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ABSTRACT

Decompressive craniectomy (DCE) and cranioplasty (CP) are surgical procedures used to 
manage elevated intracranial pressure (ICP) in various clinical scenarios, including ischemic 
stroke, hemorrhagic stroke, and traumatic brain injury. The physiological changes following 
DCE, such as cerebral blood flow, perfusion, brain tissue oxygenation, and autoregulation, 
are essential for understanding the benefits and limitations of these procedures. A 
comprehensive literature search was conducted to systematically review the recent updates in 
DCE and CP, focusing on the fundamentals of DCE for ICP reduction, indications for DCE, 
optimal sizes and timing for DCE and CP, the syndrome of trephined, and the debate on 
suboccipital CP. The review highlights the need for further research on hemodynamic and 
metabolic indicators following DCE, particularly in relation to the pressure reactivity index. 
It provides recommendations for early CP within three months of controlling increased 
ICP to facilitate neurological recovery. Additionally, the review emphasizes the importance 
of considering suboccipital CP in patients with persistent headaches, cerebrospinal fluid 
leakage, or cerebellar sag after suboccipital craniectomy. A better understanding of the 
physiological effects, indications, complications, and management strategies for DCE and 
CP to control elevated ICP will help optimize patient outcomes and improve the overall 
effectiveness of these procedures.

Keywords: Decompressive craniectomy; Intracranial pressure; Craniotomy;  
Craniocerebral trauma

INTRODUCTION

In recent years, the field of neurocritical care has witnessed significant advancements in the 
understanding and application of decompressive craniectomy (DCE) and cranioplasty (CP) as 
critical therapeutic interventions for various neurological conditions. This special issue aims 
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to provide a comprehensive update on the physiological effects, indications, complications, 
and management strategies associated with DCE and CP. We begin by examining the 
fundamentals of DCE for intracranial pressure (ICP) reduction, focusing on the Monro-Kellie 
Doctrine and its implications in clinical practice. Furthermore, we discuss the complex 
physiological changes following DCE, including alterations in cerebral blood flow (CBF), 
perfusion, brain tissue oxygenation, and autoregulation. The issue also addresses the specific 
indications for DCE, such as ischemic stroke, hemorrhagic stroke, and traumatic brain injury 
(TBI), while shedding light on the optimal size of DCE and the timing of CP to achieve the 
most favorable outcomes. Additionally, we explore the Syndrome of Trephined (SoT) and 
its association with changes in CBF and neurological symptom improvement following 
CP. Lastly, we delve into the ongoing debate surrounding the necessity of suboccipital CP, 
particularly in cases involving persistent headaches, cerebrospinal fluid (CSF) leakage, or 
cerebellar sag after suboccipital craniectomy (SOC). Through an in-depth analysis of these 
topics, this issue seeks to enhance our understanding of DCE and CP and their role in the 
ever-evolving landscape of neurocritical care.

METHOD

To systematically narrative review the recent updates in DCE and CP, we conducted a 
comprehensive literature search using the following electronic databases: MEDLINE, 
Embase, and Cochrane Library. The search terms included “decompressive craniectomy,” 
“cranioplasty,” “intracranial pressure,” “ischemic stroke,” “hemorrhagic stroke,” “traumatic 
brain injury,” “optimal size,” “optimal timing,” “syndrome of trephined,” and “suboccipital 
cranioplasty.” The search was limited to articles published between January 2010 and 
December 2022, and only articles written in English were considered for inclusion.

Two independent reviewers screened the search results by title and abstract. Articles were 
considered for full-text review if they were deemed relevant to the study's objectives. Any 
disagreements between the reviewers were resolved by consensus or consultation with a 
third reviewer. Full-text articles were reviewed to determine eligibility for inclusion in the 
systematic review.

We included studies that reported on physiological changes following DCE, indications for 
DCE, optimal size of DCE, optimal timing of CP, SoT, and the necessity of suboccipital CP. 
Both randomized controlled trials and observational studies were considered for inclusion. 
Case reports, case series, and expert opinions were excluded.

A narrative synthesis of the findings from the included studies was conducted, focusing 
on the physiological effects, indications, complications, and management of DCE and 
CP. Due to the heterogeneity in study design and reported outcomes, a meta-analysis 
was not performed. Instead, we present a descriptive summary of the available evidence, 
including a discussion of the strengths and limitations of the reviewed studies, and provide 
recommendations for clinical practice and future research.

Ethical approval/informed consent
We confirm that, for this work ethical guidelines, ethical approvals (institutional review 
board) and the use of informed consent were not applicable.
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LITERATURE REVIEW

Fundamentals of decompressive craniectomy for intracranial pressure 
reduction
ICP and the Monro-Kellie doctrine
A systematic discussion of ICP and its determining factors began in the early 18th century with 
Scottish anatomist Alexander Monro and his colleague, surgeon George Kellie. The Monro-
Kellie doctrine on ICP was later refined by American neurosurgeon Harvey Cushing, providing 
a detailed explanation of the principles underlying changes and adaptations in ICP. The 
skull vault is essentially a fixed structure; thus, the volume within the cranial cavity remains 
constant under normal conditions, with ICP maintained through a balance of its contents. 
These contents comprise 1) brain tissue, 2) blood, and 3) CSF. Typically, brain tissue occupies 
a volume of 1,469±102 cm3 in males and 1,289±111 cm3 in females, while CSF amounts to 90–
150 mL (with a production rate of 0.2–0.7 mL/min or 500–700 mL/day), and blood occupies 
100–130 mL (15% arterial, 40% venous, and 45% in microcirculation) (FIGURE 1).23,77)

