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Quantifying person-level brain network functioning to
facilitate clinical translation
TM Ball1, AN Goldstein-Piekarski1, JM Gatt2,3 and LM Williams1

Although advances in neuroimaging have yielded insights into the intrinsic organization of human brain networks and their
relevance to psychiatric and neurological disorders, there has been no translation of these insights into clinical practice. One
necessary step toward clinical translation is identifying a summary metric of network function that is reproducible, reliable, and has
known normative data, analogous to normed neuropsychological tests. Our aim was therefore to establish the proof of principle for
such a metric, focusing on the default mode network (DMN). We compared three candidate summary metrics: global clustering
coefficient, characteristic path length, and average connectivity. Across three samples totaling 322 healthy, mostly Caucasian adults,
average connectivity performed best, with good internal consistency (Cronbach’s α= 0.69–0.70) and adequate eight-week
test–retest reliability (intra-class coefficient = 0.62 in a subsample N= 65). We therefore present normative data for average
connectivity of the DMN and its sub-networks. These proof of principle results are an important first step for the translation of
neuroimaging to clinical practice. Ultimately, a normed summary metric will allow a single patient’s DMN function to be quantified
and interpreted relative to normative peers.
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INTRODUCTION
Intrinsic brain networks have been extensively examined in
groundbreaking basic neuroscience research,1–3 and have shown
relevance to psychiatric disorders in case-control studies.4,5

However, there has been no translation of these insights into
clinical practice.6 One major barrier to clinical translation is that we
do not yet have a way to quantify and interpret a single patient’s
network function.7,8 Our aim was therefore to establish the proof
of principle for a reliable summary metric that can quantify the
intrinsic network function of a single patient and allow it to be
interpreted relative to healthy normative peers.
Non-invasive human neuroimaging such as functional magnetic

resonance imaging (fMRI) allows intrinsic brain networks to be
examined using functional connectivity (that is, by identifying
brain regions with temporally correlated activity). Currently, a
major analytic approach to functional connectivity is to examine
pairwise functional connectivity between a seed region of interest
and the rest of the brain.3 However, this process is not
standardized, requiring each researcher to select and define the
seed region and set statistical and spatial thresholds for significant
connectivity. Each of these steps tends to differ from researcher to
researcher and even study to study, making it difficult to compare
across studies to understand normal or abnormal network
function. This variability also makes false-positive results more
likely9 and can result in over-fitting due to the high dimensionality
of neuroimaging data.10

A related issue with this analytic approach is that it is easy to
interpret group differences in a specific pair of regions as
representing group differences in the entire network. In other
words, when functional connectivity between one pair of regions
differs between cases and controls, a common inference is that

this is characteristic of an entire network’s dysfunction.11–13

However, it may also be that the observed group difference
applies only to the specific pair of regions and not to the network
per se. In order to differentiate these two interpretations and to
reduce false-positive findings, a standard metric that summarizes
connectivity within a whole network is needed.
Our aim was therefore to identify a standardized summary

metric for functional connectivity in a specific network. In order to
facilitate clinical translation, we focused on aggregating across all
pairwise connectivity within a network. We recognize that
independent components analysis (ICA) is a valid exploratory
statistical technique that has some benefits over the pairwise
approach.14–16 However, because ICA involves re-defining the
networks of interest based on each specific subject or group of
subjects, it is not suited to our goal of a straightforward metric
that can be readily translated into clinical practice.17

The optimal summary metric must satisfy several criteria.7 First,
it must define a network in a standardized manner across subjects
(not newly defining each time as in ICA) and systematically include
all connections within a network (not only connections to a single
seed region). Second, it must reliably measure network con-
nectivity within a single imaging session (that is, have adequate
internal consistency) and across sessions within the same person
(that is, have adequate test–retest reliability). In other words, the
metric should be robust to subtle variations in mood and fatigue
over time (although it may also be of separate interest to identify
features of networks that do vary with these state differences, that
is not the purpose here). Third, key properties of the metric, such
as its mean and standard deviation, should replicate across
samples. Fourth, in order for a summary metric to meaningfully
communicate information about a specific individual it must have
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known normative data. Finally, the metric must balance the
competing ideals of capturing the complexity of brain networks
on one hand, and ease of use and interpretation on the other.
In order to identify the metric that best balances these

competing ideals, we compared the complex topological proper-
ties of global clustering coefficient and characteristic path
length18–20 to a simple average of functional connectivity strength
(Figure 1). The global clustering coefficient captures the short-
range efficiency of a network by measuring the probability that
two regions with high functional connectivity to a third region
also have high functional connectivity to each other. The
characteristic path length captures the long-range efficiency of a
network by measuring the shortest number of connections
between two regions, on average across the network. Average
functional connectivity captures overall strength of connectivity
within a network, providing a parsimonious, easily interpretable
and easy to use summary metric.
We focus here on comparing these metrics within the default

mode network (DMN), which has key nodes in the posterior
cingulate cortex, medial prefrontal cortex and angular gyrus that
are coherent at rest and deactivated in concert during tasks.2,21–23

