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Purpose: Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease (CKD) worldwide. Elucidation of the molecular 
mechanisms underlying ferroptosis and immunity in DKD could aid the development of potentially effective therapeutics. This study 
aimed to perform an integrated analysis of ferroptosis and immune-related differentially expressed mRNAs (DEGs) in DKD.
Materials and Methods: Gene expression profiles of samples obtained from patients with DKD and controls were downloaded from 
the Gene Expression Omnibus (GEO) database. The potential differentially expressed genes (DEGs) were screened using R software, 
and ferroptosis immune-related differentially expressed genes (FIRDEGs) were extracted from the DEGs. We performed functional 
enrichment analyses, and constructed protein–protein interaction (PPI) networks, transcription factor (TFs)-gene networks, and gene- 
drug networks to explore their potential biological functions. Correlation analysis and receiver operating characteristic curves were 
used for evaluating the FIRDEGs. We used the CIBERSORT algorithm to examine the composition of immune cells and determine the 
relationship between FIRDEG signatures and immune cells. Finally, the RNA expression of six FIRDEGs was validated in animal 
kidney samples using RT-PCR.
Results: We identified 80 FIRDEGs and performed their functional analyses. We identified six hub genes (Ccl5, Il18, Cybb, Fcgr2b, 
Myd88, and Ccr2) using PPI networks and predicted potential TF gene networks and gene-drug pairs. Immune cells, including M2 
macrophages, resting mast cells, and gamma-delta T cells, were altered in DKD; the FIRDEGs (Fcgr2b, Cybb, Ccr2, and Ccl5) were 
closely correlated with the infiltration abundance of M2 macrophages and gamma-delta T cells. Finally, the hub genes were verified in 
mouse kidney samples.
Conclusion: We identified six hub FIRDEGs (Ccl5, Il18, Cybb, Fcgr2b, Myd88, and Ccr2) in DKD, and predicted the potential 
transcription factor gene networks and possible treatment targets for future research.
Keywords: diabetic kidney disease, ferroptosis, immunity, bioinformatics

Introduction
Chronic diseases such as diabetes are becoming increasingly prevalent each year owing to the steadily growing older 
population, which poses a significant burden to the public healthcare system.1 Diabetic kidney disease (DKD) is a serious 
microcirculatory complication in the late stages of diabetes and is the leading cause of chronic kidney disease.2 According 
to reports, 35–40% of diabetic patients will experience irreparable kidney impairment and advance to DKD.3 The precise 
pathophysiology of DKD is currently unknown, and there is a lack of effective therapies. Therefore, exploring the 
mechanisms underlying DKD and identifying drugs to treat these conditions have become the therapeutic priorities.

Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation.4 In DKD, ferroptosis produces large 
amounts of reactive oxygen species, causing kidney damage through oxidative stress.5 Inhibiting ferroptosis could be 
a strategy to treat DKD.6 Ferroptosis offers a new perspective on the pathogenesis of DKD; it is a complicated 
physiological process regulated by multiple genes and its specific regulatory mechanisms require further investigation.
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There is a relationship between ferroptosis and immune cell infiltration. Ferroptotic cells can initiate macrophage 
recruitment7 and affect macrophage polarization via iron metabolism.8 Immune cells undergo phagocytosis and iron 
accumulation. Activated immune cells secrete certain cytokines9 and ROS10 to regulate ferroptosis. Li et al11 and Ma 
et al12 suggested a possible connection between immunity and ferroptosis in DKD; however, the precise mechanisms 
remain unknown. The role of ferroptosis in immunotherapy has received increasing attention.13 Altering macrophage 
polarization could help treat cancer by altering the tumor microenvironment.14–16 Therefore, further studies on reliable 
biomarkers connected to the ferroptosis-immune crosstalk in DKD may provide new perspectives on the pathophysiology 
of the disease and potential treatment options.

This study aimed to perform an integrated analysis of ferroptosis and immune-related differentially expressed genes 
(FIRDEGs) in DKD. In this study, we searched for differentially expressed genes (DEGs) in the GSE30122, GSE30528, 
and GSE30529 datasets to investigate the primary pathogenesis of DKD. An integrated analysis of ferroptosis and 
immune-related DEGs was performed to observe immune cell infiltration and its relationship with ferroptosis. In 
addition, the expression, function, and regulatory elements of FIRDEGs were observed and investigated. The RNA 
expression of FIRDEGs was validated in animal kidney samples using reverse transcription-polymerase chain reaction 
(RT-PCR). The finding offers a possible therapeutic target for treating patients with DKD and provides new information 
on the mechanism of DKD cell death.

Materials and Methods
Data Acquisition
The gene expression profiles of GSE30122,17 GSE30528,17 and GSE3052917 were downloaded from the Gene 
Expression Omnibus (GEO)18 based on the GPL571[HG-U133A_2] Affymetrix Human Genome U133A 2.0 Array 
platform and annotated using the R package GEOquery.19 Nineteen kidney samples from patients with DKD and 50 from 
normal controls in GSE30122, 9 DKD samples and 13 normal control samples in GSE30528, and 10 DKD samples and 
12 normal control samples in GSE30529 were included in the study.

Ferroptosis-related genes (FRGs) were obtained from three databases: GeneCards (http://www.genecards.org/), 
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/),20 and FerrDb (http://www.zhounan.org/ferrdb/).21 Immune- 
related genes (IRGs) were obtained from GeneCards and MSigDB databases.