However, brain tissue is incompressible; thus, to maintain constant ICP, compensatory 
adaptations through the influx and efflux of fluid components (blood and CSF) are necessary. 
In other words, mechanisms for arterial blood inflow, venous blood outflow from the cranial 
cavity, and adaptations between CSF production and drainage must operate. Consequently, 
an increase in ICP can arise from any mechanism that augments the volume of these three 
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FIGURE 1. The Monro-Kellie model illustrating the components of the intracranial compartment. This model 
demonstrates the delicate balance between brain tissue, CSF, and blood within the rigid skull. ‘Brain tissue’ 
encompasses neurons, glia, extracellular fluid, and cerebral microvasculature. ‘Venous’ and ‘arterial blood’ 
represent the intracranial blood volume in macrovasculature and cerebral venous sinuses. ‘CSF’ includes 
ventricular and cisternal CSF. 
CSF: cerebrospinal fluid.



constituents (brain tissue, blood, and CSF). While the cranial cavity can compensate for 
an increase in brain content due to edema, intracranial hemorrhage, or brain swelling by 
decreasing the volume of other components within its confined space, ICP will increase once 
this compensatory limit is exceeded (FIGURE 2).23) The increase in ICP remains constant up to a 
certain volume, but beyond the compensatory threshold, it increases exponentially (FIGURE 3). 
Hence, it is crucial to actively implement ICP reduction before exceeding this threshold.

DCE can be performed to control pathologically elevated ICP. DCE, which operates on 
the premise that ICP forms due to the presence of brain tissue, blood, and CSF within the 
rigid skull, breaks this precondition by expanding the confined cranial space. This method 
is considered for maintaining ICP in various elevated pressure situations. However, DCE 
should only be considered when ICP cannot be maintained even with the most aggressive 
medical therapy. Initial ICP management should include elevating the head up to 30 degrees, 
administering sedatives and analgesics, maintaining PCO2 at 38–40 mmHg, maintaining 
normothermia, administering hyperosmolar drugs (mannitol or hypertonic saline), 
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FIGURE 2. The Monro-Kellie Doctrine illustrating intracranial compensation mechanisms in response to an 
expanding mass.1) This doctrine demonstrates the complex interplay between brain tissue, CSF, and blood within 
the confined space of the skull. According to the Monro-Kellie Doctrine, when an expanding mass is introduced, 
compensatory mechanisms involving the reduction of one or both other components are employed to maintain 
constant intracranial pressure. These compensatory changes can reach a limit, after which further increases in 
mass may lead to rapid elevation of intracranial pressure and potential brain herniation. 
ICP: intracranial pressure, CSF: cerebrospinal fluid.



preventing hyperglycemia, and maintaining adequate cerebral perfusion pressure (CPP). 
Additionally, CSF drainage through ventriculostomy can be considered, and if DCE is difficult 
to perform, barbiturate coma therapy or hypothermia therapy can be initiated preoperatively.

Pharmacological treatment can be used for ICP values of 20–25 mmHg when CPP or brain 
tissue oxygen tension (PbtO2) is deemed adequate, without resorting to DCE. However, if 
persistent ICP elevation remains uncontrolled despite the aforementioned methods or if a 
decrease in CPP or PbtO2 is observed or anticipated, DCE should be considered.24)

Decompressive effect of decompressive craniectomy (DCE) and duroplasty
Despite maximum pharmacological treatment, if ICP is not adequately controlled, decreased 
CPP due to elevated ICP can lead to ischemic cell damage and death, resulting in secondary 
injuries such as ischemic brain injury and cerebral edema.78) In patients with uncontrolled 
increased ICP, DCE can be considered to aid in ICP control. Evidence supporting DCE shows 
a direct relationship between the total time of ICP elevation above 20 mmHg and poor 
prognosis.61) Prolonged uncontrolled ICP is associated with increased mortality and poorer 
neurological outcomes.61) Therapeutic approaches to reduce ICP include decreasing the 
volume of intracranial contents (blood, brain tissue, or CSF), reducing cerebral metabolic 
demand (hypothermia treatment, barbiturate therapy, etc.), and increasing intracranial 
voluminal capacity through DCE. The DCE not only shifts the pressure-volume curve to 
the right, reducing the amplitude of ICP waves, but also improves intracranial compliance 
(FIGURE 4).78)
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FIGURE 3. Pressure-volume curve for ICP.1,2) This curve demonstrates the relationship between intracranial 
volume and ICP, with four distinct ‘zones’: (1) baseline intracranial volume with good compensatory reserve and 
high compliance (blue); (2) gradual depletion of compensatory reserve as intracranial volume increases (yellow); 
(3) poor compensatory reserve and increased risk of cerebral ischemia and herniation (red); and (4) critically 
high ICP causing collapse of cerebral microvasculature and disturbed cerebrovascular reactivity (grey). The curve 
highlights the importance of monitoring and managing ICP in clinical practice, as changes in intracranial volume 
can have significant implications for patient outcomes. 
ICP: intracranial pressure.



