As
expected, Model 1 performed better when using
the canonical subset of the DSFbase data (Figure S1),
yet the overall findings suggest that incorporating non-
canonical features, especially high initial fluorescence,
improves a vast majority of DSF analysis workflows. To
assess redundancy among the DSFworld models, the
mean residual was calculated for each experiment when
the data was systematically fit using only Model
1, Models 1 and 2, Models 1–3, or all four models. We
found that the mean residual of all fits decreased with
each additional model (Figure 2d), showing that the
ability to choose among all four models is important for
achieving the best possible fits. Representative fits are
shown for each Model to illustrate the goodness of fit
(Figure 2e).
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2.2 | Example 1: Model 2 improves
screening data quality

One benefit of the DSFworld models is that they main-
tain fit quality even when the input raw data has normal
fluctuations. For example, an increase in initial RFU is
often observed upon the addition of small molecules or
other additives (Wu, Hornsby, et al., 2023a; Wu, Hornsby,
et al., 2023b). This is a major problem in the use of DSF
for high throughput chemical screening, because each
well can have a different amount of compound-induced
fluorescence. Moreover, even stochastic variations in the
initial fluorescence can lead to inaccurate hit-picking and
poor statistical performance across many wells. Here, we
show how Model 2 offers more robust Tma calculation
when this type of feature emerges. Specifically, we use a
DSF dataset (Gahbauer et al., 2023) from a screen of
640 purine-like small molecules binding to the purified
SARS-CoV2 protein: nsp3 macrodomain1 (nsp3 mac1).
As described in Section 4, this screen was performed in
384-well plates using a single concentration (50 μM) of
each of the putative ligands, with some wells dedicated to

positive (ADP-ribose) and negative controls (DMSO
alone).

From the raw screening data, Tma values were calcu-
lated by four different methods (Figure 3a): (i) truncation
of input data at the maximum value, followed by fitting
to a standard sigmoid, (ii) maximum of the first deriva-
tive, (iii) DSFworld Model 1 (single transition with no
initial fluorescence) and (iv) DSFworld Model 2 (single
transition with initial fluorescence). The first two
methods are pre-existing approaches to Tma calculation,
which allowed us to test their performance against those
models introduced in DSFworld. Nsp3 mac1 produces
canonical, single-transition DSF data, so if curve shape
was perfectly conserved across all conditions, these four
approaches to Tma calculation could be used largely
interchangeably. However, in practice, DSF curve shapes
vary slightly between replicates, and often more dramati-
cally between conditions, such as with the addition of a
ligand. Even for the negative and positive controls (see
Section 4), consisting of 32 wells of DMSO and 32 wells
of 300 μM ADP-ribose, use of the DSFworld Models
1 and 2 outperformed both sigmoid fitting and dRFU, as

FIGURE 2 Performance of DSFworld models with DSFbase. (a) Fraction of results in the canonical and non-canonical sections of

DSFbase that could not be fit with the traditional sigmoid approach vs. the four models in DSFworld. (b) Comparison of the BIC for all

successful model fits using either the sigmoid model, or the best DSFworld model for each entry, as determined by BIC. (c) Fraction of the

fitted datasets for which each DSFworld model was selected using BIC. (d) The total residual for final model fits of the best DSFworld model

to each dataset, with an increasing number of DSFworld models available to choose between. (e) Representative examples of data best fit by

each of the four models in DSFworld.
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measured by Z prime factor, with DSFworld Model
2 offering the highest Z prime factor of 0.49 (Figures 3b
and S1).

The improvement in performance from using Model
2 became more pronounced for the wells containing
screening compounds. While the sigmoid fitting failed for

17.2% of these wells, Model 1 failed for only 0.4%, and
Model 2 fitting succeeded for all datasets (Figure 3c).
Tmas calculated using sigmoid fitting for the test com-
pounds were more prone to report negative thermal shifts
and outliers than dRFU, Model 1, or Model 2, with Model
2 reporting the least noisy Tma data between all methods

FIGURE 3 Use of Model 2 improves the quality of chemical screening data analysis. (a) Following a 640-compound pilot DSF pilot

screen, Tmas were calculated using four different methods and compared: sigmoid fitting following raw data truncation, maximum of dRFU,

and DSFworld Models 1 and 2. (b) Tmas for negative (blue points) and positive (red points) controls (DMSO, or 300 μM ADP ribose), and

associated Z-prime factors, for each of the four Tma calculation methods. Model 2 gives the best Z-prime score. Each point represents a

single Tma value calculated by one of the four methods. (c) The fraction of input data for which each fitting model failed. (d) Of the

successful fits for each model, the quality of the associated fits, by Bayesian information criterion (BIC). Lower values indicate better models.