To define the DMN we used a previously validated and openly
available cortical parcellation scheme that was developed based
on consistent patterns of resting functional connectivity.21 We
focused on the DMN because it is one of the most well established
intrinsic networks, and one with arguably the clearest relevance
for a broad range of psychiatric and neurological conditions.4,24

The DMN has been implicated in self-reflective and interoceptive
functions, and seminal case-control studies show that healthy
adults have characteristically different DMN connectivity than
those with psychiatric conditions.4,25,26 However, variability in
these findings reflects the typically small sample size as well as the
methodological and conceptual issues discussed above, high-
lighting the need for a summary metric that can characterize
individual patients (not just groups of patients).
We evaluated three candidate summary metrics for the DMN:

global clustering coefficient, characteristic path length and
average connectivity. For each metric, we examined the internal
consistency (Cronbach’s α, with40.7 considered adequate27) and
test–retest reliability (intra-class coefficient, with 40.6 considered
moderate and 40.8 considered substantial28). We also examined
the reproducibility of the mean values, standard deviations, and
internal consistency across three samples (test–retest reliability
could only be computed in Sample 3): Samples 1 and 2 consist of
255 healthy Caucasian adult twins with fMRI data (65% mono-
zygotic, 33% dizygotic and 2% unknown zygosity), divided such
that each twin pair was split across the two samples,29 and Sample
3 consists of 67 healthy adults that were recruited as controls for
an antidepressant medication trial.30 Table 1 describes the
demographic characteristics of each sample. We also provide
normative data from the full group of 322 healthy adults and
illustrate the potential for clinical use of such norms with a case
example.
We first compared the two topological properties against

average connectivity strength. We then examined how the best
metric performed in the whole DMN relative to two theoretically
important sub-networks:1,31 (i) an anterior sub-network comprised
of connections within medial prefrontal cortex (PFC) regions and
(ii) a posterior-to-anterior sub-network comprised of connections
between posterior (that is, posterior cingulate cortex; PCC) and
anterior (that is, medial PFC) midline cortical regions.

MATERIALS AND METHODS
Study design
This study aimed to identify a standardized summary metric for functional
connectivity in the DMN. The design was cross-sectional and observational,
and involved three samples of healthy adult volunteers. Sample sizes and
inclusion/exclusion criteria were determined a priori and publically
specified.29,30 The first two samples comprised 270 healthy Caucasian adult
twins,29 divided such that each twin pair was split across the two samples.
After exclusions for incomplete fMRI data (n= 7), fMRI data acquisition
errors (n=2), poor fMRI data quality (n=4), or participants withdrawn from
the study (n=2), Sample 1 consisted of 126 healthy adults and Sample 2
consisted of 129 healthy adults. Sample 3 comprised 69 healthy adults that
were recruited as controls for an anti-depression medication trial (30:
clinicaltrials.gov identifier NCT00693849), with one participant excluded for
incomplete fMRI data and another for poor fMRI data quality, leaving 67 in
the analysis (n= 65 for test–retest analysis due to n= 2 missing data at
eight-week follow-up). Table 1 shows the demographic characteristics of
these samples. Note that sample sizes were reduced for the internal
consistency analysis due to requirements for amount of useable fMRI data
in each quintile of the time series (Sample 1 n=87 with sufficient data in all
quintiles, Sample 2 n=98, Sample 3 n= 38). All participants provided
written informed consent in accordance with approval from the Human
Research Ethics Committee of the University of Sydney.