Following DCE, the reduction in ICP allows for an increase in CBF, CPP, and cerebral 
microcirculation, enabling the reestablishment of the balance between cerebral inflow 
and outflow. Brain tissue oxygenation (PbtO2) also improves. Thus, DCE reduces ICP, and 
decreased ICP can improve both survival rates and neurological prognosis.

The reduction of ICP through DCE has been demonstrated in several studies. The mean ICP 
before skin incision was 41±16.2 mmHg, which decreased to an average of 18 mmHg after DCE. 
In cases where duroplasty was also performed, ICP decreased further to an average of 10.6 
mmHg (FIGURE 5).5,43) Additionally, in several studies, DCE effectively reduced ICP and was 
beneficial for maintaining CPP. Significant ICP reduction has also been reported in patients who 
underwent DCE compared to those who received medical treatment alone for head trauma.46,60,71)

However, in the DECRA trial conducted in head trauma patients, DCE reduced ICP and 
decreased the duration of intensive care unit stays but resulted in a higher proportion of 
patients with poor functional outcomes. These results for TBI suggest the presence of 
additional pathophysiological changes (atmospheric pressure, CSF dynamic changes, venous 
drainage changes, transcapillary leakage, etc.) that occur in decompressive surgery, which 
may compromise the benefits of ICP reduction and cerebral perfusion improvement.60) In 
contrast, the DESTINY II trial showed that DCE increased survival rates and had favorable 
functional outcomes in patients with uncontrolled ICP elevation accompanied by cerebral 
infarction.32) The RESCUEicp trial also reported favorable survival rates and functional 
outcomes in patients with TBI who underwent DCE.28)

Physiological changes following DCE improvement of cerebral blood flow, perfusion, and 
brain tissue oxygenation, autoregulation following DCE
Following DCE, the intracranial space expands and ICP decreases, leading to changes in 
CBF and CSF circulation. Although the reduction in ICP generally improves CBF and CSF 
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FIGURE 4. Pressure-volume curve for ICP before and after decompressive craniectomy.6,7) The curve illustrates 
the relationship between intracranial volume and ICP, emphasizing the impact of DCE on the pressure-volume 
compensatory reserve (RAP). The red line represents the pressure-volume curve before decompressive 
craniectomy, while the red dot-line indicates the pressure-volume curve after decompressive craniectomy. 
Following decompressive craniectomy, there is an increase in the pressure-volume compensatory reserve, as 
demonstrated by the shift in the curve. This figure highlights the effectiveness of decompressive craniectomy in 
alleviating elevated ICP and improving intracranial compliance. 
DCE: decompressive craniectomy, ICP: intracranial pressure, RAP: pressure-volume compensatory reserve.



circulation, thereby ameliorating clinical outcomes, it does not exclusively produce favorable 
effects. In patients with TBI, CBF increased in the decompressed brain lesions within 
24 hours after the craniectomy. This finding was confirmed by evaluating the changes in 
regional cerebral blood flow (rCBF) using single-photon emission computed tomography 
performed immediately before surgery, immediately after surgery (within 24 hours), one 
week later, and one month later. Immediately after surgery, low perfusion areas were clearly 
surrounded by hyperperfusion areas in the decompressed hemisphere. One week later, both 
the severity and size of the hyperperfusion areas increased. After one month, hyperperfusion 
appeared to subside. Hyperperfusion areas coincided with areas of cerebral edema on brain 
CT scans. The authors attributed the increased rCBF and cerebral edema to cerebrovascular 
dysregulation and increased CPP following DCE.38)

Perfusion CT analysis after DCE revealed increased CBF and cerebral blood volume (CBV) 
not only in the lesion but also in the contralateral hemisphere.66) In another study, cerebral 
microvascular blood flow doubled after DCE, as measured by contrast-enhanced ultrasound 
performed before and after surgery. This increase was primarily due to an increase in 
microvascular blood volume. CBF and CBV increased on average by five times until the 
third day after surgery. Such increased blood flow can exacerbate cerebral edema, and when 
combined with increased postoperative CPP, impaired cerebral vascular pressure reactivity, 
and cerebral inflammation, there is a possibility of cerebral edema. By controlling CBF, CPP, 
ICP, and arterial blood pressure (ABP) within appropriate ranges after surgery, the potential 
exacerbation of cerebral edema can be prevented.7)
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FIGURE 5. ICP values at the each surgical steps6,7) The box plot illustrates the median ICP values (solid line within 
each box) and the interquartile range (p25 to p75) represented by the boxes. This figure highlights the variations 
in ICP throughout the surgical process, emphasizing the importance of each surgical procedures to decrease ICP 
during neurosurgical procedures to optimize patient outcomes. 
ICP: intracranial pressure.



