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The role of the interactome in the maintenance of
deleterious variability in human populations
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Abstract

Recent genomic projects have revealed the existence of an
unexpectedly large amount of deleterious variability in the
human genome. Several hypotheses have been proposed to
explain such an apparently high mutational load. However, the
mechanisms by which deleterious mutations in some genes
cause a pathological effect but are apparently innocuous in
other genes remain largely unknown. This study searched for
deleterious variants in the 1,000 genomes populations, as well
as in a newly sequenced population of 252 healthy Spanish indi-
viduals. In addition, variants causative of monogenic diseases
and somatic variants from 41 chronic lymphocytic leukaemia
patients were analysed. The deleterious variants found were
analysed in the context of the interactome to understand the
role of network topology in the maintenance of the observed
mutational load. Our results suggest that one of the mecha-
nisms whereby the effect of these deleterious variants on the
phenotype is suppressed could be related to the configuration
of the protein interaction network. Most of the deleterious vari-
ants observed in healthy individuals are concentrated in periph-
eral regions of the interactome, in combinations that preserve
their connectivity, and have a marginal effect on interactome
integrity. On the contrary, likely pathogenic cancer somatic
deleterious variants tend to occur in internal regions of the
interactome, often with associated structural consequences.
Finally, variants causative of monogenic diseases seem to
occupy an intermediate position. Our observations suggest that
the real pathological potential of a variant might be more a
systems property rather than an intrinsic property of individual
proteins.
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Introduction

The outcome of several international collaborative projects

published recently (Durbin et al, 2010; Dunham et al, 2012; Fu

et al, 2013) has revealed the existence of an enormous amount of

variation at genome level in apparently normal, healthy individu-

als. A specific type of variant, known as loss-of-function (LoF),

which is thought to severely affect the function of human

protein-coding genes (MacArthur & Tyler-Smith, 2010), is of

particular importance. Traditionally, these variants have been

associated with severe Mendelian diseases due to their potentially

deleterious effect. Actually, the existence of this mutational load

has been known for a long time, and different estimations of its

magnitude have been made, ranging from < 10 genes carrying

deleterious mutations (Muller, 1950) to almost one hundred

(Kondrashov, 1995). However, recent observations from several

genome sequencing projects (Durbin et al, 2010; Hudson et al,

2010; Dunham et al, 2012) which report an unexpectedly large

number of these variants in the genomes of apparently healthy

individuals seem to contradict this view. Conservative estimations

suggest that there are no < 250 LoF variants per sequenced

genome, 100 of them known to be related to human diseases,

and more than 30 in a homozygous state and predicted to be

highly damaging (Xue et al, 2012), suggesting a previously unno-

ticed level of variation with putative functional consequences in

protein-coding regions in humans (MacArthur & Tyler-Smith,

2010). Moreover, this apparently pathological variation is not

restricted to coding regions but also seems to occur in other non-

coding, regulatory elements, such as miRNAs (Carbonell et al,

2012), transcription factor binding sites (TFBSs) (Spivakov et al,

2012) and others (Lappalainen et al, 2013). The origin of this
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apparent excess of LoF variants has been attributed to the combi-

nation of a recent accelerated human population growth with a

weak purifying selection (Keinan & Clark, 2012; Tennessen et al,

2012). Different reasons could account for the maintenance of

such a large number of LoF variants in apparently healthy indi-

viduals, including severe recessive disease alleles in homozygous

state; late onset phenotypes; reduced penetrance phenotypes

which require additional genetic and/or environmental factors for

expression; gene redundancy and even sequencing errors (Nothnagel

et al, 2011; MacArthur et al, 2012; Xue et al, 2012). Although the

possibility that any of the donors of these genome projects even-

tually become ill cannot be ruled out, these were non-vulnerable

adults and it seems unlikely that they have suffered extensively

from any genetic disease (Xue et al, 2012). The paradox of appar-

ently healthy individuals carrying an excess of deleterious muta-

tions has led to the recategorization of known disease-causing

mutations (Xue et al, 2012) and the reconsideration of the puta-

tive functional effect of some apparently deleterious variants

(Nothnagel et al, 2011). However, the mechanisms by which

specific deleterious variants can have a clear pathological effect

when affecting some genes while in others they are apparently

innocuous remain largely unknown (Nothnagel et al, 2011; Xue

et al, 2012).

The notion of cell functionality as a consequence of the complex

interactions between their molecular components is not new

(Hartwell et al, 1999) and was proposed more than a decade ago in

the context of systems biology (Kitano, 2002). These interacting

components define operational entities or modules to which differ-

ent elementary functions can be attributed. In practical terms, the

network of protein–protein interactions, or interactome, has been

used extensively as a theoretical scaffold interrelating proteins. The

interactome has been used to define sub-networks of interacting

proteins associated with features in genomic experiments (Ideker &

Sharan, 2008), which can be considered to be functional modules

(Dittrich et al, 2008). Connections within the interactome are orga-

nized so as to make the system robust and preserve stable pheno-

types under changing conditions and attacks. Several studies have

demonstrated that biological networks are topologically robust

against the removal of a certain number of nodes. Thus is due to

the fact that even though a few nodes concentrate most of the

network edges, the great majority are slightly connected (known as

Power-Law networks) (Albert et al, 2000; Jeong et al, 2001).

However, this robustness has limits and the higher the number

of removed nodes is, the more vulnerable the network becomes

(Agoston et al, 2005). A study of double synthetic lethality in yeast

revealed that in some cases, individual removal of any of the two

nodes has no effect on the yeast metabolic network, while

combined removal produced a severe disruption in the information

flow (Segre et al, 2005; Costanzo et al, 2010). Further observations

in yeast (Fraser & Plotkin, 2007; McGary et al, 2007) and other

model organisms such as worm (Lee et al, 2008) also support the

idea that genes producing a similar mutant phenotype are tightly

linked in the interactome.

Under this perspective, diseases can be understood as disrup-

tions of functional modules, supporting the idea of a modular

nature of human genetic diseases (Oti & Brunner, 2007; Oti et al,

2008). This modularity, extensively described in numerous reports

(Brunner & van Driel, 2004; Gandhi et al, 2006; Lim et al, 2006;

Goh et al, 2007; Wagner et al, 2007; Ideker & Sharan, 2008; Mitra

et al, 2013), suggests that causative genes for the same disease

often reside in the same biological module, which can be a

protein complex (Lage et al, 2007), or a subnetwork of protein

interactions (Lim et al, 2006; Ideker & Sharan, 2008; Vidal et al,

2011). It has also been described that disease genes tend to be

connected to other disease genes (Goh et al, 2007; Lage et al,

2007; Wagner et al, 2007), which tend to be co-expressed and

display coherent functions according to GO annotations (Ideker &

Sharan, 2008; Montaner et al, 2009). Similarly, cancer gene prod-

ucts are highly connected and are centrally located in the network

(Jonsson & Bates, 2006; Hernandez et al, 2007; Rambaldi et al,

2008). As a consequence of the robustness of the modules, the

vast majority of disease phenotypes are rarely caused by the

failure of a unique gene product, but rather reflect various patho-

logical processes which interact in a complex network (Barabasi

et al, 2011). An obvious example is cancer, where a succession of

mutations is necessary for a cell to acquire oncogenic potential

(Hanahan & Weinberg, 2011).

From an evolutionary point of view, it has been observed that

proteins under positive selection tend to be located at the periph-

ery of the global protein interaction network, while central

network proteins, which are likely to have a larger portion of their

surface involved in interactions, tend to be under negative selec-

tion (Fraser et al, 2002; Kim et al, 2007). In general, central

proteins carry out more essential functions (e.g. tumour suppres-

sors or oncogenes), while peripheral proteins tend to be non-

essential disease genes (D’Antonio & Ciccarelli, 2011; Serra et al,

2011; Vidal et al, 2011).

Given the role of the interactome in assuring the robustness of

cell systems against mutations, our hypothesis is that the actual

interactome topology could be buffering the impact of deleterious

variants, thus permitting what seems to be a high mutation load.