Analysis of DEGs
To identify the pathways and biological mechanisms related to DKD, we used the limma package22 to find DEGs in 
GSE30122, GSE30528, and GSE30529. The threshold was defined as a P-value < 0.05, and |log2FoldChange| > 0.23 In 
this study, DEGs with logFoldChange (FC) > 0 and P < 0.05 were considered upregulated genes, whereas those with 
logFoldChange < 0 and P < 0.05 were considered downregulated genes.

To analyze the FIRDEGs correlated with DKD, co-DEGs and ferroptosis immune-related genes (FIRGs) were 
analyzed together and the results were plotted as a Venn diagram. The R package pheatmap was used to create the 
heat map, and ggplot2 was used to draw the volcano map.

Gene Ontology and Pathway Enrichment Analysis
The packages “cluster Profiler”24 in R software were used to perform Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analyses for FIRDEGs. P-values were adjusted using the Benjamini– 
Hochberg (BH) method. P < 0.05 was used as the threshold for statistical significance, and a false discovery rate (FDR) < 
0.05 was considered significant.

Distribution of a predefined gene set was evaluated using GSEA to ascertain the contribution of each gene to the 
phenotype. In this study, the logFC value was used for molecular ordering to evaluate significant enrichment in the predefined 
gene set, and the clusterProfiler package was used to conduct enrichment analysis on all genes related to the phenotype. The 
parameters used in GSEA were as follows: seed, 2020; number of calculations, 1000; number of genes contained in each gene 
set, at least 10; and number of genes contained, at most 500. P-values were adjusted using the BH method. GSEA of the 
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GSE30122 dataset was performed using gene set collections (h.all.v7.4. symbols.gmt) from MSigDB. If P < 0.05 and FDR 
<0.25, enrichment was regarded as significant.

Protein-Protein Interaction (PPI) Network
PPI networks were investigated using the STRING database25 and visualized using Cytoscape software. CytoHubba26 of 
Cytoscape was used to score each node gene using five algorithms: Degree Correlation (DEGREE), Maximum 
Neighborhood Component (MNC), Maximal Clique Centrality (MCC), Edge Percolated Component (EPC), and 
Density of Maximum Neighborhood Component (DMNC). The top 15 node genes as scored by the algorithms were 
selected as hub genes.

Multi-Factor Regulatory Network
Interactions between target genes and miRNAs were predicted using two databases: ENCORI27 (https://starbase.sysu. 
edu.cn/) and miRDB28 (http://mirdb.org/). We used the CHIPBase database29 (https://rna.sysu.edu.cn/chipbase/) and 
hTFtarget database30 (http://bioinfo.life.hust.edu.cn/hTFtarget) for predicting the associations between transcription 
factors (TF) and hub genes. The DGIdb database31 (http://www.dgidb.org) was used to identify potential metabolites 
or compounds associated with hub genes. Cytoscape software was used to visualize mRNA-miRNA, mRNA-TF, and 
mRNA-drug interaction networks.

Evaluation of Immune Cell Infiltration
Gene expression profile data were uploaded to the CIBERSORT website32 (https://cibersort.stanford.edu) to obtain an 
immune cell infiltration matrix. Differences in immune cell infiltration between normal and DKD groups were assessed 
using the Wilcoxon test. The correlation between different immune cells was calculated using Spearman’s analysis and 
visualized using the R package ggplot2. The R package ggplot2 was used to visualize the heat map of the correlation 
between FIRDEGs and infiltrating immune cells.

Correlation Analysis with Renal Function
The association between FIRDEGs expression and clinical characteristics was validated using the NephroSeq v5 online 
database (http://v5.nephroseq.org) using Pearson’s correlation analysis.

Receiver Operating Characteristic (ROC) Curve
To identify the underlying mechanisms and related biological characteristics of hub genes in DKD, the correlations between 
hub genes were displayed using a group comparison map and a correlation heatmap for the GSE30122, GSE30528, and 
GSE30529 datasets. The R package pROC was used to visualize the ROC curves of hub genes between the normal and 
DKD groups. The area under the curve (AUC) was calculated to assess the diagnostic effect of hub genes on DKD.

Validation of FIRDEGs in a Mouse Model
Animal Model
Animal models of type 2 diabetes (db/db male mice (n = 6)) and db/m male mice (n = 6) were used as controls. All the mice 
were fed until they were 20-week-old. Metabolic cages were used to collect 24-hour urine from mice. Glucose meters 
(Roche Diagnostics, Shanghai, China) were used to monitor fasting blood glucose levels. After the mice were anesthetized, 
blood was collected through the orbit and centrifuged to preserve the upper serum. After sacrifice, kidney and body weight 
were recorded. Kidney tissues were collected following cardiac perfusion and frozen at −80°C. The animal experiments 
were carried out in line with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were 
granted permission by the Anhui Medical University Animal Ethics Committee (LLSC20221089).