Along with increased CBF following DCE, indicators of brain metabolism, such as brain 
tissue oxygenation (PbtO2) and microdialysis, also improved. In patients with subarachnoid 
hemorrhage (SAH), PbtO2 significantly increased from hypoxic levels (6 mmHg) to normal 
oxygen levels (23 mmHg) following DCE and a decrease in ICP.38) In another study, PbtO2 
increased from an average of 21.2±13.8 to 45.5±25.4 mmHg in patients with TBI and SAH 
following DCE and increased CBF.38)

However, there are conflicting results regarding the indicators representing cerebral 
autoregulation. The pressure reactivity index (PRx), which represents the dynamic response 
of ICP to changes in ABP, is an indicator of cerebrovascular reactivity. Normally, responsive 
cerebral arteries contract in response to a systemic increase in arterial pressure, resulting in 
a transient decrease in CBV and a subsequent decrease in ICP. Thus, in cases with normal 
cerebral autoregulation, changes in blood pressure and ICP exhibit a negative correlation. 
However, in patients with impaired cerebral autoregulation, changes in arterial pressure and 
ICP simultaneously increase, showing a positive correlation. Following DCE, ICP decreases, 
but arterial pressure and ICP may still exhibit a positive correlation. This suggests that the 
autoregulation function (PRx) might actually decrease after DCE.71) The mechanism for this 
is not yet clear, but it is hypothesized to be related to the expansion of brain tissue after DCE, 
leading to a decrease in brain elasticity, as well as changes in the autoregulatory function of 
the brain tissue and cerebral vessels exposed to atmospheric pressure. Additionally, some 
studies have shown that although ICP reduction is achieved after DCE, the cerebral metabolic 
rate of O2 remains unchanged.38) These findings are particularly pronounced in patients 
who exhibit poor prognosis following DCE.73) Thus, while the ICP reduction effect has 
been demonstrated after DCE, further research on additional hemodynamic and metabolic 
indicators is warranted.

Indications for DCE
Ischemic stroke56,57)

In patients with cerebral infarction, DCE is performed to prevent secondary brain damage 
caused by cerebral edema and increased ICP due to ischemic stroke. Hemicraniectomy is 
performed for cerebral infarctions, while SOC is conducted for cerebellar infarctions.

DCE is performed in patients with cerebral infarction to relief malignant cerebral edema, 
increased ICP, and subsequent brain herniation resulting from extensive ischemic areas. The 
effectiveness of DCE in reducing ICP caused by cerebral edema is well-established. Several 
studies have reported that DCE reduces mortality rates by approximately 50% in patients 
with cerebral edema due to unilateral middle cerebral artery (MCA) infarction compared to 
pharmacological treatment, making it an essential life-saving treatment.17,18,33,34,49,72) However, 
patients with MCA infarction have a high mortality rate and a high likelihood of living with 
severe disabilities due to neurological sequelae. Therefore, functional recovery should 
also be considered beyond merely reducing mortality rates. The AHA/ASA guidelines56) 
recommend considering these characteristics when deciding on DCE and provide varying 
levels of recommendations based on age and symptom onset time based on the DECIMAL,72) 
DESTINY I,33) II,32) HAMLET,18,26) Zhao et al.,80) and HeADDFIRST17) randomized controlled 
trials (RCTs). The DECIMAL,72) DESTINY I,33) HAMLET18) RCTs, and three pooled meta-
analyses demonstrated reduced mortality and severe disability (mRS 5–6) in patients aged 
60 and below, while the DESTINY II32) and Zhao et al.80) RCTs showed reduced mortality and 
severe disability (mRS 5–6) in patients aged 80. However, the functional outcomes were 
significantly worse compared to those under 60 years of age. Based on these findings, the 
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guidelines recommend Class IIa, Level A for patients aged 60 and below, and Class IIb, Level 
B for those over 60 years of age when neurological deterioration occurs due to cerebral edema 
from unilateral MCA infarction, DCE should be conducted within 48 hours of symptom onset 
(TABLE 1).56)

Regarding the timing of decompressive surgery, the most optimal time is unknown, but 
it is recommended to consider surgery when the patient exhibits a decreased level of 
consciousness (Class IIa, Level A).56) Generally, cerebral edema peaks between 2–5 days after 
the onset of cerebral infarction, and neurological deterioration due to this edema occurs 
within 48 hours. Although the timing of decompressive surgery varies among studies, 
research has been conducted within 4 days, including at 36, 48, and 96 hours. The HAMLET 
study investigated DCE timing within 96 hours of symptom onset and found that patients 
who underwent surgery within 48 hours had reduced mortality rates (19% vs. 78%) and 
severe disability rates (mRS 5–6; 48% vs 78%).26) Based on these findings, early DCE within 
48 hours of symptom onset after cerebral infarction is recommended.18,26)

The extent of cerebral infarction is also an important factor in determining to perform 
DCE. According to Sundseth et al.’s study69) on early mortality prediction in patients who 
underwent DCE for cerebral edema caused by MCA infarction, early mortality rates were 
significantly higher when the infarction progressed to the anterior cerebral artery (ACA) 
territory (42.9% vs 19.4%). Therefore, in patients with cerebral infarction involving the 
ACA territory, the decision to perform DCE should be made early, and this factor should be 
considered when determining the timing of surgery.