In order to check the extent to which this hypothesis is compati-

ble with recent observations on human variability (MacArthur &

Tyler-Smith, 2010; MacArthur et al, 2012; Xue et al, 2012), the

coding sequences (exomes) of 1,330 healthy individuals were

analysed to study the impact of the actual levels of variability on

interactome properties. The sequences included samples from

thirteen worldwide distributed populations from the 1,000

genomes project (Durbin et al, 2010) as well as whole exome

sequencing (WES) data corresponding to 252 healthy Spanish

samples from the Medical Genome Project (http://www.medical

genomeproject.com). The results were compared to paired WES

of matched tumour and normal samples from 41 individuals with

chronic lymphocytic leukaemia (Quesada et al, 2012), from the

International Cancer Genome Consortium. The analysis yielded

findings that allow explaining the existence of a genetic load of

this magnitude. For example, proteins carrying deleterious vari-

ants in healthy individuals tend to have fewer connections than

unaffected proteins, especially when such variants affect the

protein in homozygosis. However, the most interesting observa-

tion is that most of the apparent deleterious mutational load

observed in healthy individuals tends to occur in peripheral

regions of the interactome, preserving its integrity. On the

contrary, mutations with pathological consequences are more

frequently observed in proteins located in internal regions of the

interactome.
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Results

Deleterious variants in proteins of the interactome observed in
the populations

The model of the human interactome used here was built

using data on protein–protein interactions from the BioGRID

(Chatr-Aryamontri et al, 2013), IntAct (Kerrien et al, 2012) and

MINT (Licata et al, 2012) databases. To avoid possible false

positives or experimental errors, only interactions detected by at

least two different detection methods (von Mering et al, 2002)

were used. The resulting curated interactome consists of a total of

7,331 proteins connected by 21,623 interactions (see Materials and

Methods). Figure 1 shows the average number of variants per indi-

vidual in the proteins that define the interactome used in this

study. As it has been previously described for the complete set of

human proteins in several reports of genomic variability, African

populations show higher variability (over 8,000 variants) than the

rest of the populations (about 6,500 variants), including the CLL

genomes (Fig 1A).

Among these, there are variants with a clear deleterious effect,

such as stop loss, stop gain and splicing disrupting conserved

variants. In addition, any non-synonymous variant with a SIFT

score lower than 0.05 or a Polyphen score higher than 0.95 was

considered as deleterious, as recommended in the original publi-

cations (Ramensky et al, 2002; Kumar et al, 2009). Since the

application of both scores sometimes results in contradictory

predictions (Hicks et al, 2011), an in silico study was performed

on a subset of 20 randomly chosen variants (eight predicted to be

non-damaging, five somatic predicted as damaging from CLL and

seven predicted as damaging from non-disease populations).

Table 1 shows the relationship between the predictions derived

from SIFT and Polyphen and the structural features calculated for

the subset of selected variants. In general, a good agreement

between predicted deleterious effect and unfavourable changes in

the sequence and structure properties can be observed. Figure 2

depicts an example of this agreement. The average number of

potentially deleterious variants (Fig 1B) follows a similar pattern

to the total number of variants (Fig 1A). African populations

undergo more mutational load compared to the rest of the popu-

lations. The same pattern is observed for the number of proteins

affected by deleterious variants in heterozygous state (Fig 1C). As

expected, the Spanish population sequenced here presented a

level of variation similar to that observed in non-African popula-

tions. However, this pattern is inverted when proteins with delete-

rious variants in homozygosis are analysed (Fig 1D). This

observation is compatible with the history of the populations,

with an older African population which has cumulated more vari-

ability but has filtered out deleterious variants in homozygosis,

whereas the rest of the populations underwent a relatively recent

bottleneck which is reflected in a lower level of variability and a

higher level of homozygosity (Lohmueller et al, 2008). This

genetic fingerprint is still observable in the proteins of the inter-

actome.

Supplementary Table S1 describes 34,220 deleterious variants

found in the sequenced Spanish population, which can also be

found on a web server (http://spv.babelomics.org/) in which varia-

tion can be queried in an interactive manner.

Proteins affected by deleterious variants in normal populations,
monogenic diseases and cancer patients have different
topological roles

We analysed the occurrence of deleterious mutations in proteins with

different network properties in the interactome. Figure 3A shows the

number of interactions corresponding to the proteins affected by a

deleterious variant either in both alleles (homozygosis) or in only

one allele (heterozygosis) or not affected by any deleterious variant,

in at least one individual. It also shows the number of interactions

observed in proteins with deleterious somatic mutations in CLL,

proteins corresponding to monogenic diseases (see Supplementary

Table S2) and the subset of somatic mutations in CLL corresponding

to cancer driver genes (Vogelstein et al, 2013) (see Supplementary

Table S3). The number of interactions in proteins with both alleles

affected by a deleterious variant in healthy individuals was signifi-

cantly lower than the number of interactions observed either in

proteins with only one allele affected (FDR-adjusted Mann–Whitney

U-test P-value = 0.000544) or in unaffected proteins (P-value =

5.22 × 10�5). Proteins carrying only one allele affected by a deleteri-

ous variant showed a slightly lower number of interactions than

unaffected proteins, although the difference is not significant in this

case, probably because they have no pathogenic effect in either case.

In a scenario of mutational disease represented by all the CLL

proteins carrying somatic mutations (driver and passenger variants),

the number of interactions in affected proteins was significantly

higher than in healthy homozygote (P-value = 1.49 × 10�5) and the

healthy heterozygote (P-value = 0.00169) scenarios, as expected.

The proteins affected by monogenic diseases displayed a significantly

higher number of connections than the CLL proteins carrying

somatic mutations (P-value = 0.0265) (and obviously more than the

deleterious homozygous and heterozygous and unaffected proteins

in healthy individuals, see Fig 3B). However, if only cancer driver

proteins carrying somatic deleterious mutations in CLL are consid-

ered, the number of connections was significantly higher than any

other subset of proteins analysed, including monogenic disease

proteins (see Fig 3B). The analysis of the relationship between the

same sets of genes and other properties such as betweenness (Fig 3C

and D) and closeness centrality (Fig 3E and F) was repeated, obtain-

ing a similar trend. The results demonstrate a clear relationship

between the degree of pathogenicity of the scenario and the connec-

tivity of the proteins affected.

Figure 4 depicts how the number of connections, the closeness

centrality and the betweenness present a weak, but significant

negative correlation (Spearman’s rank correlation coefficient q =

�0.0661, P-value = 1.34 × 10�7, q = �0.0536, P-value = 1.934 ×

10�5 and q = �0.0534, P-value = 2.053 × 10�5, respectively) with

the frequency of occurrence of deleterious variants in the popula-

tion (both in homozygosis and in heterozygosis). This trend,

although negative as well, is not significant in the case of homo-

zygosis, probably due to the lower sample size. On the contrary,

in the pathological condition represented by CLL, the network

properties number of connections (q = 0.152, P-value = 0.0116),

betweenness (q = 0,118, P-value = 0.051) and closeness centrality

(q = 0.128, P-value = 0.0335) are positively correlated with the

recurrence of the mutation across patients.

Previous evolutionary studies documented a preferential occur-

rence of adaptive events at the periphery of the human protein
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interaction network (Fraser et al, 2002; Kim et al, 2007). It was

confirmed that the distribution of selective pressures, measured as

the ratio of non-synonymous to synonymous variants, across the

network properties used here (number of interactions, betweenness

and closeness centrality) was consistent with what was previously

observed: proteins under positive selection tend to be placed in the

periphery of the network, while proteins under negative selection

tend to be in the internal regions (see Supplementary Fig S1).

Effect of deleterious variants observed in normal individuals on
the interactome structure

The effect that the specific combination of deleterious variants

carried by any healthy individual has on the interactome was

examined. Since loss-of-function variants were considered, the

recessive (and most plausible) scenario was tested. This was

achieved by removing proteins from the interactome when they

were affected by deleterious variants in both alleles (homozygous

for the alternative allele). Then, the impact that this subtraction had

on the interactome structure was calculated (see Materials and

Methods, section ‘Selection of deleterious variants’ for details). The

impact is inferred by measuring the changes in several global

network properties such as the number of connections, the average

length of shortest paths and the number of components. These

parameters account for the interconnectedness and integrity of the

interactome (Albert et al, 2000). The values obtained for these

parameters in the 1,000 genomes and MGP1 populations correspond

to interactomes of healthy individuals.

A B

C D

Figure 1. Summary of variants found in the proteins which configure the human interactome in all the populations analysed.

A Number of variants found.
B Number of potentially deleterious variants.
C Number of proteins carrying at least one deleterious variant in one of their alleles (mutation load).
D Number of proteins carrying deleterious variants in both alleles (homozygous mutation load).

Data information: Bars represent the population average value and errors represent the dispersion found in the different individual sequences analysed.
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In order to understand the basis of the robustness of the interac-

tome against the deleterious variants carried by normal individuals,

the normal interactomes were compared with simulated interacto-

mes in which the same number of damaged proteins was randomly

removed (see Materials and Methods). The comparison between the

real and simulated interactomes resulted in significant differences

between them in the network parameters measured. Real normal

populations (1,000 genomes, Spanish population and CLL germinal

line) always have more connections than simulated individuals

(compare real populations bar to simulated populations with

uniform probability bar in Fig 5A). Moreover, these connections

preserved in real individuals are organized in a way that maintains

a significantly lower average length of shortest paths (same compar-

ison in Fig 5B), a distinctive feature of biological networks, and

avoids disconnection from the giant component (same comparison

in Fig 5C). In other words, real individuals have significantly more

structured and less affected interactomes than simulated individuals

for the same number of removed (damaged) proteins. The results

A

B

Figure 2. Molecular model of the human RP2 (A) and LXN (B) proteins and detailed view of the altered amino acids (Arg251Gly and Arg48Lys, respectively).

