
1Scientific Reports | 6:24283 | DOI: 10.1038/srep24283

www.nature.com/scientificreports

Theory of Thomson scattering in 
inhomogeneous media
P. M. Kozlowski1, B. J. B. Crowley1,2, D. O. Gericke3, S. P. Regan4 & G. Gregori1

Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, 
temperature and magnetic fields. It relies on the assumption that the properties in the probed volume 
are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are 
seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. 
This is particularly true for laser-produced high-energy-density matter, which often exhibits steep 
gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we 
discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting 
steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson 
scattering spectra are greatly altered compared to the uniform case, and may lead to violations of 
detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally 
inhomogeneous systems.

Fourth generation light sources hold the promise of improving our understanding of extreme states of matter 
by providing a probe which can penetrate through the enormous densities produced in inertial confinement 
fusion or laboratory astrophysics experiments. Thomson scattering by free electrons has emerged as a powerful 
diagnostic for such systems, through its extension from the optical through the x-ray regime, allowing it to take 
full advantage of the new capabilities provided by fourth generation light sources (e.g. LCLS, SACLA, European 
XFEL, SwissFEL)1–3. Thomson scattering allows for the measurement of density, temperature, and ionization 
state in plasmas, leading to an effective characterization of the plasma equilibrium state1,4,5, and progress in the 
understanding of the properties of high-energy-density matter has significantly relied upon this technique6–12. 
Thomson scattering has also been utilized for probing temperatures and magnetic fields in tokamaks13,14.

Investigations using Thomson scattering to date have been based on the assumption of a homogenous or 
weakly inhomogeneous plasma. This limitation becomes particularly restrictive when considering the ultra-short 
x-ray pulses and near diffraction limited laser spot sizes of fourth generation light sources15,16. Under such con-
ditions, large spatial and temporal gradients in the properties of matter are not negligible and are mainly deter-
mined by the extent of laser focus17. This situation is exemplified by inertial fusion experiments, where the capsule 
is compressed by a series of shocks4,18 which introduce inhomogeneities on the scale of the particle mean free path 
(i.e., the shock width) and this significantly complicates the determination of the properties of the dense, com-
pressed core in a scattering experiment19. Interpreting the scattering signals with models developed for homoge-
nous equilibrium systems may thus lead to significant errors in the inferred properties of the matter.

Here we develop a generalization of the theory for Thomson scattering to spatially inhomogeneous systems, 
with a scale-length of the gradient comparable to the scattering wavelength, as well as to rapidly varying plasma 
conditions. In order to capture the fast externally driven relaxation processes in a sample, ultra-short pulses with 
durations on the order of the inverse of the plasma frequency are needed. We demonstrate that, under these con-
ditions, both strong density and temporal gradients result in significant changes in the predicted spectra, modi-
fying the intensity and width of the inelastic scattering peaks due to collective electron excitations (plasmons). As 
Thomson scattering diagnostics yield results by matching theoretical predictions with experimental data, these 
modifications have important consequences when interpreting experimental data.

Limitations of Theories for Homogeneous Systems
We consider a scattering probe of wavelength λ0. The wavenumber of the transferred momentum is determined 
by the scattering geometry as k ≡  |k| ≈  (4π/λ0)sin (θ/2), where θ is the scattering angle. The spatial scale-length 
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sampled by the scattering probe is thus λp ~ 1/k. The scale length of microscopic density fluctuations in equi-
librium plasmas is determined by the screening length λscr of electric fields1,5. This length is usually taken to 
be the Debye length in a classical plasma or the Thomas-Fermi screening length in a degenerate electron gas. 
Whether the single particle behaviour or collective excitations are probed (noncollective versus collective scat-
tering) depends on the ratio of these scale length. Thus, the scattering condition is usually cast by the parameter 
α =  λp/λscr.

Noncollective scattering corresponds to α ≪  1. In this case, the total scattering signal is the incoherent sum of 
individual scatterers. Even in an inhomogeneous system, different regions in the plasma will scatter an amount of 
photons proportional to the local conditions, and the resultant spectrum is expected to be the sum of these local 
contributions. In the opposite case of collective scattering with α >  1, the picture is qualitatively different: now 
the spatial arrangements of free charges within a distance λp give rise to a coherent superposition of scattering 
waves. Since plasmas support electrostatic waves (plasmons), the scattered photons gain or lose an amount of 
energy close to ħωpe, where ωpe is the plasma frequency4. Plasmon resonances appear in the scattering spectrum 
as a result of these wave-particle interactions.

Thomson scattering probes the fluctuations of a system. In equilibrium systems, these can be either micro-
scopic density perturbations due to bound electrons or screening clouds, or collective excitations such as plas-
mons. Likewise, hydrodynamic gradients in the plasma conditions may also result in light scattering if they occur 
on the scale of the probe volume. Moreover, the dispersion of the plasma waves may be affected by gradients. If 
the scale length of macroscopic spatial inhomogeneities, Λ  is much larger than the length scale probed, that is λp, 
we can still apply the equilibrium theory locally, i.e., on scales: λp. Hence, the resultant spectrum is simply the sum 
of the weighted contributions of different regions in the plasma. For strong gradients with Λ   λp, the plasmon 
dispersion is changed and, thus, the coherence relation between scatterers is altered. Consequently, macroscopic 
spatial gradients must be considered in the theoretical description explicitly (see also ref. 20 for further consid-
erations). Similar difficulties arise if the duration of the scattering probe, τ, is shorter than the time required for 
screening to be established and the system is dynamically evolving in states far from equilibrium. The typical time 
scale for such processes is on the order of 2π/ωpe.