Figure 1. Illustration of candidate summary metrics. (a) Average
connectivity is the average magnitude of all pairwise functional
connectivity values (note that a subset of connections is shown in
the figure for clarity). (b) Topological properties are derived from a
representation of the network with a proportion of the weakest
connections set to zero (represented by lines present in a and
absent in b). The clustering coefficient of node 1 is the weighted
proportion of connections among that node’s neighbors. Neighbors
of node 1 are illustrated in the figure by red dashed lines,
connections among those neighbors by red solid lines. The global
clustering coefficient is the aggregate of the clustering coefficient
for all nodes in the network and indicates the network’s short-range
efficiency. The path length between nodes 2 and 3 is the weighted
shortest distance between those nodes, illustrated in the figure by
orange solid lines. The characteristic path length is the average
shortest distance across all pairs of nodes in the network and
indicates the network’s long-range efficiency.

Table 1. Description of participants in each sample

Sample 1 Sample 2 Sample 3

Number of participants 126 129 67
Age (Mean (s.d.)), years 39.6 (12.8) 39.0 (13.1) 30.2 (12.6)
Gender (% female) 61.9% 62.0% 50.7%
Ethnicity (% Caucasian) 100% 100% 85.1%
Years of Education (Mean (s.d.)) 14.6 (3.1) 14.4 (2.8) 14.8 (2.6)
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Image acquisition
The same imaging acquisition parameters were used for all samples. MRI
images were acquired with a 3.0-T GE Signa scanner and an eight-channel
head coil in Sydney, Australia. The scan consisted of five tasks and a 3D T1-
weighted structural MRI scan. MR images for each task were acquired using
echo planar imaging (TR = 2500 ms, TE = 27.5 ms, matrix = 64 × 64,
FOV= 24 cm, flip angle = 90 degrees). Forty slices, each 3.5 mm thick,
covered the whole brain in each volume. For each task, 120 volumes were
collected with a total scan time of 5 min and 8 s. The details of the five
tasks have been previously described.32 Briefly, tasks assessed (i) selective
attention using an auditory oddball task, (ii) working memory using a
continuous performance task, (iii) inhibition processes using a Go-NoGo
task and (iv) conscious and (v) non-conscious processing of emotional
faces. Functional connectivity was derived from the residual time series
when all five tasks were concatenated, following the removal of task and
covariate effects (more details below). This procedure results in patterns of
functional connectivity that closely mimic those found in resting state
scans,33 and can also be considered to assess the “task negative” nature of
the DMN.2

Structural MRI 3D T1-weighted images were acquired in the sagittal
plane using a 3D spoiled gradient echo (SPGR) sequence (TR = 8.3 ms;
TE = 3.2 ms; flip angle = 11 degrees, TI = 500 ms, NEX= 1, ASSSET= 1.5,
matrix = 256× 256). A total of 180 contiguous slices, each 1 mm thick,
covered the whole brain with an in-plane resolution of 1 mm x 1 mm. All
participants were instructed to refrain from caffeine and tobacco use prior
to the scan.

Image preprocessing
The same preprocessing and data analysis steps were conducted on all
samples. Preprocessing and data analysis were performed using Statistical
Parametric Mapping software implemented in MATLAB (SPM8; Wellcome
Department of Cognitive Neurology, London, UK). First, images were
motion corrected and un-warped using default parameters in SPM8. Next,
time points with large head movements or extreme changes in blood-
oxygenation level dependent (BOLD) signal intensity were identified and
censored (that is, temporally masked) from the analysis using the time
series difference analysis toolbox (http://www.fil.ion.ucl.ac.uk/spm/ext/
#TSDiffAna). Large head movement was defined as frame-wise displace-
ment from one time point to the next of 40.3mm, calculated as the sum
of the absolute values of the differentiated realignment estimates.34

Extreme changes in signal intensity were calculated as the mean squared
difference in signal intensity from one time point to the next divided by
the mean signal across the volume; scaled signal intensity differences of
greater than 10 were censored. A temporal mask was then created for each
censored time point plus the subsequent time point and used as
regressors of no interest in the first-level statistical models described
below.34,35 Since movement related artifacts have been shown to impact
data acquired before and several seconds the movement,34 a total of four
temporal masks were created for each movement spike (an additional
volume before and two volumes after the movement spike). Images were
then slice time corrected, spatially normalized to Montreal Neurological
Institute (MNI) space36 and smoothed using an 8 mm full-width-at-half-
maximum Gaussian kernel in SPM8.