A The amino acid change Arg251Gly in the RP2 protein was predicted as damaging according to SIFT and PolyPhen thresholds. The original residue (Arg251) of a-helix
forms a hydrogen bond with the Ser219 and Ile220; however, the new residue is highly destabilizing. Specifically, the new residue (Gly) is uncharged, more
hydrophobic and smaller than the original, which causes that the positive charge will be lost and the amino acid will not be in the correct position, hampering the
establishment of the original hydrogen bond.

B The amino acid change Arg48Lys in the LXN protein was classified as non-damaging according to the criteria used. The new amino acid, whose substitution was
predicted as non-damaging by SIFT and Polyphen, does not cause a significant change in protein stability, maintaining the same charge and polarity as the wild-type
residue.
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A

C

E

B

D

F

Figure 3. Connection degree, betweenness and closeness centrality of proteins affected by deleterious variants.

A From left to right: Number of interactions in proteins affected by deleterious variants in both alleles (homozygosis), in only one allele (heterozygosis), not affected by
any deleterious variant, proteins affected (in homozygosis or heterozygosis) in a pathological condition (somatic variants in CLL), proteins affected by monogenic
diseases (listed in Supplementary Table S2) and the subset of somatic variants in CLL which occur in cancer driver proteins (Vogelstein et al, 2013) (listed in
Supplementary Table S3).

B Significance of the comparisons tested by the rank sum (Mann–Whitney U-test) with FDR multiple testing adjustments.
C Betweenness in the same groups of proteins as in (A).
D Significance of the comparisons tested as in (B).
E Closeness centrality in the same groups of proteins as in (A).
F Significance of the comparisons tested as in (B).

Data information: In this boxplot representation boxes correspond to 50% of the observed values and error bars to 90%.
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were highly significant for the 1,000 genomes population and still

significant but with higher P-values for the MPG and CLL popula-

tions, due to the smaller sample sizes (see P-values in Fig 5A–C).

This simulation demonstrates that healthy individuals carry dele-

terious variants in a specific set of proteins, the deletion of which

has minimal impact on the interactome structure. However, it is not

clear whether this low impact is due to the actual individual

proteins observed in the population or whether it occurs because

proteins with deleterious variants are only tolerated in specific

combinations which minimize the damage to the interactome struc-

ture. To address this question, another simulation was conducted in

which deleterious mutations were assigned to proteins according to

their observed mutation frequencies in healthy individuals (1,000

genomes and MGP1 populations). In contrast to the previous simu-

lation, the simulated individuals only carried deleterious variants in

proteins which are affected in normal individuals, but in random

combinations which do not necessarily exist in real healthy

individuals.

Although not as remarkable as in the previous simulation, the

difference between real and simulated values was also significant.

Again, real normal populations had significantly more connections

than simulated individuals (compare real populations bar to simu-

lated populations with observed frequencies bar in Fig 5A). These

connections result in a network with shorter shortest paths

between components (see how average lengths of shortest path-

ways change across real and simulated populations in Fig 5B) and

have a tendency to display fewer isolated components (same

comparison in Fig 5C). The P-values were higher and in some

cases non- significant (number of components for MGP1 and CLL

germinal populations, probably due to their small sizes), as the

effect of removing the acceptable combination of damaged

proteins is not as strong as the effect of removing random

proteins.

Collectively, the results obtained suggest that only a limited

number of variants in specific combinations are tolerated by the

interactome and are compatible with a healthy condition.

Some examples visually illustrate the type of connections lost in

the simulation with random occurrences of deleterious variants

when compared to the type of connections lost in the case of

observed deleterious variations. Figure 5D depicts an example of

sub-networks disconnected from the interactome of a normal indi-

vidual from the 1,000 genomes project, because both alleles of the

gene coding the connecting protein had deleterious variants.

Figure 5E shows an example taken from a simulated individual. It is

clear that while interactomes of real individuals are slightly trimmed

off by the deleterious variants they carry, the interactomes of simu-

lated individuals undergo more serious damage and have larger

disconnected portions.

Deleterious variants observed in normal individuals tend to occur
at the periphery of the interactome

In order to understand the reasons why such specific combinations

of deleterious variants cause both minimal disruption to the interac-

tome and are not associated with pathological effects, their location

within the network of protein interactions was examined. Firstly, a

summarized representation of the interactome was derived by

detecting neighbourhoods of densely connected sub-graphs which

define communities, or modules of highly interacting proteins

(Pons & Latapy, 2005; Rosvall & Bergstrom, 2008). These modules

can be considered functional entities which enable the biological

interpretation of the results. Then, the distribution of genes carrying

alleles affected by deleterious variants across the modules was

studied in individuals from the Spanish population and the 1,000

genomes populations.

The pattern of distribution of affected modules across popula-

tions is defined by conventional hierarchical clustering using the

Euclidean distances between them. The clustering obtained was

quite coherent with the geographical origins and history of the anal-

ysed populations (Fig 6). The Spanish population is located close to

the rest of the European populations as well as to Latin American

populations, with whom they share some common background. The

deleterious germinal variants found in CLL patients are located close

to the Spanish population, probably because it is mainly composed

of Spanish CLL patients. On the contrary, the distribution of

mutations of somatic deleterious mutations of CLL (Fig 6) follows

A B C

Figure 4. Mean connectivity (A), betweenness (B) and closeness centrality (C) for proteins undergoing deleterious variants.

A–C The purple line represent deleterious variants in both alleles (homozygosis) and the green line deleterious variants in at least one allele
(homozygosis+heterozygosis), grouped according to the number of individuals in normal populations (1,000 genomes and Spanish populations) in which they were
observed. The red line represents CLL somatic heterozygous deleterious variants observed in growing number of individuals (within the sample of patients). The
plots include 1SD bars. Error bars indicate the dispersion of values observed across the individuals analysed.
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a pattern inverse to the rest of the normal populations. This

anomalous distribution clusters this sample outside of any human

population.

The same clustering methodology was applied to group the

modules. The analysis resulted in the definition of five main clus-

ters. The two clusters at the bottom are composed of highly affected

A

B

E

D

C

Figure 5. Impact of potentially deleterious variants on the interactome of real and simulated individuals.

A–C Comparison of the interactome damage between real and random individuals after removing the nodes corresponding to proteins containing deleterious variants
in both alleles (homozygote). Two different scenarios are simulated: Simulated populations with uniform probability, where proteins are randomly removed, and
Simulated populations with observed frequencies, where proteins are removed with a probability proportional to the frequency of variation in the 1,000 genomes
population (see Results). The comparison was performed using all the 1,000 genomes project populations (green box), the newly sequenced Spanish population
MPG1 (blue box) and the germinal variants of the CLL patients (yellow box) and contrasting their distributions with the corresponding random distribution (grey
boxes). The effects on the global network topology were defined by (A) the number of connections in the remaining interactome, (B) the average length of the
shortest paths and (C) the total number of isolated components. P-values are provided for the comparisons of both simulation scenarios with real values.

D,E Visual illustration of the network components lost after removing nodes corresponding to damaged proteins in (D) a real individual from 1,000 genomes (HG01083
of the PUR population) and (E) a simulated individual with the same number of damaged proteins (i.e. nodes removed).
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modules, enriched in proteins with deleterious variants. The central

cluster is composed of protected modules, with a lower proportion

of proteins with deleterious variants than expected by chance. The

two upper clusters correspond to an intermediate situation.

The distribution of cell functionalities across the modules is

depicted in Fig 6. The cluster containing protected (and often

central) modules is enriched in GO terms related to essential cellular

functions, such as gene expression, translation, protein targeting

and chromatin organization. Conversely, the most external clusters

contain cell functionalities acquired later in evolution, mainly

related to signalling immune response and cell communication (cen-

tral and part of the upper clusters in Fig 6). Supplementary Table S4

lists a detailed enrichment analysis of all the modules which

confirms the observation made.

Then, the distribution of affected proteins across interactome

modules in the individuals was analysed. It was observed that

modules located at the periphery of the interactome are consider-

ably enriched in affected proteins, while the opposite tendency is

observed in internal modules (as portrayed in Fig 7A). The extent of

this trend is confirmed by the significant negative correlation

(Spearman’s correlation test P-value ≤ 0.001) of a measure which

accounts for the centrality of a module in the interactome (closeness

centrality) with the normalized proportion of affected proteins with

respect to the random expectation (relative damage of the module)

(Fig 7B). In order to check whether this observation was reflecting

the centrality of individual proteins or whether it was accounting for

the centrality of the modules, the data were reanalysed using only

the centrality of each protein within the context of the network. The

interactome was divided into four regions according to the closeness

centrality distribution quartiles, and the distribution of damaged

proteins among the four regions was calculated for each individual.