Box plot values: Sigmoid: lower whisker (LW)—228, lower hinge (LH)—152, median (M)—103, upper hinge (UH)—74, 35, upper whisker

(UW)—35; Model 1: LW—334, LH—256, M—175, UH—134, UW—47; Model 2: LW—377, LH—273, M—231, UH—170, UW—29.

(e) Examples of raw RFU data fit by each of the three fitting methods. Individual points: single RFU measurements. Solid lines: resulting fits

from each of the three models. Sigmoid (purple, top); Model 1 (teal, middle), and Model 2 (green, bottom).
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(Figure S2). Furthermore, model selection using BIC
shows that Model 2 performs the best on the dataset as a
whole (Figure 3d). Examples of four representative curves
demonstrate how those with initial signal are fit more
poorly by sigmoid fitting than Model 1 (Figure 3e). More-
over, these examples show how Model 2 most accurately
fits wells with high initial fluorescence. This example,
using real-world DSF data from a typical high throughput
chemical screen, shows how DSFworld produces more
robust analysis in practice.

2.3 | Example 2: Model 3 enables
observation of interdomain allostery

Many proteins undergo multiple melting transitions,
which complicates traditional DSF analyses, often
obscuring or distorting Tma values. For this reason, a
major benefit of the DSFworld models is the ability to fit
both single and double-transition data, allowing Tmas to
be calculated from both types of curves without disrupt-
ing the analysis pipeline. We illustrate the importance of

FIGURE 4 Use of Models 2 and 3 enable investigation of interdomain allostery of OGT. (a) Diagram of the models fit to each construct

in the study. (b) Example raw data for the three constructs, OGT, OTL domain, and TPR domain. Points represent single RFU

measurements, and lines represent single fit predictions corresponding to the displayed raw data. (c) ΔTmas resulting from the addition of a

TPR binding allosteric ligand. Use of Model 3 reveals simultaneous opposing shifts in the OTL- and TPR-associated transitions in the two-

transition OGT curve. Use of Model 2 reveals a similar thermal shift in the TPR construct, and no thermal shift in the OTL construct alone.

Points represent mean Tmas from three technical replicates, error bars display ± standard deviation. Some error bars are smaller than the

data points.
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fitting both single and double transitions here, using ana-
lyses of a previously reported DSF dataset (Wu, Yu, et al.,
2023). Briefly, O-GlcNAc Transferase (OGT) OGT is an
enzyme that is composed of two domains, an N-terminal
domain containing tetratricopeptide repeats (TPR
domain), and a C-terminal catalytic domain (Figure 4a).
There is evidence of inter-domain allostery in this system,
such that binding of ligands, such as L4, to the TPR
domain inhibits catalytic activity (Alteen et al., 2022).
This allostery is often studied by comparing the full-
length OGT to truncated domains: the isolated TPR
domain and a construct that contains the catalytic
domain and a subset of the TPR repeats (9–13.5), termed
the OTL domain (Figure 4a).

Using DSFworld, Models 2 and 3 can be readily used to
determine the Tma values of OGT and its two isolated
domains. Specifically, Tmas can be calculated for both tran-
sitions of full-length OGT using Model 3 and single-
transition Tmas can be determined for each domain using
Model 2 (Figure 4b). OGT's first transition aligns with the
Tma of the isolated OTL domain (45.3 ± 0.3�C vs. 45.5
± 0.5�C, p-value = 0.45), while OGT's second transition
aligns with the Tma of the isolated TPR domain (57 ± 1.2�C
vs. 57.7 ± 0.1�C, p-value = 0.45). It should be noted that fit-
ting OGT to a single-transition model, such as a traditional
sigmoid or Model 2, returns poor quality fits and an aber-
rantly elevated, single Tma (Figure S3), exemplifying how
use of an appropriate model is important for robust analysis.

As mentioned above, the L4 ligand binds only the TPR
domain, but produces associated changes in the structure
and activity of the catalytic domain through an allosteric
mechanism (Alteen et al., 2022). DSFworld allows for the
experimental exploration of this allostery. Specifically,
treatment with L4 caused a thermal upshift which satu-
rated at 5.8 ± 0.4�C in both the second transition of full-
length OGT and the isolated TPR domain (Figure 4c,
blue). In contrast, treatment with L4 did not impact the
Tma of the isolated OTL domain (ΔTma = 0.2 ± 0.5�C),
but it did cause a dose-dependent, thermal downshift in
the first transition of full-length OGT (ΔTma = �1.6
± 0.6�C) (Figure 4c, green). The ability to monitor allo-
stery in OGT using a combination of single- and double-
transition models illustrates how the ability to seamlessly
accommodate a range of data complexities can enable
studies previously inaccessible by DSF.