Computation of functional connectivity
For each fMRI task, the BOLD responses for each experimental condition
were modeled in the general linear model framework for a first-level (that
is, single subject) statistical model (see Korgaonkor et al.32 for details).
Motion effects were also modeled using the Volterra expansion of the
realignment parameters, yielding 24 regressors. Additional covariates of
non-interest for each task included the mean signal time course extracted
from ventricle and white matter masks as well as the temporal masks
derived from the volume censoring described above. The resting state
signal was then extracted based on the concatenated time series across
the entire scan session, using the residual after removing the above task
and covariate effects. Finally, a band-pass filter (0.009 Hzo fo0.08 Hz) was
applied.
In order to ensure sufficient data for a reliable functional connectivity

estimate, any subject with fewer than 300 un-censored time points was
excluded from the analysis (n= 2 in Sample 1, n=2 in Sample 2, n= 1 in
Sample 3). For the internal consistency reliability analysis in which the time
series was divided into quintiles, a minimum of 100 un-censored time
points was required in each quintile. This relatively liberal threshold was

selected to enhance the generalizability of results to settings or
populations with only moderate data quality.
Finally, resting functional connectivity between nodes of the DMN was

computed using the Data Processing & Analysis of Brain Imaging toolbox.37

First, each subject’s cortex was parcellated into 333 regions, 41 of which
comprise the DMN.21 Second, Pearson correlations were computed for the
average time courses of all pairwise regions within the DMN, yielding a 41
by 41 matrix of functional connectivity. The magnitude (that is, absolute
value) of the Fisher Z transformed correlation was used for all subsequent
analyses.

Computation of summary metrics
We compared the complex topological properties global clustering
coefficient and characteristic path length18–20 to a simple average of
functional connectivity strength. Topological properties (weighted global
clustering and weighted characteristic path length) were computed using
the Tnet package in R Statistics.38 The 41 by 41 functional connectivity
matrix described above was converted to a non-directed weighted graph
with edge weights defined as the functional connectivity between two
nodes. Three graphs were created for each subject, each using a different
threshold below which edge weights were set to zero. Thresholds were
selected so that 70, 75 or 80% of all edges were retained, because 70% was
the minimum threshold such that all nodes had at least one edge for all
participants in Sample 1. Because the three thresholds performed similarly,
results from the less stringent thresholds (75 and 80% edges retained) are
reported in the Supplementary Materials.
Average DMN connectivity was defined as the average magnitude (that

is, absolute value) of Fisher Z transformed functional connectivity across
the 41 by 41 matrix of DMN regions. Average connectivity in the anterior
sub-network was defined as the average magnitude (that is, absolute
value) of Fisher Z transformed functional connectivity across 14 DMN
regions whose centroid coordinate is within 15 mm of the midline in the
frontal lobe. Average connectivity in the posterior-to-anterior sub-network
was defined as the average magnitude (that is, absolute value) of Fisher Z
transformed functional connectivity between the posterior DMN (two DMN
regions whose centroid coordinate is within the PCC) and the anterior
DMN (14 DMN regions whose centroid coordinate is within 15 mm of the
midline in the frontal lobe). Networks and sub-networks were visualized
using BrainNet Viewer (http://www.nitrc.org/projects/bnv,39).

Evaluation of potential summary metrics
In each sample, distributional features (that is, mean, standard deviation)
and internal consistency reliability were computed for all potential
summary metrics. Internal consistency reliability was computed by
estimating resting state connectivity based on quintiles of the full time
series, corresponding to a separate estimate for each task period, and
computing Cronbach’s α based on the quintiles. Potential summary
metrics were also evaluated based on replication, defined as a non-
significant difference of means across the three samples, and a Cronbach’s
α value in Sample 2 or Sample 3 falling within the 95% confidence interval
of the value from Sample 1. Finally, Sample 3 also allowed for an evaluation
of test–retest reliability (eight weeks between identical scans) using
agreement intra-class coefficient (ICC).

RESULTS
Comparison between three candidate metrics
We first examined the internal consistency, test–retest reliability,
and reproducibility across samples of the global clustering
coefficient, characteristic path length, and average connectivity.
The results are summarized in Table 2.
Internal consistency was adequate for average connectivity but

low for global clustering and characteristic path length. Test–
retest reliability over eight weeks (available only in Sample 3) was
moderate for average connectivity but low for global clustering
and characteristic path length. Means, standard deviations, and
internal consistency reliability in Samples 2 and 3 reproduced the
values found in Sample 1 for global clustering and average
connectivity. Internal consistency for characteristic path length in
Sample 3 was outside the Sample 1 95% confidence interval and
thus considered a lack of replication for this metric. Overall,