Chemicals and Reagents
Hematoxylin and eosin (H&E) and periodic acid–Schiff (PAS) staining kits were acquired from Solarbio (Beijing, 
China). Immunohistochemistry (IHC) kits were obtained from Beijing Zhongshan Company (Beijing, China). The PCR 
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amplification kit was acquired from Shanghai Yeasen Company (Shanghai, China). Mouse monoclonal anti-Gpx4 
antibody (1:100, cat number:67763-1-Ig) was provided by Proteintech (Wuhan, China). Mouse monoclonal anti-Acsl4 
antibody (1:100, cat number: sc-365230) was provided by Santa Cruz Biotechnology (CA, USA). Mouse urine albumin, 
serum creatinine, and serum urea nitrogen detection kits were purchased from the Nanjing Jiancheng Bioengineering 
Institute (Nanjing, China).

Pathological Staining of Kidney Tissues
H&E and PAS staining were performed followed the manufacturer’s methods. IHC assay was performed as previously 
described.33 After dewaxing the kidney tissues, the antigens were extracted by boiling in citrate buffer. The sections were 
blocked with peroxidase and 10% normal goat serum, and then incubated with primary antibodies at 4 °C overnight. 
They were then incubated with secondary antibodies for 1 h at 37 °C; this was followed by chromogenic detection with 3, 
3’-diaminobenzidine.

RT-PCR Assay
Total RNA was extracted from the kidney tissue of mice following the manufacturer’s instructions. Reverse transcription 
and RT-PCR were performed using the Hifair II First Strand cDNA Synthesis Kit and SYBR Green Kit (Yeason Biotech, 
Shanghai, China), respectively. The RT-PCR primer sequences are listed in Table 1.

Statistical Analysis
All statistical analyses were performed using the R package (V4.1.2). Comparisons involving continuous variables 
between two groups were performed using Student’s t-test for normally distributed variables and the Mann–Whitney 
U-test for non-normally distributed variables. Categorical variables were compared using the chi-square or Fisher’s exact 
tests. Spearman correlation coefficients were calculated to analyze the correlations. All P-values were two-sided, and 
statistical significance was set at P < 0.05.

Results
Identification of Differential Expression Genes
The study design is presented in Figure 1.

Three datasets, GSE30122, GSE30528, and GSE30529, were used to identify DEGs. Normalized boxplots for each 
dataset are shown in Supplementary Figure 1. The DEGs were visualized using a volcano map (Figure 2A–C) and 
heatmap (Figure 2D–F).

A total of 3521 DEGs were found in GSE30122, including 1320 upregulated and 2201 downregulated genes 
(Figure 2A). The top ten upregulated DEGs were Ltf, Igj, C3, Serpina3, Evi2a, Col6a3, Cxcl6, Ly96, Cpa3, and Cd53, 
whereas the top ten downregulated DEGs were B3gnt1, Lpl, Avpi1, Nell1, Hrg, Fgf9, Kat2b, Apold1, Magi2, and Il12ra2 
(Figure 2D). GSE30528 contained 3440 DEGs, with 1714 upregulated and 1726 downregulated genes (Figure 2B). The 
top 10 upregulated DEGs (Olfml3, Serpina3, Igj, C1qb, C1qa, Ltf, Vtcn1, Vsig4, Pycard, and Ap1m2) and the top 10 
downregulated DEGs (Arhgap19, Lox, Plce1, C1orf21, Magi2, Lrrc2, Fbxl7, Dach1, Fam65a, and Dpysl3) are shown in 
Figure 2E. GSE30529 included 4270 DEGs, comprising 1490 upregulated and 2780 downregulated genes in DKD 

Table 1 Primer Sequences of RT-PCR

Primer Forward Primer Reverse Primer

Ccl5 CCTGCTGCTTTGCCTACCTCTC ACACACTTGGCGGTTCCTTCGA

Il18 GACAGCCTGTGTTCGAGGATATG TGTTCTTACAGGAGAGGGTAGAC
Cybb TGGCGATCTCAGCAAAAGGTGG GTACTGTCCCACCTCCATCTTG

Fcgr2b CTACTGTGGACAGCCGTGCTAA TCACCGTGTCTTCCTTGAGCAC

Myd88 ACCTGTGTCTGGTCCATTGCCA GCTGAGTGCAAACTTGGTCTGG
Ccr2 GCTGTGTTTGCCTCTCTACCAG CAAGTAGAGGCAGGATCAGGCT

β-actin CATTGCTGACAGGATGCAGAAGG GCTGGAAGGTGGACAGTGAGG

https://doi.org/10.2147/DMSO.S434970                                                                                                                                                                                                                               

DovePress                                                                                                                                

Diabetes, Metabolic Syndrome and Obesity 2023:16 3776

Wang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=434970.pdf
https://www.dovepress.com
https://www.dovepress.com


(Figure 2C). Positive correlations among the top 10 DEGs were found for Ltf, Hopx, Psmb9, Igj, C3, C1s, Evi2a, Col6a3, 
Serpina3, and Tac1, whereas the top 10 downregulated DEGs were Avpi1, Egf, Nell1, Nr0b2, Arsf, Lpl, Thy1, Hrg, 
B3gnt1, and G6pc (Figure 2F).

Identification of FIRDEGs
When the word “ferroptosis” was used as the search tag, 698 FRGs were retrieved from GeneCards; 64, from MSigDB; 
and 339, from FerrDb. Together, 853 FRGs were obtained after the union (Supplementary Table 1). When the word 
“immune” was used as the search tag, 17,731 and 772 IRGs were retrieved from GeneCards and MSigDB, respectively. 
After intersection of sets, the final number was: 711 IRGs (Supplementary Table 2). After combining FRGs and IRGs, 
1500 FIRGs were obtained (Supplementary Table 3). A Venn diagram was created according to the different gene 
expression patterns of the three datasets (GSE30122, GSE30528, and GSE30529) and 558 co-DEGs were identified 
(Figure 2G). Finally, the overlap of the co-DEGs and FIRGs yielded 80 FIRDEGs (Figure 2H). The FIRDEGs are shown 
in Supplementary Table 4.