2.4 | Follow-along instructions

This section walks through the complete analysis of a
DSF experiment using the DSFworld website (https://
gestwickilab.shinyapps.io/dsfworld/). It is meant to dem-
onstrate the workflow and key features of DSFworld and
illustrate how DSFworld could fit into an existing

experimental workflow. To follow along with this section,
the dataset can be downloaded from the “upload data”
tab of DSFworld.

First, access DSFworld by navigating to its associated
website https://gestwickilab.shinyapps.io/dsfworld/, and
clicking “to data analysis” in the top bar. Begin the analy-
sis by uploading raw fluorescence versus temperature
data in the ‘Uploads’ tab (Figure 5a). To upload a dataset,
click “Browse” and select the raw data file, or drag and
drop the file into the “Uploads” bar. The data will appear
as uploaded in a table to the right of the gray uploads
bar. The sample dataset is already in the standard, read-
able format, with Temperature in the first column, and
fluorescence data for each well in the following columns.
Information on automated file reformatting is provided
in the later section titled “Uploads details”.

Click “Analyze” at the bottom of the gray uploads
bar. The page will proceed to the plotting and Tma calcu-
lation window. Similar to the uploads screen, options for
analyses appear in a gray sidebar on the left of the screen.
A simple plot of the raw data will appear automatically
on the right-hand side of the analysis tab.

It is possible to proceed directly to Tma calculation at
this stage. However, it is often helpful to first visualize
the raw data and assign experimental conditions to wells.
Click “Set plate layout and replicates”, and then “Upload
layout”. The creation and use of layouts, including their
manual editing under ‘Method 2—edit manually”, is
described in detail in the instructions tab of the
DSFworld website. In this example, we use a sample
plate layout which can be downloaded by clicking
“Download example layout” in the gray sidebar. This lay-
out defines three experimental variables: protein identity,
compound, and compound concentration. Upload the
layout by clicking “Browse…” or dragging and dropping
the layout file directly into the layout uploads bar.

Minimize the plate layout options by clicking the “Set
plate layout and replicates” heading. Below “Set plate lay-
out and replicates, click “Make plots”. The experimental
conditions uploaded in the previous step are now avail-
able for use in plotting (as well as later data analysis). In
a standard plotting workflow, modify the plotting options
to make an informative visualization, click “Update plot”,
and the uploaded plot will appear at the right of the
screen, where it can be downloaded by clicking “Down-
load plot.” For example, here, click “Subset by one vari-
able”, and select “protein” under “Sub-plot by”. Select
“compound_concentration” for “Color” and vary line
types by “protein”. Under “Edit plot labels”, update the
Plot title to “Dose response by protein”, The legend title
to “Compound conc. (μM)”, and the line type legend to
“Protein” (Figure 5b).

Minimize the plotting options by clicking the “Make
plots” heading. Below the “Make plots” heading, click
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“Find apparent Tms”. Tmas by dRFU have already been
calculated automatically. These Tmas are displayed in a
table in the left sidebar and can be downloaded by click-
ing “Download Tmas by dRFU”. Because a layout was
uploaded in this example, the Tmas are averaged by
experimental replicates in this table, where replicates are
defined as wells with identical values for all experimental
variables. If needed, non-averaged values can be down-
loaded in the “3jdownload results” tab. In this example,
the dataset includes common types of DSF data better
analyzed by model fitting, namely curves containing
either multiple transitions, or high initial fluorescence, or
both (Figure 5c). Fit the results to all available models by
clicking the associated buttons.

To visualize the resulting fits, and select the best
model for each dataset, click “Display/Update fit plot.”
On the right-hand side of the screen, a new plot is dis-
played, containing sub-plots where each row contains a
different raw curve from the uploaded dataset, and each
column contains fitting results from a different model.

The Bayesian Information Criterion (BIC) for each model
is displayed at the top of each sub-plot, and the
model with the lowest BIC is automatically selected for
each dataset. Double-click a sub-plot to set that model as
the chosen model for a given dataset. Display only the
selected fits for each raw curve by clicking “Plot selected
fits” in the gray analysis sidebar. Click “Download plot”.
Download Tmas from fits by clicking “Download Tmas
from fits”, below the table displaying Tmas.