The result obtained was the same: the peripheral regions of the

interactome accumulated more proteins affected by deleterious

mutations than expected by chance, whereas the internal region

displayed a remarkable reduction (P-value = 3.96 × 10�6 Mann–

Whitney U-test) in affected proteins (see Supplementary Fig S2A

and B).

Germinal and somatic, cancer-specific mutations in CLL

Here, the focus is on comparing the distribution of deleterious

variants in genes across the different communities in both the

germinal line (which would represent a normal genome) and

somatic mutations in the cancer samples (corresponding to a

pathological condition) of CLL patients. The germinal line of CLL

patients presents a pattern of distribution of variants indistin-

guishable from normal individuals, clustering close to the Spanish

population (Fig 6). However, the pattern of somatic mutations in

CLL is completely different to any other population and is actu-

ally inverted to the pattern observed in normal individuals.

Figure 7C documents the inverse trend of distribution of muta-

tions when represented on the interactome of modules. As opposed

to the case of normal populations (Fig 7B), deleterious somatic

Figure 6. Heatmap depicting the distribution of the proteins harbouring
deleterious variants in at least one allele across the interactome modules
in the 1,000 genomes populations, the Spanish MGP1 population,
germinal and somatic CLL.
Rows represent the different interactome modules defined by the Waltrap
clustering algorithm, which are labelled with the corresponding identification
number. The columns represent the populations analysed. The colour code
represents the relative damage of the module, which accounts for the deviation
in the proportion of affected proteins in the module from the random
expectation distribution. Red indicates samples presenting more affected
proteins than the random expectation, whereas blue indicates a negative
difference. There are five main clusters defined by conventional hierarchical
clustering using the Euclidean distances between the rows. On the right of the
figure, the main GO terms which are significantly enriched in any of the mains
clusters are displayed. The left column corresponds to cellular component
ontology and the right column to the biological process ontology. When columns
are clustered, the groups obtained according to the similarities in the distribution
of affected proteins across modules correspond exactly to the geographical
localization of the populations. The distribution of somatic deleterious mutations
of CLL follows a pattern inverse to the rest of the normal populations.

Source data are available online for this figure.
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mutations in CLL are over-represented in internal modules of the

interactome. The significance of this trend is confirmed by

the significant positive correlation (Spearman’s correlation,

P-value ≤ 0.01) existent between a measure of the module centrality

within the interactome (closeness centrality) and the proportion of

affected proteins with respect to the random expectation (relative

damage of the module) (Fig 7D). The opposite trends observed

both in normal populations and in somatic mutations of CLL (see

Table 2) patients have been confirmed using different interactomes

and different algorithms for defining modules within them (see

Table 3).

Discussion

Different genomic initiatives (The_Cancer_Genome_Atlas_

Research_Network, 2008; Durbin et al, 2010; Hudson et al, 2010;

Dunham et al, 2012) as well as an increasing collection of genomes

of patients affected by rare diseases (Ng et al, 2010) are producing a

fast-growing catalogue of variants in the human genome. Among

these, an unexpectedly high number of LoF variants, with no appar-

ent phenotypic consequence, have been discovered in healthy

human populations (MacArthur & Tyler-Smith, 2010; Nothnagel

et al, 2011; Xue et al, 2012). Consequently, there is an increasing

A B

C D

Figure 7. Interactome distribution of the deleterious variants in normal populations, and also within germinal and somatic variants in CLL patients.
Network of interactome modules as defined by the Walktrap clustering algorithm. Two modules are connected if there is at least one interaction between one of their
respective proteins. The numbers in the nodes are the identifiers of each module. The size of the node is proportional to the number of proteins which it contains. The colour
code represents the relative damage value. Relative damage values range between 0 (no proteins affected at all in this module) and 1 (the maximum possible number of
proteins affected in this module). Blue indicates that the frequency of damaging variants is below themedian in the simulated individuals (which would correspond to a value
of 0.5), whereas red indicates that the value is above the median.

A Distribution of proteins with deleterious variants in the 1,078 individuals from the 1,000 genomes populations plus the 252 individuals in the MPG1 Spanish
population and the 41 germinal CLL exomes across the interactome of modules.

B Closeness centrality, which gives a measurement on how central a node is (the higher, the more central) as a function of the relative damage of the module. There is
a significant trend of accumulation of mutations as modules are more peripheral.

C Distribution of proteins with deleterious variants in the 41 somatic CLL exomes, representative of a pathological condition, across the interactome of modules.
D Closeness centrality as a function of the relative damage of the module for the 41 somatic CLL exomes. Opposite to the above, there is a significant trend of

accumulation of mutations as modules are more central.

Source data are available online for this figure.
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need to distinguish variants that correspond to polymorphisms in

human populations, and especially LoF variants, from those causa-

tive of diseases.

The concept of the pathological effect of a variant has tradition-

ally been considered an intrinsic property of the protein. Many

methods have been proposed to predict the potential pathological

consequences of variants (Ng & Henikoff, 2001; Stone & Sidow,

2005; Arbiza et al, 2006; Conde et al, 2006; Reumers et al, 2008;

Kumar et al, 2009; Adzhubei et al, 2010; Goode et al, 2010;

Gonzalez-Perez& Lopez-Bigas, 2011). However, with some exceptions,

all these tools predict a pathological effect with an accuracy of

between 70% and 80% (Gonzalez-Perez & Lopez-Bigas, 2011). This

suggests that observing the occurrence of a damaging variant in a

protein is a necessary, although not sufficient, condition for it to have

a pathological effect.

Here, instead of studying the pathological effect of deleterious

variants in the context of disease, as in many previous works (Ng &

Henikoff, 2001; Stone & Sidow, 2005; Arbiza et al, 2006; Conde

et al, 2006; Reumers et al, 2008; Kumar et al, 2009; Adzhubei et al,

2010; Goode et al, 2010; Gonzalez-Perez & Lopez-Bigas, 2011), a

radically different approach was followed. Taking advantage of the

availability of a wealth of genomes of healthy individuals, the

reasons why apparently deleterious variants cause no pathological

effect in them were analysed. Given the modular nature of human

genetic diseases (Brunner & van Driel, 2004; Gandhi et al, 2006;

Lim et al, 2006; Goh et al, 2007; Oti & Brunner, 2007; Wagner et al,

2007; Oti et al, 2008), and the trend of disease genes to reside in a

neighbourhood within the network of protein interactions (Lim

et al, 2006; Lage et al, 2007; Ideker & Sharan, 2008; Vidal et al,

2011; Mitra et al, 2013), the interactome was used in the present

study as a scaffold connecting proteins in a way related to common

functionality. It is known that experimental artefacts, limitations in

screening power and sensitivities of particular assays can yield false

positives in interaction data (von Mering et al, 2002). To avoid

potential artefacts and false positives, only interactions detected by

at least two different detection methods were used. In this way, a

high-quality curated interactome was produced with which the

effect of deleterious mutations could be studied. In this study, dele-

teriousness was defined on the basis of the pathogenicity scores

SIFT (Kumar et al, 2009) and Polyphen (Ramensky et al, 2002).

Since both scores are known to sometimes produce discrepant

results (Hicks et al, 2011), their validity was checked with an in

silico study which resulted in a reasonable agreement between the

prediction of the deleterious effect of an amino acid change and its

impact on the protein structure.

This work provides an explanation for the maintenance of a

seemingly high mutational load in healthy individuals. The individ-

ualized observations made in healthy subjects and CLL patients,

completed with the analysis of proteins mutated in monogenic

diseases, strongly suggest that the pathogenic role of deleterious

mutations is highly correlated with the impact on the interactome

integrity caused by the combined LoF of the affected proteins, which

is also related to the location of such proteins within the interactome.

Thus, affected proteins in healthy individuals are concentrated in

peripheral modules, avoiding internal modules. However, the most

important factor which sheds light on the mechanisms by which the

interactome can bear a large number of proteins with deleterious

mutations is related to the way in which affected proteins are specif-

ically combined in healthy individuals. Affected proteins in healthy

individuals tend to occur in combinations which preserve short path

lengths (Fig 5B). When the same proteins occur in random combi-

nations, the length of the shortest paths significantly increases

(Fig 5B). Most probably, the structural constraints imposed by the

preservation of shortest paths underlie the relative higher tolerance

for deleterious mutations observed in the periphery of the interac-

tome. In the periphery, combinations of affected proteins that

preserve shortest path lengths are easier to find than in internal

regions of the interactome. Visually, the effect on the interactome

caused by removing such combinations of damaged proteins seems

Table 2. Spearman’s rank correlation coefficient (q) between the number of interactions, the betweenness and the closeness centrality with
respect to the frequency of occurrence of deleterious variants in the population in three different scenarios: homozygosis, heterozygosis and the
somatic mutations observed in the CLL patients.