Cerebellar infarction-induced cerebral edema can cause rapid neurological deterioration 
due to brainstem compression and the development of acute obstructive hydrocephalus, 
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TABLE 1. Overview of the randomized controlled trials50) about decompressive craniectomy for cerebral infarction28)

Study name Age 
(years)

Inclusion from 
symptom 

onset (hours)

Imaging criteria Clinical criteria Primary outcome 
parameter

Main finding

DECIMAL 18–55 <24 >50% ischemic MCA 
territory; MRI-DWI 
infarct volume >145 cc

NIHSS>15; NIHSS 1a≥1 mRS 0–3 at 6 months 52.5% absolute mortality 
reduction with DC compared to 
BMT(p<0.0001); no significant 
difference between DC and BMT 
regarding mRS 0–3

DESTINY I 18–60 >12 to <36 ≥2/3 MCA territory 
with basal ganglia; 
with/without ACA/PCA 
territory

NIHSS>18(non-dominant) or >20 
(dominant); NIHSS 1a≥1

Sequential design; 
mortality after 30 days; 
mRS 0–3 vs. 4–6 at 6 

months

Mortality reduction from 88% 
to 47% with DC after 30 days 
(p=0.02)

HAMLET 18–60 <96 ≥2/3 MCA territory; 
formation of space 
occupying edema

NIHSS ≥16(right) or ≥21 (left); NIHSS 
1a ≥1; GCS <13 (right-sided) or GCS 
(eye and motor score) <9 (left-sided)

mRS 0–3 vs. 4–6 at 12 
months

DC with no effect on primary 
outcome measure but significant 
reduction of case fatality (ARR 
38%)

Zhao et al. 18–80 <48 ≥2/3 MCA territory GCS (eye and motor score) ≤9 mRS 0–4 vs. 5–6 at 6 
months

Reduction of mortality (DC 
12.5% vs. BMT 60.9%, p=0.001) 
and mRS 5–6(DC 33.3% vs. BMT 
82.6 %, p=0.001)

HeADDFIRST 18–75 <96 ≥50% ischemic MCA 
territory (<5 hours) 
or complete MCA 
infarction (<48 hours)

NIHSS ≥18; NIHSS 1a <2 Survival 21 days Non-significant reduction of 
mortality at 21 days (DC 21% vs. 
BMT 40%, p=0.39)

DESTINY II >60 <48 ≥2/3 MCA territory 
with basal ganglia

NIHSS >14 (non-dominant) or 
>19 (dominant), reduced level of 
consciousness on NIHSS

mRS 0–4 at 6 months Significant reduction of severe 
disability (mRS scroes 5–6; DC 
38% vs. BMT 18%, p=0.04)

MCA: middle cerebral artery, MRI: magnetic resonance imaging, DWI: diffusion weighted image, NIHSS: National Institute of Health Stroke Scale, mRS: modified 
Rankin Scale, DC: decompressive craniectomy, BMT: best medical treatment, ARR: absolute risk reduction.



stemming from the anatomical structure of the inferior tentorium. Extraventricular drainage 
(EVD) is an effective treatment for obstructive hydrocephalus and can bring about significant 
neurological improvements in patients. However, when brainstem compression occurs 
due to cerebellar edema, EVD alone is insufficient, and SOC and decompression through 
the removal of dead brain tissue, if necessary, are required. Therefore, when neurological 
deterioration occurs, it is crucial to determine the presence of hydrocephalus, brainstem 
compression, and whether SOC is necessary in addition to EVD. In this regard, the AHA/
ASA guidelines recommend performing EVD if obstructive hydrocephalus is present, and 
initiating SOC from the outset if there is no response to EVD or if brainstem compression 
occurs due to mass effect (Class I) (FIGURE 6).56,58)

Hemorrhagic stroke
In spontaneous intracerebral hemorrhage (sICH), recommendations are similarly divided 
into cerebral hemorrhage and cerebellar hemorrhage, as with cerebral infarction. Despite of 
the high incidence of brainstem compression and acute obstructive hydrocephalus caused by 
the anatomical characteristics of the suboccipital tentorium, randomized studies are limited. 
However, hematoma evacuation is recommended for patients with neurological deterioration 
or those with hemorrhages larger than 15mL to reduce mortality rates compared to medical 
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treatment alone. Patients who underwent SOC, C1 posterior arch removal for decompression, 
and hematoma removal in the cerebellar hemorrhage showed better neurological outcomes 
compared to those who only underwent hematoma removal surgery, but the results were 
not statistically significant.21) Therefore, further research is needed to determine whether 
performing skull decompression simultaneously with hematoma removal is more beneficial.

For large ICH located in the supratentorial region, DCE is considered due to neurological 
deterioration, midline shift, and increased ICP. Many studies have shown that DCE reduces 
ICP and mortality rates, but there is insufficient evidence for functional improvement.52,79) 
Most studies involve patients in a coma (GCS<8), those with large hematomas (>30 mL), 
and those with persistently elevated ICP despite medical treatment. Surgical methods can be 
divided into cases where only DCE was performed, only hematoma removal was performed, 
or both were performed simultaneously.

According to a systematic review, mortality rates in patients with sICH were lower in the 
group that underwent DCE compared to the group that received only medical treatment (26% 
vs. 51%), but there was no difference in functional outcomes.52) In patients with deep ICH 
there was no significant difference in mortality or functional outcomes between those who 
underwent simultaneous DCE and hematoma removal and those who only underwent DCE.58) 
In some RCT studies, although there was no significant difference in mortality rates between 
patients who underwent only hematoma removal and those who underwent simultaneous 
DCE, hematoma removal, and duroplasty, the latter group showed favorable functional 
outcomes (mRS 0–3 at 6 months; 70% vs. 20%), indicating good functional recovery.