GO and KEGG Pathway Enrichment Analysis
GO and KEGG enrichment analyses were performed to evaluate the functions of FIRDEGs in patients with DKD. 
GO analysis consisted of three parts: cellular components (CC), biological processes (BP), and molecular 
functions (MF). Among them, the JAK−STAT (GO:0007259), MAPK (GO:0051403), cell growth 
(GO:0016049), and gliogenesis (GO:0042063) pathways were significantly associated with CC. Specific granules 
(GO:0042581), membrane rafts (GO:0045121), tertiary granules (GO:0070820), and granular membranes 
(GO:0035579) were significantly associated with BP. For MF, glycosaminoglycan binding (GO:0005539), integrin 
binding (GO:0005178), cytokine receptor activity (GO:0004896), and amyloid beta binding (GO:0001540) were 
significant (Figure 3A, C, and E, Table 2). In addition, KEGG pathway analysis revealed some Hippo signaling 
pathways, comprising ECM-receptor interaction, focal adhesion, lipid and atherosclerosis, chemokine signaling 
pathway, and PI3K-Akt signaling pathway (Figure 3B, D, and F, Table 3).

Figure 1 Flow chart of the study design. 
Abbreviations: FIRDEGs, ferroptosis immune-related differentially expressed genes; GSEA, Gene Set Enrichment Analysis; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; PPI network, Protein-protein interaction network; TF, Transcription factors; Co-DEGs, Common differentially expressed genes; 
ROC, Receiver operating characteristic curve.
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Figure 2 Differential gene analysis of diabetic kidney diseases databases. (A) The volcano map of GSE30122. (B) The volcano map of GSE30528. (C) The volcano map of 
GSE30529. (D) The heatmap of GSE30122. (E) The heatmap of GSE30528. (F) The heatmap of GSE30529. (G) Venn diagram of the Co-DEGs in GSE30122, GSE30528 and 
GSE30529. (H) Venn diagram of Co-DEGs and FIRGs. 
Abbreviations: Co-DEGs, Common differentially expressed genes; FIRGs, ferroptosis immune-related genes; DKD, Diabetic kidney disease.

https://doi.org/10.2147/DMSO.S434970                                                                                                                                                                                                                               

DovePress                                                                                                                                

Diabetes, Metabolic Syndrome and Obesity 2023:16 3778

Wang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Figure 3 Go and KEGG Functional enrichment analysis. The bubble chart of (A) GO and (B) KEGG enrichment analyses of FIRDEGs. The circular trellis of (C) GO and (D) 
KEGG enrichment analyses of FIRDEGs. The bar graph of (E) GO and (F) KEGG enrichment analyses of FIRDEGs. The screening criteria for GO and KEGG enrichment 
items were P < 0.05 and FDR < 0.05. 
Abbreviations: FIRDEGs, ferroptosis immune-related differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto encyclopedia of genes and genomes.
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Gene Set Enrichment Analysis
We conducted GSEA to identify the most-enriched gene sets in the DKD and normal control groups. GSEA 
(Supplementary Table 5 and Figure 4A) indicated that the top four most-significantly enriched gene sets related to the 
DKD group were PI3K pathway (Figure 4B, NES = −1.848, P < 0.01, FDR = 0.041), IL-10 pathway (Figure 4C, 
normalized enrichment score [NES] = 2.032, P < 0.01, FDR = 0.031), Notch pathway (Figure 4D, NES = −1.456, P < 
0.05, FDR = 0.212), and IL-17 pathway (Figure 4E, NES = 1.901, P < 0.01, FDR = 0.031).

Construction of PPI Network of the FIRDEGs
A PPI network was created for FIRDEGs using the STRING database based on a minimum correlation coefficient greater 
than 0.400 (Figure 5A). We used five algorithms (MCC, MNC, EPC, degree, and DMNC) to calculate the scores for the 
node genes. Figure 5B shows the Venn maps of the most common genes of the top 15 FIRDEGs chosen using the five 
algorithms. Finally, six common hub genes (C-C chemokine ligand 5 [Ccl5], interleukin 18 [Il18], cytochrome b-245 
beta chain [Cybb], fc fragment of IgG receptor IIb [Fcgr2b], myeloid differentiation factor 88 [Myd88], and 
C-C chemokine receptor 2 [Ccr2]) were extracted from the Venn diagrams (Figure 5C).