Number of interactions Betweenness Closeness centrality

q P-value q P-value q P-value

Homozygosis �0.0391 0.101 �0.0341 0.154 �0.0238 0.319

Heterozygosis �0.0661 1.34 × 10�7 �0.0534 2.053 × 10�5 �0.0536 1.934 × 10�5

CLL somatic 0.152 0.0116 0.118 0.051 0.128 0.0335

Table 3. Validation of the relationship between the module centrality
and damage using different network module detection algorithms
(Infomap and Walktrap) and three protein interactomes (see Materials
and Methods).

Sample Interactome

Network
module
detection
algorithm Rho P-value

1,000 genomes,
MGP1 and
germinal CLL

Curated Walktrap �0.292 ≤ 0.001

Curated Infomap �0.159 ≤ 0.001

Non-Curated Walktrap �0.13 0.28

Non-Curated Infomap �0.11 ≤ 0.01

STRING Walktrap �0.186 ≤ 0.01

STRING Infomap �0.205 ≤ 0.01

Somatic
variants CLL

Curated Walktrap 0.192 ≤ 0.01

Curated Infomap 0.176 ≤ 0.001

Non-Curated Walktrap 0.321 ≤ 0.01

Non-Curated Infomap 0.211 ≤ 0.01

STRING Walktrap 0.28 ≤ 0.00

STRING Infomap 0.322 ≤ 0.001
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to be restricted to the disconnection of some very small marginal

components, often composed of a few proteins, as opposed to the

effect observed when the affected proteins are removed randomly

(compare Fig 5 D and E). This property could only be observed by

means of an individualized analysis of the healthy subjects.

In addition, the results presented here are in agreement with

previous studies which report that proteins involved in genetic

diseases show little preference for either the centre or the periphery

of the interactome (Goh et al, 2007) and situate cancer proteins in

a central location of the interactome (Jonsson & Bates, 2006;

Rambaldi et al, 2008; Vidal et al, 2011) (see Fig 7 and Supplemen-

tary Fig S2). Thus, as previously suggested, loss of phenotypic

robustness might be a phenomenon that occurs when cellular

networks are disrupted (Levy & Siegal, 2008).

Despite being carefully curated, the use of the interactome

always entails a risk of obtaining results biased towards well-

studied biological processes (Edwards et al, 2011; Das & Yu, 2012).

Thus, the true degree of understudied proteins could be underesti-

mated in comparison with that of the well-studied proteins. It might

be argued that this effect could, for example, inflate the differences

in network parameters between cancer genes and other classes.

Nevertheless, the interactome used here is expected to suffer to a

lesser extent from this bias, given that protein interaction data were

only retrieved from raw data repositories, avoiding knowledge-

based sources.

From an evolutionary perspective, the interactome seems to have

grown by the addition of external components rather than by radical

internal re-structuring. Actually, our results (Supplementary Fig S1)

agree with previous observations which document how proteins

under positive selection tend to be placed at the periphery of the

interactome, whereas proteins under negative selection tend to have

a central location in the interactome (Fraser et al, 2002; Kim et al,

2007). This observation has been extrapolated to functional

modules (Serra et al, 2011), which overlap with network modules

(Minguez & Dopazo, 2011) or communities to some extent. From

the point of view of disease, a high degree of connectivity between

proteins mutated in the same disease state has been reported (Goh

et al, 2007). This observation suggests that interaction modules

carry out functions which can be impaired by the failure of one or

several of their nodes.

The general conclusion of this work is that the deleterious

character of a variant obviously depends on the damage it causes

to the protein, but ultimately, it is a system’s property that criti-

cally depends on the location of the affected protein within the

interactome and, especially, on the relative location of the specific

combination of affected proteins within the interactome. Deleteri-

ous variants affecting genes of internal interactome modules will

probably disrupt the network structure and affect more essential

functionalities. Consequently, they will likely have pathological

consequences. On the other hand, deleterious variants which

affect specific combinations of proteins in peripheral modules of

the network in a way that minimizes the increase of shortest

paths and, consequently, the loss of interconnectivity have a high

likelihood of both causing minor distortions to the interactome

and affecting only non-essential functionalities. Variants of this

type are observed in normal individuals and have little or no

pathological consequences. Moreover, this work stresses the

importance of the analysis not only of the diseased condition but

also of the healthy condition when examining the consequences

of genomic features.

Materials and Methods

Interactome data

Protein–protein interactions were obtained from the following

databases: BioGRID (Chatr-Aryamontri et al, 2013) version 3.1.89

downloaded on 17 April 2012; IntAct (Kerrien et al, 2012) released

on 17 April 2012; and Molecular Interaction Database (MINT)

(Licata et al, 2012) released on 2 December 2011. Data were

processed as follows: (i) only proteins with UniProt Swiss-Prot

(UniProt_Consortium, 2011) IDs were used; (ii) only interactions

of ‘physical association’ type were used; and (iii) only interactions

detected by at least two different detection methods (von Mering

et al, 2002) were used. The subset of interactions obtained after

these filtering steps constitute a curated interactome which

comprises a total of 7,331 proteins connected by 21,623 interac-

tions. The categories ‘physical association’ and ‘detection method’

are components of the xml format PSI-MI 2.5 (Kerrien et al, 2007)

offered by the PPI databases used. Additionally, two other protein

interactomes were considered. One of them was built by including

every binary interaction from the above databases, which fits the

previous criteria with the exception of iii (non-curated interactome),

containing 82,852 binary curated interactions between 12,118

proteins. The other was built by including 52,726 binding interac-

tions between 10,662 proteins with a score higher than 400 from

the STRING database.

Human populations

A total of thirteen human populations were used in this study which

include European populations TSI from Tuscany in Italia (98

samples), FIN Finnish from Finland (93 samples), GBR British from

England and Scotland (89 samples), CEU which are Utah residents

(CEPH collection) with northern and western European ancestry (85

samples); Asian populations CHB Han Chinese in Beijing, China (97

samples), CHS Han Chinese South (100 samples) and JPT Japanese

in Tokyo, Japan (89 samples); American populations MXL Mexican

Ancestry in Los Angeles, CA (66 samples), PUR Puerto Rican in

Puerto Rico (55 samples) and CLM Colombian in Medellin, Colom-

bia (60 samples); and African populations YRI Yoruba in Ibadan,

Nigeria (88 samples), LWK Luhya in Webuye, Kenya (97 samples),

and ASW African Ancestry in southwest USA (61 samples). The

exome sequences of all the individuals corresponding to the thirteen

populations were downloaded from the 1,000 genomes web page

(http://www.1000genomes.org/) in multi-sample VCF format. Vari-

ants in positions located in the interactome genes were collected for

this study (see below).

This selection was completed with MGP1, a population

composed of 252 Spanish samples from healthy individuals,

sequenced in the context of the Medical Genome Project (http://

www.medicalgenomeproject.com). The total number of individuals

studied in all the populations is 1,330. Finally, 41 exomes of chronic

lymphocytic leukaemia (CLL) patients (Quesada et al, 2012) were

analysed.
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Human subjects

The exome sequences of the human populations described above

(except MGP1) were downloaded from the 1,000 genomes web page

(http://www.1000genomes.org/) in multi-sample VCF format (Feb-

ruary 2012 release).

Following informed consent, the 252 MGP1 samples were

obtained and further anonymized and sequenced.

Collection of samples from patients and their use for research

were ethically approved by the University Hospital Virgen del Rocı́o

(Seville, Spain) institutional review board for the protection of

human subjects and performed according to the principles set out in

the WMA Declaration of Helsinki.

Sequence data have been deposited at the European Genome-

phenome Archive (EGA), which is hosted by the EBI, under acces-

sion number EGAS00001000938. The exomes of 41 CLL patients

(Quesada et al, 2012) were downloaded from the EGA repository

(ID: EGAD00001000044).

Construction of DNA libraries and sequencing

Library preparation and exome capture were performed according

to a protocol based on the Baylor College of Medicine protocol

version 2.1 with several modifications. Briefly, 5 lg of input geno-

mic DNA is sheared, end-repaired and ligated with specific adap-

tors. A fragment size distribution ranging from 160 bp to 180 bp

after shearing and 200–250 bp after adaptor ligation was verified

by Bioanalyzer (Agilent). The library is amplified by pre-capture

LM-PCR (linker-mediated PCR) using FastStart High Fidelity PCR

System (Roche) and barcoded primers. After purification, 2 lg of

LM-PCR product is hybridized to NimbleGen SeqCap EZ Exome

libraries V3. After washing, amplification was performed by post-

capture LM-PCR using FastStart High Fidelity PCR System

(Roche). Capture enrichment is measured by qPCR according to

the NimbleGen protocol. The successfully captured DNA is

measured by Quant-iTTM PicoGreen dsDNA reagent (Invitrogen)

and subjected to standard sample preparation procedures for

sequencing with SOLiD 5500xl platform as recommended by the

manufacturer. Emulsion PCR is performed on E80 scale (about

1 billion template beads) using a concentration of 0.616 pM

which contains four equi-molecular pooled libraries of enriched

DNA. After breaking and enrichment, about 276 million enriched

template beads are sequenced per lane on a 6-lane SOLiD 5500xl

slide.