At the top of the screen, click “3jdownload results”
(Figure 5d). Under “Quick results, averaged by user-
defined replicates”, select “Tma by best fit”, set a file
name for the download in the textbook immediately
below, and then click “Download quick result.” It is often
helpful to have a copy of non-replicate averaged Tmas
and raw data. To get these files, under “Supplemental
files” in the same gray sidebar of the downloads screen,
select and download “Tma by best fit, no replicate aver-
aging”, and then “Reformatted raw data.” If any addi-
tional DSFworld analyses or plots are desired at a later

FIGURE 5 Screenshots of a typical analysis using the DSFworld website. (a) Uploaded data is displayed as formatted in a table to the

right of the gray uploads options bar. (b) If an experimental layout is uploaded, raw data can be plotted interactively based on experimental

variables defined in the layout. (c) Methods for Tma calculation, and resulting Tmas, appear in the gray sidebar. Fits can be plotted, and the

best model for each curve can be manually updated by clicking the plot. (d) Both raw data and Tmas can be downloaded in various forms

under the downloads tab.
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date, this “reformatted raw data” can be uploaded and
analyzed by DSFworld with no additional reformatting.

3 | CONCLUSIONS AND
DISCUSSION

Here, we present DSFworld, a web-accessible software
for the analysis and visualization of DSF data. The goal
of DSFworld is to overcome the barriers imposed on DSF
applications by the limited scope and flexibility of exist-
ing DSF data analysis methods. To achieve this goal,
DSFworld introduces four updated models for fitting DSF
data, accounting for common aspects of curve variation,
such as high starting fluorescence and/or multiple transi-
tions. To our knowledge, these models are the first to be
designed from and tested on a large, diversified set of
real-world DSF data, and the first to be compatible with a
wide scope of possible DSF results. Finally, to address the
labor-intensive manual processing steps that often plague
DSF analysis workflows, DSFworld also supports data
uploading, formatting, and visualization. DSFworld is
accessible as an open-source web interface: https://
gestwickilab.shinyapps.io/dsfworld/. It is our hope that
DSFworld can offer a more reliable experience of DSF
data analysis, in both data compatibility and ease of use.

4 | METHODS

4.1 | DSFbase data

The DSFbase dataset is described in a companion paper
(Wu et al., n.d).

4.2 | Pilot screen of the Nsp3
macrodomain 1

Compound screens were conducted in final conditions of
2.5 μM nsp3 macrodomain 1, and either 50 μM test com-
pound, 300 μM ADP-ribose (positive control), or 0 μM
compound (negative control). The final buffer included
5� (10 μM) SYPRO Orange (Thermo Fisher Scientific,
S6650) in 50 mM Tris–HCl (pH 7.5), 150 mM NaCl,
1 mM EDTA, 1 mM DTT, 0.01% Triton X-100 and 3%
DMSO. Screens were performed using the following pro-
tocol: To 50 mL of screening buffer (50 mM Tris–HCl
(pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM DTT, and
0.01% Triton X-100), 10 μL of SYPRO Orange (Thermo
Fisher Scientific, S6650) was added to a final concentra-
tion of 5� (10 μM). From this buffer, a positive control
solution was prepared as a 2� concentrate by bringing
60 μL of a 10 mM ADP ribose solution in DMSO to 1 mL

volume. For negative controls and test compounds,
10 mL of 3% DMSO buffer was prepared. Purified Nsp3
macrodomain1 (P43 construct (Schuller et al., 2021)) was
prepared as a 2� concentrate by diluting 1054 μL of pro-
tein solution to 7 mL volume in DMSO-free buffer to a
final concentration of 5 μM protein. Then, protein solu-
tion (5 μL) was added to each well of two 384-well white
qPCR plates (Axygen, PCR-384-LC480WNFBC), followed
by 5 μL of positive control solution in columns 23 and
24, or 5 μL of compound-free solution in columns 1–22.
Compounds from two plates of a purine nucleoside-like
library were added to columns 3–22 by pinning in the
UCSF Small Molecule Discovery Center. In an Analytik
Jena qTOWER 384G quantitative PCR instrument, each
plate was continuously heated from 25 to 94�C at a rate
of 1�C/min, and fluorescence was measured at each
degree in the TAMRA channel (535/580 nm). The Z0 fac-
tor was calculated by the standard formula: Z0 = 1–3
(σpos + σneg)/jμpos � μnegj, where σpos and σneg refer to
the standard deviation of the positive and negative con-
trols respectively, while μpos and μneg refer to the means.

4.3 | Binding of ligand L4 to OGT

The experiments performed using OGT, OTL, and TPR
with addition of L4 were previously reported and the full
experimental conditions can be found there (Wu, Yu,
et al., 2023). Statistical tests of difference between apo
Tmas of OGT and the isolated domains use a Welch two
sample t-test performed in R using the ‘t.test()’ function.
Statistical tests of correlations between Tmas and L4 con-
centration use a Pearson's correlation performed in R
using the ‘cor.test()’ function, with method = “pearson”.
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