Multi-Factor Regulatory Analysis
The synthesis and function of protein-coding genes are heavily regulated by TF and miRNAs. We obtained mRNA- 
miRNA data from the ENCORI and miRDB databases to predict miRNAs interacting with the six hub genes. The 

Table 2 GO Enrichment Analysis Results of Ferroptosis Immune Related DEGs

ONTOLOGY ID Description Gene Ratio BgRatio P value P adjust Q value

BP GO: 
0042110

T cell activation 19/79 464/18670 5.05E-14 1.26E-10 7.99E-11

BP GO: 

0050900

Leukocyte migration 19/79 499/18670 1.85E-13 2.31E-10 1.46E-10

BP GO: 

0002697

Regulation of immune effector process 18/79 458/18670 5.16E-13 4.29E-10 2.72E-10

BP GO: 
0007159

Leukocyte cell-cell adhesion 16/79 337/18670 6.86E-13 4.29E-10 2.72E-10

BP GO: 

0002696

Positive regulation of leukocyte activation 16/79 380/18670 4.25E-12 2.13E-09 1.35E-09

CC GO: 

0005604

Basement membrane 6/79 95/19717 2.23E-06 2.85E-04 2.26E-04

CC GO: 

0042581

Specific granule 7/79 160/19717 3.61E-06 2.85E-04 2.26E-04

CC GO: 
0009897

External side of plasma membrane 10/79 393/19717 3.74E-06 2.85E-04 2.26E-04

CC GO: 

0062023

Collagen-containing extracellular matrix 10/79 406/19717 4.99E-06 2.85E-04 2.26E-04

CC GO: 

0008305

Integrin complex 4/79 31/19717 6.92E-06 3.17E-04 2.50E-04

MF GO: 
0005126

Cytokine receptor binding 11/80 286/17697 6.32E-08 1.92E-05 1.50E-05

MF GO: 

0050839

Cell adhesion molecule binding 13/80 499/17697 3.43E-07 5.21E-05 4.06E-05

MF GO: 

0005178

Integrin binding 7/80 132/17697 2.21E-06 2.24E-04 1.75E-04

MF GO: 
0005201

Extracellular matrix structural constituent 7/80 163/17697 8.93E-06 5.20E-04 4.05E-04

MF GO: 

0005539

Glycosaminoglycan binding 8/80 229/17697 9.05E-06 5.20E-04 4.05E-04

Abbreviations: FIRDEGs, ferroptosis immune related differentially expressed genes; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function.
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intersection of the two databases was visualized using Cytoscape. The mRNA-miRNA interaction network was 
composed of two hub genes (Il18 and Myd88) (Figure 6A) and 20 miRNA molecules, which constituted 20 pairs of 
mRNA-miRNA interactions (Supplementary Table 6). The intersection of the CHIPBase and hFtarget databases is shown 
in Figure 6B. A regulatory network of mRNA-TFs was established involving four hub genes (Myd88, Ccl5, Fcgr2b, and 

Table 3 KEGG Enrichment Analysis Results of Ferroptosis Immune Related DEGs

ID Description Gene Ratio BgRatio P value P adjust Q value

hsa 
04512

ECM-receptor interaction 7/47 88/8164 5.8881E-07 5.5079E-05 3.9738E-05

hsa 

04510

Focal adhesion 8/47 201/8164 1.619E-05 0.00057637 0.00041583

hsa 

05417

Lipid and atherosclerosis 8/47 215/8164 2.6367E-05 0.00078222 0.00056435

hsa 
04062

Chemokine signaling pathway 7/47 192/8164 0.00010112 0.00199984 0.00144281

hsa 

04151

PI3K-Akt signaling pathway 9/47 354/8164 0.0001545 0.00271339 0.00195762

hsa 

04670

Leukocyte transendothelial migration 5/47 114/8164 0.0004672 0.00489181 0.00352928

hsa 

04664

Fc epsilon RI signaling pathway 4/47 68/8164 0.00059969 0.00535516 0.00386357

hsa 
04621

NOD-like receptor signaling pathway 6/47 184/8164 0.0006017 0.00535516 0.00386357

hsa 

04810

Regulation of actin cytoskeleton 6/47 218/8164 0.00145551 0.01177641 0.00849629

hsa 

04145

Phagosome 5/47 152/8164 0.00171101 0.0132417 0.00955344

hsa 
04514

Cell adhesion molecules 5/47 157/8164 0.00197318 0.01463442 0.01055824

hsa 

04640

Hematopoietic cell lineage 4/47 99/8164 0.00243385 0.01732901 0.0125023

hsa 

04064

NF-kappa B signaling pathway 4/47 104/8164 0.00291128 0.01786926 0.01289207

hsa 
04620

Toll-like receptor signaling pathway 4/47 104/8164 0.00291128 0.01786926 0.01289207

hsa 

04613

Neutrophil extracellular trap formation 5/47 190/8164 0.00449826 0.02668969 0.01925572

hsa 

04623

Cytosolic DNA-sensing pathway 3/47 63/8164 0.00557711 0.0310227 0.02238184

hsa 
04060

Cytokine-cytokine receptor interaction 6/47 295/8164 0.00652619 0.03369882 0.02431257

hsa 

04650

Natural killer cell mediated cytotoxicity 4/47 131/8164 0.00662617 0.03369882 0.02431257

hsa 

04015

Rap1 signaling pathway 5/47 210/8164 0.00684686 0.03385392 0.02442447

hsa 
04662

B cell receptor signaling pathway 3/47 82/8164 0.01152737 0.05129682 0.03700894

hsa 

04217

Necroptosis 4/47 159/8164 0.01290078 0.05600828 0.0404081

hsa 

04657

IL17 signaling pathway 3/47 94/8164 0.0166326 0.06728642 0.0485449

hsa 
04512

ECM-receptor interaction 7/47 88/8164 5.8881E-07 5.5079E-05 3.9738E-05

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; FIRDEGs, ferroptosis immune related differentially expressed genes.
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Il18) and 12 TFs, which constituted 17 pairs of mRNA-TF interactions (Supplementary Table 7). The DGIdb database 
was searched to find potential medications or chemical compounds targeting the hub genes. The mRNA-drug interaction 
network (Figure 6C) revealed 29 potential medications or chemical compounds linked to five hub genes (Il18, Cybb, 
Fcgr2b, Myd88, and Ccr2) (Supplementary Table 8).