Analysis of the Spanish population and the CLL sequencing Data

A customized pipeline was applied for processing the sequences. In

brief, sequence reads were aligned to the reference human genome

build GRCh37 (hg19) using the SHRiMP tool (Rumble et al, 2009).

Reads correctly mapped were further filtered with SAMtools (Li

et al, 2009), which was also used for sorting and indexing mapping

files. Only high-quality sequence reads mapping to the reference

human genome in unique locations were used for variant calling.

The Genome Analysis Toolkit (GATK) (McKenna et al, 2010) was

used to realign the reads around known indels and for base quality

score recalibration. Identification of single nucleotide variants

and indels was performed using GATK standard hard filtering

parameters (DePristo et al, 2011). In the case of CLL samples, the

calling of somatic variants was carried out with the specialized soft-

ware Mutect (Cibulskis et al, 2013).

Selection of deleterious variants

Firstly, the functional consequence of every variant was computed

using VARIANT (Medina et al, 2012) software and those affecting

either the protein sequence or the mRNA transcription/translation

were selected. Variants located in intronic, upstream, downstream

or intergenic regions, as well as variants with synonymous or

unknown functional consequence, were filtered out. Only non-

synonymous, stop loss, stop gain and splicing disrupting variants

were considered. Then, the putative impact and damaging effect of

these variants on the functionality of the affected protein was

predicted by computing both SIFT (Kumar et al, 2009) and Poly-

phen (Ramensky et al, 2002) damage scores. This was completed

with phastCons (Siepel et al, 2005) conservation score. Since the

conservation score is the only parameter applicable to any type of

position, it was used as a primary filter. Thus, stop loss, stop gain

and splicing disrupting variants with a phastCons conservation

score higher than 200 were selected as damaging. In the case of

non-synonymous variants, a SIFT score lower than 0.05 or a Poly-

phen score higher than 0.95 is also required to consider them as

deleterious.

Source of disease annotations

A total of 1,746 uniprot-OMIM disease terms associations were

downloaded from the UniProtKB/Swiss-Prot database (release April

2014). The Disease Ontology (Schriml et al, 2012) was used to clas-

sify OMIM disease terms. Those proteins associated with OMIM

terms annotated under the disease ontology parent ‘monogenic

disease’ (DOID:0050177) were tagged as monogenic disease-

associated proteins, comprising a total of 162 uniprot accessions in

our curated interactome (see Supplementary Table S2). Cancer

driver genes (a total of 138) were taken from the study by

Vogelstein et al (2013) (see Supplementary Table S3).

In silico structural analysis of the impact of mutations
in the proteins

Protein sequences were downloaded from the UniProt database

(The_Uniprot_Consortium, 2014). Only proteins structurally solved

in the PDB (Berman et al, 2000) were used here for validation.

Three-dimensional models were produced for each protein using the

RaptorX program (Kallberg et al, 2012). The program performs a

template-based protein structure modelling, applying single- and

multiple-template threading methods. The three-dimensional model

was used to predict the effect that single point mutations have on

the stability of proteins, using SDM software (Worth et al, 2011).

SDM calculates a stability score which accounts for the free energy

difference between the wild-type protein and the corresponding

mutated protein. Additionally, some sequence-based features,

such as changes in the charge and the polarity of the protein, as

well as SNAP predictions (Bromberg & Rost, 2007), were used to

further assess the severity of the impact produced by the change.

Changes in charge and polarity were defined exclusively on the
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basis of the type of residue substitution. Changes in polarity and

charge were based uniquely on the residue changed. Polarity

changes were measured on a hydrophobicity scale of 0 (LIFWCMVY),

1 (PATGS) or 2 (HQRKNED) (Mirkovic et al, 2004). Changes in

the total protein charge were estimated on the basis of the

charges of the residues: positive (RK), negative (ED) or non-charged

(LIFWCMVYPATGSHQN).

Assessing the effect caused by homozygote deleterious variants
on the interactome structure

The aim of this study was to quantify the global damage that the

deleterious variants cause to the interactome. To achieve this, indi-

vidual interactomes were constructed by removing those nodes

affected by homozygote deleterious variants from the network of

protein interactions. Then, the impact that this subtraction of nodes

had on the interactome structure was studied. In addition to homo-

zygote deleterious variants, the cases of proteins with compound

heterozygote alleles were also removed. In particular, the impact on

the interactome was assessed by measuring the following network

properties: (i) separation into isolated components, via the total

number of components or the size of the giant component;

(ii) connectivity loss: via the total number of remaining edges; and

(iii) increase of path lengths, by measuring the network diameter

(largest shortest path) or the average path length.

Then, the aim was to understand the extent of the damage

produced by the deleterious variants on the interactomes of real

individuals. To evaluate this, the network properties of real indi-

vidual interactomes were compared with simulated interactomes in

which a similar number of affected nodes were randomly

removed. In these simulated interactomes, the probability of a

protein being affected is identical for any protein in the network.

Such simulated interactomes represent the expectation of random

damage in the interactome for a given number of affected proteins.

These comparisons were performed at population level. Thus, for

each population, 1,000 interactomes with a number of affected

proteins randomly sampled among the values observed in the

population were generated. The average values of network proper-

ties of real and simulated interactomes were compared by means

of a non-parametric Mann–Whitney test. Another simulation was

conducted in which proteins were removed not randomly as

before, but rather with a probability proportional to the observed

mutation frequencies in the 1,000 genomes and MGP populations.

In this scenario, the resulting simulated individuals will have

deleterious variants only in proteins which are affected in normal

individuals, but in random combinations that do not necessarily

exist in real healthy individuals.

Comparison of the observed values of interactome network prop-

erties in real individuals with respect to the corresponding distribu-

tion of values obtained from the simulated population of

interactomes will confirm whether the variants carried by normal

population occur in the less damaging positions among all the possi-

ble locations or not.

Defining the modular structure of the interactome

The interactome was divided into communities or modules using

the Walktrap algorithm (Pons & Latapy, 2005). This algorithm finds

densely connected neighbourhoods, also called network communi-

ties or modules, within a graph via random walks under the

assumption that short random walks are ‘trapped’ within highly

interconnected network regions. A second community detection

algorithm, called Infomap (Rosvall & Bergstrom, 2008), was used to

validate the results. Both algorithms were carried out using the

freely available igraph R package (http://cran.r-project.org/web/

packages/igraph/), keeping the authors default parameters. In this

study, only those communities composed of at least five proteins

were used.

Quantifying the impact in the modules

Once the interactome communities were defined, the distribution

of the proteins containing deleterious variants was studied. Here,

for every individual, the proportion of affected proteins per

module was calculated. To determine how the observed distribu-

tions deviate from the random expectations, a permutation test

was carried out in which the affected proteins were distributed

randomly across the interactome. Again, the probability of a

protein being affected in the permutations is the same for any

protein in the interactome. Then, empirical random distributions

of affected proteins were obtained for each module separately by

running 1,000 simulations for each individual. The value of rela-

tive damage was defined for each module as the percentile of the

empirical random distribution corresponding to the observed

proportion of affected proteins in the module. Relative damage

values were rescaled between 0 (no proteins affected at all in this

module) to 1 (the maximum possible number of proteins affected

in this module).

Description of the communities and human populations based on
their damage profiles

Hierarchical clustering on the Euclidian distances based on the

comparisons of the module impact values was used to arrange popu-

lations according to the resemblance in patterns of impact across

communities. In order to gain insight into the biological processes

affected or protected across communities, a GO enrichment test of

the clusters found was carried out using the FatiGO (Al-Shahrour

et al, 2004) algorithm as implemented in the Babelomics package

(Al-Shahrour et al, 2008; Medina et al, 2010).

Supplementary information for this article is available online:

http://msb.embopress.org

Acknowledgements
We are indebted to Alejandro Aleman for helping with the web interface to

the variants. This work is supported by grants BIO2011-27069 and PRI-PIBIN-

2011-1289 from the Spanish Ministry of Economy and Competitiveness

(MINECO), PROMETEO/2010/001 from the Conselleria de Educació of the

Valencia Community. LG-A is supported by fellowship PFIS FI10/00020 from

the MINECO. We also thank the support of both initiatives of the ISCIII

(MINECO): the National Institute of Bioinformatics (www.inab.org), the CIBER

de Enfermedades Raras (CIBERER). We thank the support of Bull through the

Bull Chair in Computational Genomics (http://bioinfo.cipf.es/chair_compgenom).