In patients with SAH caused by a ruptured aneurysm, a systematic review and meta-analysis 
of DCE showed that younger age, good grade SAH, and primary DCE were associated with 
better outcomes, suggesting that DCE can be considered in selected patient populations.13)

Based on these studies, DCE in patients with hemorrhagic stroke has the favorable effect of 
reducing mortality rates, but the effect on neurological functional improvement is unclear. 
Therefore, especially in patients with large supratentorial hematomas with persistent ICP 
elevation and midline shift despite medical treatment, DCE should be considered for life-saving 
purposes to reduce mortality rates. The effect on neurological functional improvement is 
uncertain, so surgical decisions should be made considering these factors (Class 2b, Level C-LD).

TBI9,10,25)

In patients with TBI, there is a lack of Level I evidence for DCE. There are two RCTs 
comparing the effects of medical treatment and DCE in TBI patients: the DECRA11) trial and 
the RESCUEicp28) trial. In the DECRA11) trial, DCE was performed within 72 hours (early) in 
cases where conservative treatment was ineffective (based on an ICP of 20 mmHg), while 
in the RESCUEicp28) trial, DCE (bilateral or unilateral DCE) was performed regardless of 
time, when ICP >25 mmHg persisted for more than 1 hour after conservative treatment. 
Both studies demonstrated that DCE effectively reduced ICP and decreased mortality rates; 
however, functional recovery was not observed.

Based on these results, bifrontal DCE was not recommended in 2017 for the purpose of 
improving functional outcomes (GOSE at 6 months). However, considering the findings of 
the DECRA trial analyzing 12-month outcomes and the results published in the RESCUEicp 
trial, the 2020 recommendations were updated to do DCE in patients with elevated ICP 
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unresponsive to medical treatment for improving mortality and favorable outcomes (Level 
IIA).25) Although the direct relationship between the effects of DCE and favorable outcomes 
remains unclear, it is now recommended to perform DCE (Level IIA) as it lowers ICP and 
reduces the length of stay in the intensive care unit.10,25)

In 2022, the results of a secondary analysis of the RESCUEicp trial at 24 months were 
published, showing that, at 24 months, the patients who underwent DCE had reduced 
mortality rates compared to those who received only medical treatment.35) However, there 
were higher rates of vegetative state, severe, and moderate disability, but a significant 
improvement of grade 1 or higher was observed between 6 and 24 months. Furthermore, the 
RESCUE-ASDH trial is currently underway, investigating the role of DCE in patients with 
acute traumatic subdural hematoma. Therefore, it is necessary to closely monitor future 
research findings on the role of DCE in patients with TBI (TABLE 2).

Optimal size of DCE
The importance of DCE for TBI patients has been demonstrated in the DECRA11) and 
RESCUEicp28) studies. In unilateral DCE, the size of the bone flap removal is a critical factor 
in determining patient prognosis.36) Recent guidelines recommend larger fronto-temporo-
parietal decompressive craniectomies (diameter 12×15 cm or >15 cm) over smaller ones to 
achieve better mortality rates and functional outcomes.10) A study involving TBI patients 
showed that the group that underwent standard DCE (12x15 cm) had better functional 
outcomes than the group that underwent limited DCE (6×8 cm) (39.8% vs. 28.6%).31) 
Furthermore, the mortality rate was also lower in the standard DCE group compared to the 
limited DCE group (26.2% vs. 35.1%).

In another study analyzing the relationship between the size of the DCE and patient 
prognosis in 20 TBI patients, the relationship between craniectomy size and mortality 
was significant, but the significance with functional outcomes could not be established.63) 
Notably, all patients with craniectomy diameters less than 10 cm died. One study analyzed 
a group of 74 patients who underwent very large decompressive craniectomies (≥12 cm).70) 
When analyzed in three categories, 12–15 cm, 15–20 cm, 20–24 cm, no differences in 
outcomes were observed. This study found that the risk of complications such as bleeding 
or cerebral edema did not increase in the group that underwent 12 cm DCE compared to the 
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TABLE 2. Summary of recommendation of decompressive craniectomy in ischemic stroke, hemorrhagic stroke, and traumatic brain injury
Disease Site Recommendation
Ischemic 
stroke

Supra-tentorial ≤60, onset within 48 hours, unilateral MCA infarction with refractory brain swelling: DCE with dural expansion is reasonable 
(Class IIa, Level A).

>60, onset within 48 hours, unilateral MCA infarction with refractory brain swelling: DCE may be considered (Class IIb, Level B).
Infra-tentorial Ventriculostomy is recommended in obstructive hydrocephalus after cerebellar infarction. Concomitant or subsequent 

decompressive craniectomy may be necessary (Class I, Level C).
Cerebellar infarction causing neurological deterioration from brainstem compression despite maximal medical therapy: 
Decompressive SOC should be performed (Class I, Level B).

Hemorrhagic 
stroke

Supra-tentorial In a coma (GCS<8), large hematoma (>30 mL) with significant midline shift, refractory IICP: DCE may be considered to reduce 
mortality but effectiveness of DCE to improve functional outcomes is uncertain (Class 2b Level C).

Infra-tentorial ≥15 mL, ventricular obstruction: immediate surgical removal of ICH is recommended to reduce mortality (Class I, Level B).
SAH Clinical evidence on the use of DCE in aSAH is limited but due to expected outcome benefit, DCE may be considered in case of 

young and good grade with IICP.
TBI (Level IIA) Secondary DCE performed for late refractory ICP elevation is recommended to improve mortality and favorable outcomes.