Expression and Correlation Analysis of Hub Genes
To further investigate the expression of six FIRDEGs (Ccl5, Il18, Cybb, Fcgr2b, Myd88, and Ccr2) in DKD, 
a correlation analysis was performed on their expression levels in GSE30122 (Figure 7A), GSE30528 (Figure 7C), 
and GSE30529 (Figure 7E) between the normal and DKD groups. Six hub genes (Ccl5, Cybb, Fcgr2b, Myd88, Ccr2, and 
Il18) in GSE30122, five (Cybb, Fcgr2b, Myd88, Ccl5, and Ccr2) in GSE30528, and four (Ccl5, Myd88, Ccr2, and 
Fcgr2b) in GSE30529 were statistically significant (P < 0.01). Correlation heat maps among the hub genes in GSE30122 
(Figure 7B), GSE30528 (Figure 7D), and GSE30529 (Figure 7F) were plotted to determine the correlations between the 
six FIRDEGs. The results showed a clear association between FIRDEGs in the three databases.

The correlation between FIRDEGs and renal function in clinical patients was analyzed using the NephroSeq database 
(Figure 8A–L). Ccl5 (R = −0.693, P = 0.026, reporter Woroniecka et al17) and Il18 (R = −0.711, P = 0.014, reporter Schmid 
et al34) were negatively correlated with glomerular filtration rate (GFR). Ccr2 (R = 0.675, P = 0.016, reporter Ju et al35), Cybb 
(R = 0.489, P = 0.047, reporter Ju et al36), Fcgr2b (R = 0.586, P = 0.013, reporter Ju et al36), and Il18 (R = 0.697, P = 0.017, 
reporter Schmid et al34) were positively correlated with serum creatinine. We constructed ROC curves and calculated the AUC 
to explore the significance of hub genes in identifying the normal and DKD groups (Figure 9). All six hub genes showed good 
diagnostic values in the GSE30122, GSE30528, and GSE30529 datasets. Fcgr2b (AUC = 0.957) and Myd88 (AUC = 0.923) 

Figure 4 Gene set enrichment analysis. (A) GSEA plot showing most enriched gene sets in the DKD group and normal controls. The differential expression genes in GSE30122 
were significantly enriched in (B) PI3K pathway, (C) IL10 pathway, (D) Notch pathway and (E) IL17 pathway. The screening criteria for GSEA items were P < 0.05 and FDR < 0.25. 
Abbreviations: DKD, Diabetic kidney disease; GSEA, Gene set enrichment analysis; NES, normalized enrichment score.
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in GSE30528 and Ccl5 (AUC = 0.925), Myd88 (AUC = 0.958), and Ccr2 (AUC = 0.983) in GSE30529 had high diagnostic 
value, with an AUC > 0.9.

Evaluation of Immune Cell Infiltration
The GSE30122 expression profile data were uploaded to the CIBERSORTx website, where the algorithm was performed 
to determine the relationship between the 22 different types of immune cells and the expression profile data of the 
samples from different groups (normal/DKD). The composition of the 22 types of immune cells in GSE30122 for each 
sample is shown as a histogram (Figure 10A); the color corresponds to the proportion of various immune cells in each 
sample. We compared the abundance of different immune cells between the normal and DKD groups (Figure 10B). The 
results indicated that M2 macrophages, resting mast cells, and gamma-delta T cells were the most significant infiltrating 
immune cells (P <0.001). In addition, M1 macrophages (P <0.01), activated mast cells (P <0.01), plasma cells (P <0.01), 
M0 macrophages (P <0.05), resting NK cells (P <0.05), T follicular helper cells (P <0.05), and regulatory T cells 
(P <0.05) differed in their infiltration abundance. Correlation analysis was conducted to determine the relationship 
between FIRDEGs signature and differential immune cell infiltration abundance. In Figure 10C, FIRDEGs are correlated 

Figure 5 Protein–Protein Interaction Network. (A) PPI network of FIRDEGs. (B) Venn maps of common genes of the top 15 FIRDEGs were selected using five algorithms: 
MCC, MNC, EPC, Degree and DMNC. (C) PPI network of the six hub genes. 
Abbreviations: FIRDEGs, ferroptosis immune-related differentially expressed genes; PPI, protein-protein interaction; Degree, Degree correlation; MNC, Maximum 
neighborhood component; MCC, Maximal clique centrality; EPC, Edge percolated component; DMNC, Density of maximum neighborhood component.

Diabetes, Metabolic Syndrome and Obesity 2023:16                                                                          https://doi.org/10.2147/DMSO.S434970                                                                                                                                                                                                                       

DovePress                                                                                                                       
3783

Dovepress                                                                                                                                                            Wang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


with the infiltration abundance of various immune cells. Among them, Fcgr2b, Cybb, Ccr2, and Ccl5 had a strong 
correlation with the infiltration abundance of M2 macrophages and gamma-delta T cells.