We are indebted to the ICGC consortium for making the CLL data used in this

study available.

ª 2014 The Authors Molecular Systems Biology 10: 752 | 2014

Luz Garcia-Alonso et al Interactome and mutational load in humans Molecular Systems Biology

15

http://cran.r-project.org/web/packages/igraph/
http://cran.r-project.org/web/packages/igraph/
http://www.inab.org
http://bioinfo.cipf.es/chair_compgenom


Author contributions
LG-A did most of the analysis and participated in the writing of the manu-

script; LG-A and JJ-A processed the 1,000 genomes samples; LG-A and JC

processed the CLL samples; AV, JS and GA produced and processed the Spanish

sample data; and JD conceived and coordinated the work and wrote the

manuscript.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,

Kondrashov AS, Sunyaev SR (2010) A method and server for predicting

damaging missense mutations. Nat Methods 7: 248 – 249

Agoston V, Csermely P, Pongor S (2005) Multiple weak hits confuse complex

systems: a transcriptional regulatory network as an example. Phys Rev E

Stat Nonlin Soft Matter Phys 71: 051909

Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex

networks. Nature 406: 378 – 382

Al-Shahrour F, Carbonell J, Minguez P, Goetz S, Conesa A, Tarraga J, Medina I,

Alloza E, Montaner D, Dopazo J (2008) Babelomics: advanced functional

profiling of transcriptomics, proteomics and genomics experiments. Nucleic

Acids Res 36: W341 –W346

Al-Shahrour F, Diaz-Uriarte R, Dopazo J (2004) FatiGO: a web tool for finding

significant associations of Gene Ontology terms with groups of genes.

Bioinformatics 20: 578 – 580

Arbiza L, Duchi S, Montaner D, Burguet J, Pantoja-Uceda D, Pineda-Lucena A,

Dopazo J, Dopazo H (2006) Selective pressures at a codon-level predict

deleterious mutations in human disease genes. J Mol Biol 358: 1390 – 1404

Barabasi AL, Gulbahce N, Loscalzo J (2011) Network medicine: a

network-based approach to human disease. Nat Rev Genet 12: 56 – 68

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov

IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:

235 – 242

Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous

polymorphisms on function. Nucleic Acids Res 35: 3823 – 3835

Brunner HG, van Driel MA (2004) From syndrome families to functional

genomics. Nat Rev Genet 5: 545 – 551

Carbonell J, Alloza E, Arce P, Borrego S, Santoyo J, Ruiz-Ferrer M, Medina I,

Jimenez-Almazan J, Mendez-Vidal C, Gonzalez-Del Pozo M, Vela A,

Bhattacharya SS, Antinolo G, Dopazo J (2012) A map of human microRNA

variation uncovers unexpectedly high levels of variability. Genome Med 4:

62

Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C,

Nixon J, Ramage L, Kolas N, O’Donnell L, Reguly T, Breitkreutz A, Sellam A,

Chen D, Chang C, Rust J, Livstone M, Oughtred R, Dolinski K, Tyers M

(2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res

41: D816 –D823

Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel

S, Meyerson M, Lander ES, Getz G (2013) Sensitive detection of somatic

point mutations in impure and heterogeneous cancer samples. Nat

Biotechnol 31: 213 – 219

Conde L, Vaquerizas JM, Dopazo H, Arbiza L, Reumers J, Rousseau F,

Schymkowitz J, Dopazo J (2006) PupaSuite: finding functional single

nucleotide polymorphisms for large-scale genotyping purposes. Nucleic

Acids Res 34: W621 –W625

Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H,

Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B,

Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y,

Cokol M et al (2010) The genetic landscape of a cell. Science 327:

425 – 431

D’Antonio M, Ciccarelli FD (2011) Modification of gene duplicability during

the evolution of protein interaction network. PLoS Comput Biol 7:

e1002029

Das J, Yu H (2012) HINT: high-quality protein interactomes and their

applications in understanding human disease. BMC Syst Biol 6: 92

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis

AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM,

Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A

framework for variation discovery and genotyping using next-generation

DNA sequencing data. Nat Genet 43: 491 – 498

Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T (2008) Identifying

functional modules in protein-protein interaction networks: an integrated

exact approach. Bioinformatics 24: i223 – i231

Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB,

Frietze S, Harrow J, Kaul R, Khatun J, Lajoie BR, Landt SG, Lee BK, Pauli F,

Rosenbloom KR, Sabo P, Safi A, Sanyal A, Shoresh N et al (2012) An

integrated encyclopedia of DNA elements in the human genome. Nature

489: 57 – 74

Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Gibbs RA, Hurles

ME, McVean GA (2010) A map of human genome variation from

population-scale sequencing. Nature 467: 1061 – 1073

Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH (2011) Too

many roads not taken. Nature 470: 163 – 165

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002)

Evolutionary rate in the protein interaction network. Science 296: 750 – 752

Fraser HB, Plotkin JB (2007) Using protein complexes to predict phenotypic

effects of gene mutation. Genome Biol 8: R252

Fu W, O’Connor TD, Jun G, Kang HM, Abecasis G, Leal SM, Gabriel S, Rieder

MJ, Altshuler D, Shendure J, Nickerson DA, Bamshad MJ, Akey JM (2013)

Analysis of 6,515 exomes reveals the recent origin of most human

protein-coding variants. Nature 493: 216 – 220

Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS,

Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K,

Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz

J, Bader JS et al (2006) Analysis of the human protein interactome and

comparison with yeast, worm and fly interaction datasets. Nat Genet 38:

285 – 293

Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL (2007) The human

disease network. Proc Natl Acad Sci U S A 104: 8685 – 8690

Gonzalez-Perez A, Lopez-Bigas N (2011) Improving the assessment of the

outcome of nonsynonymous SNVs with a consensus deleteriousness score,

Condel. Am J Hum Genet 88: 440 – 449

Goode DL, Cooper GM, Schmutz J, Dickson M, Gonzales E, Tsai M, Karra K,

Davydov E, Batzoglou S, Myers RM, Sidow A (2010) Evolutionary

constraint facilitates interpretation of genetic variation in resequenced

human genomes. Genome Res 20: 301 – 310

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation.

Cell 144: 646 – 674

Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to

modular cell biology. Nature 402: C47 –C52

Hernandez P, Huerta-Cepas J, Montaner D, Al-Shahrour F, Valls J, Gomez L,

Capella G, Dopazo J, Pujana MA (2007) Evidence for systems-level

molecular mechanisms of tumorigenesis. BMC Genomics 8: 185

Molecular Systems Biology 10: 752 | 2014 ª 2014 The Authors

Molecular Systems Biology Interactome and mutational load in humans Luz Garcia-Alonso et al

16



Hicks S, Wheeler DA, Plon SE, Kimmel M (2011) Prediction of missense

mutation functionality depends on both the algorithm and sequence

alignment employed. Hum Mutat 32: 661 – 668

Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo

F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL,

Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F et al (2010)

International network of cancer genome projects. Nature 464: 993 – 998

Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18:

644 – 652

Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in

protein networks. Nature 411: 41 – 42

Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in

the human interactome. Bioinformatics 22: 2291 – 2297

Kallberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012)

Template-based protein structure modeling using the RaptorX web server.

Nat Protoc 7: 1511 – 1522

Keinan A, Clark AG (2012) Recent explosive human population growth has

resulted in an excess of rare genetic variants. Science 336: 740 – 743

Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury

M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC,

Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P,

Raghunath A, Roechert B et al (2012) The IntAct molecular interaction

database in 2012. Nucleic Acids Res 40: D841 –D846

Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N,

Bader GD, Xenarios I, Wojcik J, Sherman D, Tyers M, Salama JJ, Moore S,

Ceol A, Chatr-Aryamontri A, Oesterheld M, Stumpflen V, Salwinski L,

Nerothin J, Cerami E et al (2007) Broadening the horizon–level 2.5 of the

HUPO-PSI format for molecular interactions. BMC Biol 5: 44

Kim PM, Korbel JO, Gerstein MB (2007) Positive selection at the protein

network periphery: evaluation in terms of structural constraints and

cellular context. Proc Natl Acad Sci U S A 104: 20274 – 20279

Kitano H (2002) Systems biology: a brief overview. Science 295: 1662 – 1664

Kondrashov AS (1995) Contamination of the genome by very slightly

deleterious mutations: why have we not died 100 times over? J Theor Biol

175: 583 – 594

Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding

non-synonymous variants on protein function using the SIFT algorithm.