Secondary DCE performed for early refractory ICP elevation is not recommended to improve mortality and favorable outcomes.
Secondary DCE performed as a treatment for either early or late refractory ICP elevation is suggested to reduce ICP and 
duration of ICU

MCA: middle cerebral artery, DCE: decompressive craniectomy, SOC: suboccipital craniectomy, GCS: glasgow coma scale, IICP: increased intracranial pressure, 
SAH: subarachnoid hemorrhage, TBI: traumatic brain injury, ICU: intensive care unit.



group that underwent larger craniectomies. Therefore, considering these results, it appears 
that the effect of DCE can be seen when the size of the craniectomy reaches around 12 cm, 
but an increase in size does not necessarily improve the prognosis.

Optimal timing of CP
There is still controversy regarding the optimal timing of CP following DCE. The timing 
varies depending on the clinical indications for craniectomy. For cases with acute intracranial 
hypertension, CP should be performed after adequate control of ICP. However, in other 
cases (chronic intracranial hypertension due to brain tumors or skull lesions), immediate 
CP can be performed. Ultimately, the timing of CP should consider the patient's condition 
and be performed after adequate control of ICP and minimizing the risk of infections. This 
article aims to discuss the timing of CP following ICP control after DCE for acute intracranial 
hypertension.

There is no clear criterion for dividing the timing of early CP and late CP, but many studies 
define it based on a 3-month period.1,44) Traditionally, CP has been performed 3 months after 
DCE to allow for sufficient neurological and systemic recovery. However, recent research 
suggest that early CP (within 3 months) may facilitate CSF dynamics recovery and be 
advantageous for neurological recovery.12,55,74,75) Moreover, from a technical perspective, early 
CP at 5–8 weeks post-craniectomy has the advantage of easy tissue layer dissection due to less 
severe adhesion.4) On the other hand, late CP is associated with significantly longer surgery 
time due to tissue adhesion.54)

Various complications may arise after CP, such as infection, hydrocephalus, hygroma, 
seizures, intracranial hemorrhage, bone resorption, flap depression, and wound dehiscence. 
These complications should also be considered when determining the timing of CP. The 
optimal timing for CP should minimize surgical risks, prevent neurological deterioration due 
to the craniectomy state, and maximize neurological improvement.

Morton et al. confirmed favorable outcomes in terms of infection, seizure, hematoma, and 
bone resorption complications in 754 patients who underwent early CP between 15 and 90 
days post-craniectomy. However, ultra-early CP (within 14 days) was associated with the 
highest incidence of hydrocephalus and infection, while late CP (after 90 days) had a higher 
incidence of seizures.44) There were research that early CP in patients with TBI significantly 
increased the incidence of hydrocephalus.41) However, conflicting research findings exist. 
A meta-analysis conducted solely on TBI patients reported a significantly lower incidence 
of hydrocephalus in those who underwent early CP.45) By performing early CP, excluding the 
ultra-early phase when CSF dynamics are unstable, normalizing CSF dynamics early on may 
reduce the risk of hydrocephalus.45,48) Long-term exposure to the absence of the skull can lead 
to distribution and absorption disorders of the CSF, increasing the risk of hydrocephalus due 
to dysfunction of the arachnoid granulation.45)

Considering the aforementioned research findings, it seems more plausible that early CP 
does not aggravate hydrocephalus but rather triggers clinical symptoms in patients with 
underlying hydrocephalus. Therefore, there is no need to delay the timing of CP due to 
concerns of hydrocephalus development.

Moreover, no statistically significant differences were observed in complications associated 
with CP, such as intracranial hemorrhage, extra-axial fluid collection, seizures, and bone 
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graft resorption, depending on the timing of the procedure. Aseptic osteonecrosis has 
shown conflicting results in relation to the timing of CP across various studies.8,16,44) As a 
result, no significant correlation has been established between the timing of CP and the 
onset of aseptic osteonecrosis. Numerous studies have already demonstrated that early CP 
has a positive impact on neurological recovery.6,27,30,40,47) The most recent meta-analysis, 
which included eight studies involving 551 patients, reported that CP improved neurological 
function and that early CP further amplified this effect.40) The increase in CBF after CP could 
also be a contributing factor in promoting cognitive recovery.59,64,76) A study using transcranial 
Doppler to measure CBF in the MCA and ICA found that the group that underwent early CP 
had a more significant increase in CBF at the craniectomy site and improved contralateral 
CBF compared to the group that underwent delayed CP.67)

Although there is still controversy on the appropriate timing of CP, it can be inferred that 
performing early CP has beneficial effect in the overall neurological recovery. Specifically, 
early CP may reduce the risk of hydrocephalus (excluding the ultra-early period before 
14 days), facilitate tissue dissection during surgery, and promote neurological function 
improvement due to the normalization of CSF dynamics and the enhancement of CBF. 
Therefore, the authors recommend performing early CP within three months after 
controlling increased ICP.