Quantifying brain network functioning
TM Ball et al

3

Translational Psychiatry (2017), 1 – 8

http://www.fil.ion.ucl.ac.uk/spm/ext/#TSDiffAna
http://www.fil.ion.ucl.ac.uk/spm/ext/#TSDiffAna
http://www.nitrc.org/projects/bnv


average connectivity was more reliable than global clustering or
characteristic path length, and was used for the subsequent
analyses. Notably, test–retest reliability values for average
connectivity were greater than those based on voxel-wise
connectivity analyses with shorter test–retest intervals,40 and
comparable to those based on ICA.16

Sub-network averages
We next examined average connectivity within two sub-networks
of the DMN: (i) an anterior sub-network, comprised of connections
between all medial PFC regions in the DMN, and (ii) a posterior-to-
anterior sub-network, comprised of connections between PCC
regions and medial PFC regions. We compared the internal
consistency reliability, test–retest reliability, and replicability of
these sub-network averages to the full DMN average (Figure 2).
Internal consistency was adequate for connectivity within the

anterior sub-network though lower for the posterior-to-anterior
sub-network. Notably, although means and standard deviations
for the sub-network averages replicated almost exactly across all
samples, standard deviations were about double and internal
consistency reliability was more variable across samples for the
sub-network averages than the full network average (Figure 2).
This was particularly notable for posterior-to-anterior connectivity,
for which internal consistency reliability in Sample 3 was outside
the 95% confidence interval of Sample 1, indicating a lack of
replication. Test–retest reliability over eight weeks (available only
in Sample 3) was moderate in the sub-network averages and
comparable to the test–retest reliability of the full network
average (Figure 2).
We also examined relationships with data quality (that is,

number of censored time points due to spikes or motion).
Although there was no relationship between data quality and the
full DMN average (r=− 0.09, P= 0.10), poorer data quality (that is,
more time points censored) was associated with lower sub-
network averages (anterior sub-network r=− 0.18, P= 0.001;
posterior-to-anterior sub-network r=− 0.13, Po0.05).

Normative data
Combining across all 322 healthy adult participants, average DMN
connectivity in units of Fisher’s Z was 0.39 with a standard
deviation of 0.07. Mean anterior sub-network connectivity was
0.63, with a standard deviation of 0.13. Mean posterior-to-anterior
connectivity was 0.47, with a standard deviation of 0.14 (Table 3).
We examined whether these averages differed by demographic
features of age, gender and education (Supplementary Materials)

and found a significant inverse relationship with age, driven by
lower connectivity after age 50 years. Therefore, separate norms
are provided in Table 3 for adults under (n= 253) and over (n= 69)
age 50 years.

Case example
A 39 year-old single male with major depressive disorder who
presented for medication treatment as part of a randomized
controlled trial30 provides an illustrative case example for how
these norms may be applied. Average DMN connectivity was
within normal limits (Pearson r= 0.37, Fisher’s z = 0.39; equal to the
normative mean), however, while anterior sub-network connec-
tivity was within normal limits (Pearson r= 0.62, Fisher’s z = 0.73;
0.7 SD above the normative mean), the posterior-to-anterior sub-
network showed hypo-connectivity (Pearson r= 0.20, Fisher’s
z = 0.20; 1.9 SD below the normative mean). Prior research
suggests that a connectivity profile such as this is predictive of
good antidepressant outcomes.41,42 Indeed, this patient received
Escitalopram 10 mg and was classified as a remitter after eight
weeks of treatment, with 80% reduction in self-reported and 62%
reduction in clinician-rated symptoms.

DISCUSSION
Our aim was to establish the proof of principle for a reliable
summary metric that can quantify the intrinsic network function of
an individual patient and allow it to be interpreted relative to
healthy normative peers. Focusing here on the DMN, we found
that an average of functional connectivity strength was more
reliable than more complex topological properties, and satisfied
our criteria for an ideal summary metric. This summary metric, in
combination with normative data, provides a way to quantify and
interpret intrinsic brain networks at the level of a single patient.
This approach represents a significant step toward clinical
translation of basic neuroscience insights.
While there is much to be gained by the application of

topological properties to understanding brain networks, here our
focus was on the most reliable and parsimonious way to quantify
and interpret DMN functioning in order to facilitate clinical
translation. Although the topological properties may be capturing
meaningful moment-by-moment variation in DMN connectivity,
perhaps associated with subtle alterations in mood or fatigue, our
purpose here was to characterize more trait-like aspects of network
function that may underlie risk for or recovery from clinical
disorders.24 For this purpose a simple average appears optimal.