Validation of the Hub Genes in Mouse Kidney Samples
At 20-weeks of age, db/db mice showed significantly higher blood glucose, kidney/body weight ratio, 24-hour urinary 
albumin excretion (UAE), serum creatinine, and serum urea nitrogen levels than db/m mice (Figure 11A–E). Pathological 
staining of mouse kidney cortical area is shown in Figures 11F and G. Compared to the control group, characteristic 
pathological changes, such as increased glomerular size, cast formation, and tubular dilatation, were observed in the 

Figure 6 Multi-factor regulatory analysis. (A) The mRNA-miRNA interaction network of hub genes. (B) The mRNA-TF interaction network of the hub genes. (C) The 
mRNA–drug interaction network of hub genes. 
Abbreviation: TF, Transcription factor.
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kidneys of the model mice. The Paller score (for evaluating tubular damage) and mesangial area/glomerular area were 
significantly higher in db/db mice than in db/m mice. These results show that db/db mice have pathologically significant 
kidney damage compared with db/m mice. Gpx4 and Acsl4 are key proteins involved in the physiological process of 

Figure 7 Expression differences and correlation analysis of hub genes. Group comparison of the expression of hub genes in datasets (A) GSE30122, (C) GSE30528, and (E) 
GSE30529. Correlation heatmap of hub gene expression in datasets (B) GSE30122, (D) GSE30528, and (F) GSE30529. Vs Normal group, *P < 0.05, **P < 0.01 and ***P < 0.001.
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ferroptosis. The protein expression of Gpx4 and Acsl4 was significantly different in the kidneys cortical area of db/db 
mice compared to that in db/m mice (P < 0.05; Figure 12A–D). To confirm the expression levels of the six FIRDEGs, we 
performed RT-PCR on the kidney tissue of a mouse model. The mRNA expression levels of Ccl5, Il18, Cybb, Fcgr2b, 
Myd88, and Ccr2 were significantly higher in the db/db group compared to that in the db/m (P < 0.01; Figure 12E–J).

Discussion
DKD is a major cause of end-stage renal disease and its prevalence is increasing annually. The pathogenesis of DKD is 
complicated, and there is no effective treatment.2 Abnormal iron metabolism is closely linked to impaired renal function 
and disease progression in patients with DKD. Iron deposition in the tubular epithelial cells of patients might cause 
nephrotoxicity and kidney damage.37 Gpx4 is a predictor of DKD progression in type 2 diabetes mellitus.38 However, the 
specific mechanisms underlying ferroptosis in DKD remain unclear. Accumulating evidence suggests that ferroptosis is 
associated with immunity. Iron is required for activated T cells. T cell proliferation could be inhibited by iron deficiency, 
whereas iron overload may lead to an imbalance in CD4+ and CD8+ T cells.39 In macrophages, deletion of Slc7a11 
promotes ferritin atrophy caused by iron overload-induced ferroptosis.40 Therefore, we speculate that ferroptosis is 
strongly linked to the immune status of DKD and could trigger inflammatory factors that influence the onset of DKD. 
However, the mechanisms underlying the abnormal ferroptosis and immune inflammation in DKD remain unclear.

Figure 8 Clinical relevance of the expression of ferroptosis immune-related DEGs. Correlation analysis between GFR and (A) Ccl5, (B) Ccr2, (C) Cybb, (D) Fcgr2b, (E) Il18, 
(F) Myd88; Correlation analysis between serum creatinine and (G) Ccl5, (H) Ccr2, (I) Cybb, (J) Fcgr2b, (K) Il18, (L) Myd88.
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Figure 9 ROC curve analysis. ROC curves for (A) Ccl5, (B) Il18, (C) Cybb, (D) Fcgr2b, (E) Myd88, and (F) Ccr2 in the GSE30122 dataset. ROC curve of (G) Ccl5, (H) Il18, (I) 
Cybb, (J) Fcgr2b, (K) Myd88, and (L) Ccr2 in the GSE30528 dataset. ROC curves of (M) Ccl5, (N) Il18, (O) Cybb, (P) Fcgr2b, (Q) Myd88, and (R) Ccr2 in the GSE30529 dataset. 
Abbreviations: ROC, Receiver operating characteristic curve; AUC, area under the curve.
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In this study, we conducted an integrated analysis to identify the ferroptosis- and immune-related genes in patients 
with DKD. We downloaded three datasets from the GEO database to identify DKD-related DEGs. By overlapping DEGs 
with ferroptosis- and immune-related genes, 80 FIRDEGs were identified. The GO results revealed that FIRDEGs were 

Figure 10 Immune cell-infiltration analysis of GSE30122 dataset. (A) Bar chart of immune cell infiltration in the dataset. (B) Comparison of immune cell infiltration between 
normal and NC groups. (C) Correlation heatmap of FIRDEGs and immune cells in GSE30122 dataset. Vs Normal group; *P < 0.05; **P < 0.01 and ***P < 0.001. 
Abbreviation: ns, no significant.
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primarily involved in cytokine production, inflammation, and immunity. KEGG enrichment analysis revealed that 
FIRDEGs were enriched in the PI3K-Akt, NF-kappa B, NOD-like receptor, Toll-like receptor, and IL17 signaling 
pathways. GSEA indicated that the IL10, IL17, PI3K, and Notch pathways were the most enriched gene sets in DKD. 
Therefore, FIRDEGs are closely linked to important pathogenic pathways in DKD. Subsequently, we identified six hub 
genes (Ccl5, Ccr2, Cybb, Fcgr2b, Il18, and Myd88) from the 80 FIRDEGs and predicted mRNA-miRNA, mRNA-TF, 
and mRNA-drug pairs. To examine the diagnostic and prognostic value of FIRDEGs, we performed ROC curve analysis 
in DKD; Il18 and Cybb had a certain accuracy (AUC > 0.7 in three datasets), whereas Ccl5, Fcgr2b, Myd88, and Ccr2 
were highly accurate (AUC > 0.8 in three datasets) in predicting DKD. In addition, we used RT-PCR to confirm the 
expression of the six hub genes in the kidney samples from db/db mouse model, and the results were generally consistent 
with those of RNA sequencing.