SoT/sinking skin-flap syndrome after craniectomy
The SoT, also known as Sinking Skin-Flap Syndrome, is a complication characterized by 
unexplained neurological deterioration after craniectomy.2) In 1939, Grant and Norcross 
first described it as a collection of symptoms, including severe headache, dizziness, pain/
discomfort, anxiety, and mental depression after the craniectomy.20) This syndrome 
encompasses a wide range of neurological symptoms, including delayed neurological 
improvement, decreased motor function, cognitive decline, impaired vigilance, and 
headache.2) Typically, neurological symptoms caused by SoT can be expected to recover 
within a short period of 1 to 2 weeks after CP.2,68) However, there is no consistency in the size 
of the craniectomy and the duration until CP on the manifestation of SoT symptoms and the 
degree of improvement after CP. A systemic review of 48 articles revealed that SoT symptoms 
could appear up to 5 months after craniectomy,3) and the time to symptom onset varied. 
Regardless of elapsed time, it is essential for neurocritical care professionals to suspect SoT 
if the patient has unexplained neurological deterioration. The pathogenesis of SoT is not yet 
fully understood, but several theories exist (FIGURE 7)3):

1)  Atmospheric pressure: It is argued that atmospheric pressure directly affects the brain 
at the skull defect site, causing CSF circulation disorders and pressure on cerebral blood 
vessels, leading to decreased CBF.2,53) It is assumed that the larger the skull defect, the 
greater the reduction in blood flow.14)

2)  CBF: The decrease in CBF is due to atmospheric pressure and venous blood flow 
disturbance, occurring not only at the skull defect site but also on the opposite side.67,68)

3)  CSF flow: Due to skull defects, abnormal CSF circulation can cause brain edema 
progression and hydrocephalus due to dysfunction of arachnoid granulations.45,68)

4)  Cerebral metabolism: The deterioration of neurological symptoms is explained by cortical 
dysfunction due to metabolic abnormalities in glucose, as evidenced by the decreased ratio 
of phosphocreatinine to inorganic phosphate, a marker of brain energy depletion in the 
damaged hemisphere.62)
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Dujovny et al.15) demonstrated that the systolic CSF flow doubled after CP compared to 
the craniectomy state, arguing that this change was due to the alleviation of CSF flow 
obstruction. Additionally, the association between aggravated neurological symptoms in 
SoT and CBF was proven using cerebral perfusion CT and MRI imaging, and improvements 
could be observed after CP. The increase in CBF after CP can also promote neurological and 
cognitive recovery.59,64,76) A systemic review of 21 articles confirmed that CP improved CBF in 
a total of 205 cases.64) A prospective study on patients who underwent craniectomy due to 
TBI also confirmed that not only improve CBF after CP, but the difference in CBF between 
the hemispheres also decreased, as demonstrated by CT perfusion performed before and 
after CP.76) The improvement of neurological symptoms after CP is also attributed to the 
normalization of neural tracts. Diffusion tensor imaging was used to compare tractography 
before and after CP, showing that tracts recovered along with symptom improvement.29)

Debate on suboccipital CP: is it necessary?
SOC is a surgical procedure aimed at decompression of lesions in the posterior fossa. 
During the surgery, most cases involve exposure of the venous sinus or mastoid air cells. 
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Furthermore, the procedure often results in a much smaller bone flap than the extent of 
the craniectomy. Traditionally, SOC has been a permanent skull removal procedure.51,65) CP 
for SOC has only been performed more recently, with limited cases until the 1990s, due to 
concerns of the posterior fossa narrowing again. Leaving the craniectomy open was believed 
to be safer, easier to perform, more advantageous in controlling brain edema, and associated 
with lower rates of hydrocephalus. However, recent reports have shown that restoring the 
bone flap is associated with fewer complications than leaving it removed.19,22,39)

Failure to reconstruct suboccipital defects can lead to complications such as sinking at the 
defect site, persistent headaches due to dural adhesion of muscle fibers, pseudomeningocele 
formation, CSF leakage, arachnoid adhesion, continuous tonsillar compression, and 
cerebellar sag.42) Suboccipital CP has been reported to prevent the above complications.

A 2018 survey conducted by the American Association of Neurologic Surgeons37) revealed 
significant differences in performing suboccipital CP after posterior fossa decompression, 
depending on patient characteristics (underlying disease, age), and geographical location. 
Pediatric cases showed a higher preference for CP, and the proportion of CP performed was 
higher in brain tumor patients compared to cerebrovascular patients.

Although there has traditionally been a tendency not to perform suboccipital CP following 
SOC, in patients with persistent headaches, CSF leakage, or cerebellar sag after SOC, it is 
necessary to positively consider suboccipital CP.

CONCLUSION

In conclusion, DCE has been regarded as an essential surgical intervention for managing elevated 
ICP in various clinical scenarios such as ischemic stroke, hemorrhagic stroke, and TBI. However, 
our understanding of the physiological effects and optimal application of DCE remains an area 
of ongoing research. While DCE has demonstrated efficacy in reducing ICP, the impact on 
cerebral autoregulation and other hemodynamic and metabolic indicators necessitates further 
investigation. Determining the optimal size of the craniectomy and the timing of CP are also 
critical factors in patient outcomes. Early CP, performed within three months of controlling 
increased ICP, appears to be beneficial for overall neurological recovery, as it may reduce the risk 
of hydrocephalus, facilitate tissue dissection during surgery, and promote neurological function 
improvement due to the normalization of CSF dynamics and enhancement of CBF. Furthermore, 
the debate surrounding the necessity of suboccipital CP underscores the need for a more 
comprehensive understanding of this procedure's role in patient care. As our knowledge of DCE 
and CP continues to evolve, it is crucial for clinicians to remain informed of the latest evidence 
and tailor their interventions to optimize patient outcomes in this complex field.
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