Table 2. Comparison of three candidate metrics

Sample 1 Sample 2 Sample 3

Global clustering coefficient
Mean (SD) 0.82 (0.03) 0.83 (0.03) 0.82 (0.03)
Internal consistency: α [95% CI] 0.61 [0.47,0.71] 0.59 [0.44,0.71] 0.66 [0.45,0.79]
Test–retest: ICC [95% CI] — — 0.36 [0.12,0.59]

Characteristic path length
Mean (SD) 1.40 (0.07) 1.41 (0.07) 1.38 (0.07)
Internal consistency: α [95% CI] 0.55 [0.41,0.68] 0.51 [0.31,0.65] 0.74a [0.57,0.85]
Test–retest: ICC [95% CI] — — 0.45 [0.25,0.64]

Average connectivity
Mean (SD) 0.39 (0.07) 0.40 (0.07) 0.39 (0.06)
Internal consistency: α [95% CI] 0.70 [0.55,0.79] 0.69 [0.55,0.82] 0.70 [0.53,0.83]
Test–retest: ICC [95% CI] — — 0.62 [0.46,0.75]

Abbreviations: CI, confidence interval; SD, standard deviation. aValue outside 95% CI of Sample 1.

Quantifying brain network functioning
TM Ball et al

4

Translational Psychiatry (2017), 1 – 8



In general, we found that all three candidate metrics had good
reproducibility of their means and standard deviations across
three samples totaling 322 healthy adults (although reliability
measures were not always consistent across samples for the
topological properties). The normative mean of average DMN
connectivity reported here also replicates the average DMN
connectivity reported in a prior investigation.43 The adequate
internal consistency and test–retest reliability of the average
connectivity metric is consistent with the reliability of resting
functional connectivity networks, including the DMN, found in
other investigations.40,44

In examining theoretically important sub-networks within the
DMN, we found that greater regional specificity (and thus fewer
connections included in the average) produced slightly poorer
reliability, suggesting that taking into account all connections
within a network may provide a more stable estimate of the
network’s strength. Consistent with this notion, the test–retest
reliability of the full DMN average was significantly greater than
the test–retest reliability of connectivity between specific voxels.40

This does not mean that there is not meaningful information
captured by greater regional or sub-network specificity. At the
same time, consistent with prior investigations,2,22 the DMN can

Figure 2. Replicability, internal consistency, and test–retest reliability of average functional connectivity. Means and standard deviations are in
units of Fisher’s Z. (a) Whole network: average of all pairwise connections between all DMN regions. (b) Anterior sub-network: average of all
pairwise connections between medial PFC regions within the DMN. (c) Posterior-to-anterior sub-network: average of all connections between
PCC regions and medial PFC regions within the DMN. CI, confidence interval; DMN, default mode network; ICC, intra-class correlation
coefficient; PCC, posterior cingulate cortex; PFC, prefrontal cortex; SD, standard deviation. *indicates value outside 95% CI of Sample 1.
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be considered as a single coherent unit, and averaging across
many connections within the network may provide a more stable
and reliable measure of this unit’s function than any single
connection.
We therefore present normative data for average connectivity in

the DMN and its sub-networks. Although the sub-network
averages demonstrated slightly poorer reliability and slightly
greater relationships with fMRI data quality, we recognize they
provide useful information for hypothesis generation (for example,
suggesting that a certain aspect of the DMN is most responsible
for overall hyper- or hypo-connectivity within the network, as in
the case example presented here). Consistent with previous
research on aging,45 we found that average connectivity dropped
substantially after age 50 years, leading us to report normative
data not only for the full sample, but also separately for adults
older and younger than 50 years of age.
The norms presented here should be considered provisional,

pending future investigations examining the impact of scanner
model, scan acquisition parameters, data preprocessing algo-
rithms, and demographic variables on average connectivity.
Nevertheless they illustrate how a patient’s network function
can be placed in context by expressing average network
connectivity as a number of s.d. above or below the mean for
the patient’s age group. This allows future research or clinical
investigations to describe a patient or group of patients as within
normal limits or abnormal, without needing to spend resources
collecting data on a new (and likely small) sample of healthy
comparison subjects.
As shown in the case example, a major benefit of a normed