Nat Protoc 4: 1073 – 1081

Lage K, Karlberg EO, Storling ZM, Olason PI, Pedersen AG, Rigina O, Hinsby

AM, Tumer Z, Pociot F, Tommerup N, Moreau Y, Brunak S (2007) A human

phenome-interactome network of protein complexes implicated in genetic

disorders. Nat Biotechnol 25: 309 – 316

Lappalainen T, Sammeth M, Friedlander MR, t Hoen PA, Monlong J, Rivas

MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M,

Wieland T, Greger L, van Iterson M, Almlof J, Ribeca P, Pulyakhina I,

Esser D, Giger T, Tikhonov A et al (2013) Transcriptome and genome

sequencing uncovers functional variation in humans. Nature 501:

506 – 511

Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM (2008) A single

gene network accurately predicts phenotypic effects of gene perturbation

in Caenorhabditis elegans. Nat Genet 40: 181 – 188

Levy SF, Siegal ML (2008) Network hubs buffer environmental variation in

Saccharomyces cerevisiae. PLoS Biol 6: e264

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis

G, Durbin R (2009) The sequence Alignment/Map format and SAMtools.

Bioinformatics 25: 2078 – 2079

Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F,

Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT,

the molecular interaction database: 2012 update. Nucleic Acids Res 40:

D857 –D861

Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill

DE, Barabasi AL, Vidal M, Zoghbi HY (2006) A protein-protein interaction

network for human inherited ataxias and disorders of Purkinje cell

degeneration. Cell 125: 801 – 814

Lohmueller KE, Indap AR, Schmidt S, Boyko AR, Hernandez RD, Hubisz MJ,

Sninsky JJ, White TJ, Sunyaev SR, Nielsen R, Clark AG, Bustamante CD

(2008) Proportionally more deleterious genetic variation in European than

in African populations. Nature 451: 994 – 997

MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K,

Jostins L, Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD,

Conrad DF, Lunter G, Zheng H, Ayub Q, DePristo MA, Banks E, Hu M,

Handsaker RE et al (2012) A systematic survey of loss-of-function variants

in human protein-coding genes. Science 335: 823 – 828

MacArthur DG, Tyler-Smith C (2010) Loss-of-function variants in the genomes

of healthy humans. Hum Mol Genet 19: R125 –R130

McGary KL, Lee I, Marcotte EM (2007) Broad network-based predictability of

Saccharomyces cerevisiae gene loss-of-function phenotypes. Genome Biol 8:

R258

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,

Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The

genome analysis toolkit: a MapReduce framework for analyzing

next-generation DNA sequencing data. Genome Res 20: 1297 – 1303

Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J,

Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M,

Montaner D, Dopazo J (2010) Babelomics: an integrative platform for the

analysis of transcriptomics, proteomics and genomic data with advanced

functional profiling. Nucleic Acids Res 38: W210 –W213

Medina I, De Maria A, Bleda M, Salavert F, Alonso R, Gonzalez CY, Dopazo J

(2012) VARIANT: Command Line, Web service and Web interface for fast

and accurate functional characterization of variants found by

Next-Generation Sequencing. Nucleic Acids Res 40: W54 –W58

von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002)

Comparative assessment of large-scale data sets of protein-protein

interactions. Nature 417: 399 – 403

Minguez P, Dopazo J (2011) Assessing the biological significance of gene

expression signatures and co-expression modules by studying their

network properties. PLoS ONE 6: e17474

Mirkovic N, Marti-Renom MA, Weber BL, Sali A, Monteiro AN (2004)

Structure-based assessment of missense mutations in human BRCA1:

implications for breast and ovarian cancer predisposition. Cancer Res 64:

3790 – 3797

Mitra K, Carvunis AR, Ramesh SK, Ideker T (2013) Integrative approaches for

finding modular structure in biological networks. Nat Rev Genet 14:

719 – 732

Montaner D, Minguez P, Al-Shahrour F, Dopazo J (2009) Gene set internal

coherence in the context of functional profiling. BMC Genomics 10: 197

Muller HJ (1950) Our load of mutations. Am J Hum Genet 2: 111 – 176

Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions.

Genome Res 11: 863 – 874

Ng SB, Nickerson DA, Bamshad MJ, Shendure J (2010) Massively parallel

sequencing and rare disease. Hum Mol Genet 19: R119 –R124

Nothnagel M, Herrmann A, Wolf A, Schreiber S, Platzer M, Siebert R,

Krawczak M, Hampe J (2011) Technology-specific error signatures in the

1000 Genomes Project data. Hum Genet 130: 505 – 516

Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet

71: 1 – 11

ª 2014 The Authors Molecular Systems Biology 10: 752 | 2014

Luz Garcia-Alonso et al Interactome and mutational load in humans Molecular Systems Biology

17



Oti M, Huynen MA, Brunner HG (2008) Phenome connections. Trends Genet

24: 103 – 106

Pons P, Latapy M (2005) Computing communities in large networks using

random walks. J Graph Algorithms Appl 10: 191 – 218

Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, Ramsay

AJ, Bea S, Pinyol M, Martinez-Trillos A, Lopez-Guerra M, Colomer D,

Navarro A, Baumann T, Aymerich M, Rozman M, Delgado J, Gine E,

Hernandez JM, Gonzalez-Diaz M et al (2012) Exome sequencing identifies

recurrent mutations of the splicing factor SF3B1 gene in chronic

lymphocytic leukemia. Nat Genet 44: 47 – 52

Rambaldi D, Giorgi FM, Capuani F, Ciliberto A, Ciccarelli FD (2008) Low

duplicability and network fragility of cancer genes. Trends Genet 24:

427 – 430

Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server

and survey. Nucleic Acids Res 30: 3894 – 3900

Reumers J, Conde L, Medina I, Maurer-Stroh S, Van Durme J, Dopazo J,

Rousseau F, Schymkowitz J (2008) Joint annotation of coding and

non-coding single nucleotide polymorphisms and mutations in the

SNPeffect and PupaSuite databases. Nucleic Acids Res 36: D825 –D829

Rosvall M, Bergstrom CT (2008) Maps of random walks on complex

networks reveal community structure. Proc Natl Acad Sci U S A 105:

1118 – 1123

Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M (2009) SHRiMP:

accurate mapping of short color-space reads. PLoS Comput Biol 5: e1000386

Schriml LM, Arze C, Nadendla S, Chang YW, Mazaitis M, Felix V, Feng G,

Kibbe WA (2012) Disease Ontology: a backbone for disease semantic

integration. Nucleic Acids Res 40: D940 –D946

Segre D, Deluna A, Church GM, Kishony R (2005) Modular epistasis in yeast

metabolism. Nat Genet 37: 77 – 83

Serra F, Arbiza L, Dopazo J, Dopazo H (2011) Natural selection on functional

modules, a genome-wide analysis. PLoS Comput Biol 7: e1001093

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson

H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA, Kent

WJ, Miller W, Haussler D (2005) Evolutionarily conserved elements in

vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034 – 1050

Spivakov M, Akhtar J, Kheradpour P, Beal K, Girardot C, Koscielny G, Herrero

J, Kellis M, Furlong EE, Birney E (2012) Analysis of variation at

transcription factor binding sites in Drosophila and humans. Genome Biol

13: R49

Stone EA, Sidow A (2005) Physicochemical constraint violation by missense

substitutions mediates impairment of protein function and disease

severity. Genome Res 15: 978 – 986

Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S,

Do R, Liu X, Jun G, Kang HM, Jordan D, Leal SM, Gabriel S, Rieder MJ,

Abecasis G, Altshuler D, Nickerson DA, Boerwinkle E, Sunyaev S et al (2012)

Evolution and functional impact of rare coding variation from deep

sequencing of human exomes. Science 337: 64 – 69

The_Cancer_Genome_Atlas_Research_Network (2008) Comprehensive

genomic characterization defines human glioblastoma genes and core

pathways. Nature 455: 1061 – 1068

The_Uniprot_Consortium (2014) Activities at the Universal Protein Resource

(UniProt). Nucleic Acids Res 42: D191 –D198

UniProt_Consortium (2011) Ongoing and future developments at the

Universal Protein Resource. Nucleic Acids Res 39: D214 –D219

Vidal M, Cusick ME, Barabasi AL (2011) Interactome networks and human

disease. Cell 144: 986 – 998

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW

(2013) Cancer genome landscapes. Science 339: 1546 – 1558

Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev

Genet 8: 921 – 931

Worth CL, Preissner R, Blundell TL (2011) SDM–a server for predicting effects

of mutations on protein stability and malfunction. Nucleic Acids Res 39:

W215 –W222

Xue Y, Chen Y, Ayub Q, Huang N, Ball EV, Mort M, Phillips AD, Shaw K,

Stenson PD, Cooper DN, Tyler-Smith C (2012) Deleterious- and

disease-allele prevalence in healthy individuals: insights from current

predictions, mutation databases, and population-scale resequencing. Am J

Hum Genet 91: 1022 – 1032

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

Molecular Systems Biology 10: 752 | 2014 ª 2014 The Authors

Molecular Systems Biology Interactome and mutational load in humans Luz Garcia-Alonso et al

18

http://creativecommons.org/licenses/by/4.0/