Urinary sediment Ccl5 mRNA could be a prospective prognostic biomarker for DKD.41 Ccr2 is the most common 
receptor for the C-C chemokine ligand 2 (Ccl2; formerly called monocyte chemoattractant peptide-1).42 Blockade of 
Ccl2/Ccr2 signaling ameliorates kidney injury in db/db mice.43 Cybb encodes the Nox2 protein, which is involved in the 
oxidative stress response. Inhibition of Nox2 activation could be beneficial for the prevention or treatment of DKD.44 

Fcgr2b is associated with acute kidney injury45 and IgA nephropathy.46 Urinary Il18 levels are independently associated 
with mortality in patients with DKD;47 in addition, the Il18 protein level in the renal tissue is considered an effective 
biomarker for renal pathology.48 Myd88 is a crucial adaptor protein involved in TLR signaling. The polymorphisms in 
the TLR-Myd88-NF-κB signaling pathway confer genetic susceptibility to DKD.49 By searching the Nephroseq database, 

Figure 11 Basic information of mouse model. (A) Kidney weight/body weight ratio. (B) Blood glucose level. (C) 24 h urine albumin excretion levels. (D) Serum creatinine 
level. (E) Serum urea nitrogen. (F) H&E staining of the mouse kidneys. (G) PAS staining of mouse kidneys. The results are expressed as the mean ± SD. **P < 0.01, ***P < 
0.001, ****P < 0.0001 vs db/m. All figures scale bar = 50 μm.

Diabetes, Metabolic Syndrome and Obesity 2023:16                                                                          https://doi.org/10.2147/DMSO.S434970                                                                                                                                                                                                                       

DovePress                                                                                                                       
3789

Dovepress                                                                                                                                                            Wang et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


we found that FIRDEGs were correlated with some renal function indicators in patients with DN, indicating that these six 
genes have clinical value.

DKD is an inflammatory disease driven by immune cells in addition to the traditional metabolic and hemodynamic 
risk factors.50,51 In this study, we analyzed the trend of immune cell infiltration in DKD and examined the correlation 
between FIRDEGs and immune cells. Spearman correlation analysis revealed that the expression profiles of FIRDEGs 
were linked to certain immune cells, particularly M2 macrophages and gamma-delta T cells. Macrophages can be divided 
into M0/M1 and M2 types. M0 macrophages are differentiated into two distinct subtypes: classically activated (M1) and 
selectively activated (M2) macrophages.52 M2 macrophages are mainly activated in DKD, and the balance of M1/M2 
macrophages is related to the renal microenvironment, which could affect the progression.53 In patients with DKD, T cell 
infiltration can lead to immune cell accumulation and an increase in the expression of various inflammatory factors in the 
kidney, eventually aggravating the progression of DKD.54 Gamma delta T cells are unconventional T cells that primarily 

Figure 12 Validation of ferroptosis immune-related DEGs in mouse model. (A) IHC assay of Gpx4 protein expression in the mouse kidneys. (B) IHC assay of Acsl4 protein 
expression in the mouse kidneys. The AOD of (C) Gpx4 and (D) Acsl4 between two groups. (E–J) Relative expression of mRNA by RT-PCR (n = 6). The results are 
expressed as the mean ± SD. **P < 0.01, ***P < 0.001, ****P < 0.0001 vs db/m. All figures scale bar = 50 μm.
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recognize antigens in the absence of classical restrictions via the major histocompatibility complex (MHC).55 Gamma- 
delta T cells can produce inflammatory cytokines, like Il17a, which are involved in the onset of DKD, ischemia- 
reperfusion injury, fibrosis, and et al56,57 To some extent, these genes can be used as target genes to study the relationship 
between ferroptosis and immunity in DKD. The gene-drug network suggests potential drugs for the treatment of DKD. 
However, this finding must be validated in future studies.

This study has certain limitations as it only provides preliminary clues about the underlying mechanisms rather than 
conclusive evidence. First, it relied mainly on database mining without sufficient experimental validation. Second, only 
mouse models were used for validation and the sample size was small. There are several differences between mice and 
humans at the genomic and biological levels. Further verification with clinical specimens and in vitro experiments is 
needed in the future. Third, we did not conduct validation after successfully predicting transcription factors, miRNAs, 
and therapeutic agents. Finally, the co-expression relationship between FIRDEGs and immune cells requires further 
verification.

Conclusion
This study is the first to analyze DEGs associated with ferroptosis and immunity in DKD and to predict their correlation 
with immune infiltration. It offers new avenues for the investigation of possible drug targets for the management of 
DKD-related ferroptosis and immune disorders.
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