network summary metric is that it is easy to understand. By
summarizing DMN connectivity into a single metric, it can be
presented both as an effect size (Pearson r) and relative to a
normative group (number of s.d. outside the normative mean).
Furthermore, including both the overall DMN connectivity average
and the sub-network averages allows for novel hypothesis
generation of where an individual’s deficits may lie (as in the
case example).
This approach highlights clear next steps for clinical transla-

tional research. Information about a patient’s pre-treatment
network function can begin to inform patient care when the
relationship between network function and treatment outcomes is
also known. Thus, future research should identify what cut-point
provides the best sensitivity and specificity to indicate the
likelihood of response to a given treatment. This may include
further exploration to identify the most reliable, valid, and
clinically useful fMRI measures for both rest and task-evoked
activity. Such research will need to explicitly consider cost-

effectiveness and incremental validity of fMRI measures over other
pieces of clinical data. Another crucial line of research will be to
identify changes in network function resulting from a variety of
treatment options.
Ultimately, when a clinician knows that a particular patient had

substantially below average DMN connectivity (as in the case
example), and that certain treatments increase DMN connectivity
and/or can compensate for low DMN connectivity, then a
targeted, individualized treatment strategy can emerge. Steps
toward this type of individualized, normed connectivity-based
approach to treatment are already underway for deep brain
stimulation.46

Limitations
The samples presented here are primarily Caucasian and entirely
Australian, which potentially limits the applicability of the findings
to other populations. There is no reason to suspect systematic
differences in brain network function in different racial or ethnic
groups, or based on country of origin. However, future work
should include individuals from a wide range of backgrounds to
confirm the applicability of the norms.
In all three samples presented here, the data were collected

using the same model of scanner, the same acquisition
parameters, and prepared with the same preprocessing algorithm.
This uniformity is a strength in many respects. At the same time,
an important line of future research will be to develop normative
data for network function that takes variation in scanner model,
acquisition parameters, and processing steps into consideration.
Alternately, the development and widespread use of standardized
acquisition and processing pipelines47 will greatly enhance the
utility of normative data such as presented here.
The present data allow for an estimation of resting functional

connectivity based on periods of rest within a series of tasks, as
opposed to a stand-alone resting scan. These two procedures
have been shown to yield remarkably similar results,33 and
average connectivity values here were similar to those derived
from stand-alone resting state scans.43 Furthermore, estimates of
functional connectivity were remarkably consistent when com-
puted within each task separately, as indicated by the internal
consistency analysis. Regardless, future studies should compare
our results to those using the more traditional stand-alone resting
state scans.

Conclusions and future directions
Overall, the present results suggest a roadmap for translating
insights from basic neuroscience into clinical practice and
highlight several concrete next steps. First, normative data for
average connectivity should be expanded using larger, more
generalizable samples (data collection for one such large sample
of young adults is already ongoing48). This work should include an
examination of scanner model, data acquisition parameters, and
preprocessing algorithms, as discussed above. Second, the
development of a reliable summary metric of network function
may facilitate reverse translation from human research into animal
models, allowing future research to probe the mechanisms
underlying these complex systems. Third, our approach should
be expanded to other clinically relevant brain networks, such as
the salience, central executive, and reward networks.2,6 Finally,
studies should seek to relate normed metrics of network function
to clinical variables, with a particular emphasis on profiles across
multiple brain networks that map specifically to clinical profiles.
Ultimately, to our knowledge, the present results represent a first
step toward using intrinsic brain network analogously to normed
neurocognitive and personality measures that are already in wide
clinical use.

Table 3. Normative data for average functional connectivity

Mean s.d. 25th–75th Percentile

Whole DMN
All Subjects (N= 322) 0.39 0.07 0.34–0.43
Age≤ 50 (N= 253) 0.40 0.07 0.36–0.45
Age450 (N= 69) 0.36 0.06 0.32–0.40

Anterior sub-network
All Subjects (N= 322) 0.63 0.13 0.54–0.71
Age≤ 50 (N= 253) 0.64 0.13 0.56–0.72
Age450 (N= 69) 0.57 0.11 0.49–0.65

Posterior-to-anterior sub-network
All Subjects (N= 322) 0.47 0.14 0.36–0.57
Age≤ 50 (N= 253) 0.48 0.14 0.39–0.58
Age450 (N= 69) 0.42 0.13 0.31–0.52

Abbreviation: DMN, default mode network.
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