Results
Theory for inhomogeneous systems.  The differential cross section of Thomson scattering is determined 
by the dynamic structure factor S(k, ω), where ħk is the change in photon momentum and ħω is the energy gain 
(or loss) of the photon during scattering4. In an isotropic medium all directions are equivalent and the depend-
ence on the modulus of the wavenumber is sufficient, that is S(k, ω). The structure factor is the Fourier transform 
of the electron density-density correlation function21,22, and essentially an extension of the well-known form 
factor used in x-ray crystallography23. Thus, it contains all electron correlations and their dynamics including 
collective excitations in the system. A number of different sources may contribute to the total dynamic structure 
factor and thus to the Thomson scattering signal. The total dynamic structure factor is usually written as24:

∫ω ω ω ω ω ω ω= + + + − ′ ′ ′.S k f k q k S k Z S k Z S k S k d( , ) ( ) ( ) ( , ) ( , ) ( , ) ( , ) (1)I ii f ee c ce s
2 0

The first term deals with electrons which follow the motion of the ions. These motions are described by the 
ion-ion density correlation function Sii(k, ω), with fI(k) the scattering form factor of the bound electrons in the ion 
and q(k) the contribution arising from the screening cloud around an ion. The second term in Eq. (1) represents 
free electrons, those which do not follow the ion motions. The last term consists of inelastic scattering by core 
electrons, where ωS k( , )ce  is the structure factor of the core electrons inside an ion and Ss(k, ω) the self structure 
of the ions, which describes their thermal motion. Here, Zf and Zc are the number of free electrons and core elec-
trons per ion, respectively.

In principle, gradients correction will affect all three terms in Eq. (1). However, we expect the largest modifi-
cations to occur for the free electron feature, i.e., ωS k( , )ee

0 . The other terms are strongly related to the microscopic 
bound states that will be unchanged by the gradients in the plasma environment. The screening clouds will also 
be modified only slightly due to hydrodynamic gradients. Thus, we focus here on the effect of collective electron 
excitations and their dispersion due to gradients in the plasma.

Spatial gradients and fast relaxation processes, including the build-up of correlations and screening, can be 
described on the basis of the Kadanoff-Baym equations25. Although numerical solutions are feasible26, they are 
restricted for easy situations and simple approximations for the interactions. However, a more practical way is 
possible for weakly coupled plasmas of interest. Taking ω ω≡S k S k( , ) ( , )ee

0 , the approximate dynamic structure 
factor of free electrons in a weakly coupled plasmas is given by the dielectric superposition principle21
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where Sid(k, ω) is the dynamic structure factor for an ideal (noninteracting) gas, and ϵ(k, ω) is the dielectric 
(screening) function in the random phase approximation (RPA). The latter is given by ω χ ω= +k k( , ) 1 ( , )0 , 
where χ0(k, ω) is the susceptibility of the ideal Coulomb plasma. Eq. (2) is an approximation in first order with 
respect to the correlation strength in the plasma. Although strong coupling effects may need to be taken into 
account under certain conditions, in most situations concerning laboratory experiments the electrons are nearly 
or fully degenerate and therefore weakly coupled. The applicability of RPA to first order is often justified for rela-
tively uniform systems, and higher order corrections to the RPA are typically small. Static and dynamic local field 
corrections act to slightly modify the dispersion relation (i.e., the position of the plasma wave resonance peaks of 
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the structure factor) and can in principle be accounted for within the same theoretical scheme discussed in this 
paper. Eq. (2) also returns to the familiar fluctuation-dissipation theorem (FDT) for systems in local thermody-
namic equilibrium (LTE)21. For systems which are not in LTE different approaches may be considered for the 
structure factors27,28; however, in the context of random phase approximation, the dielectric superposition prin-
ciple is exact and we may proceed with a description of the dielectric function for systems considerably departing 
from homogeneity and equilibrium.

The direct application of Eq. (2) is crucial for systems with spatial and temporal gradients as the usual applica-
tion of the FDT limits the theory to the LTE regime. To extend the applicability of the theory to inhomogeneous 
plasmas, we follow the approach given by Belyi29 and Bornatici and Kravtsov30. Assuming the susceptibility to be 
a smooth function of macroscopic space (r) and time (t) coordinates, one may apply a first order gradient expan-
sion in the microscopic variables

χ ω χ ω χ ω
ω
χ ω≈ −
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⋅
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∂
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Here, the index ‘eq’ labels the susceptibility for homogeneous systems in thermodynamic equilibrium.
Introducing a scale for the gradients in space and time, the above form can further be simplified: ∂ ∂ ≈ Λr/ 1/  

and τ∂ ∂ ≈t/ 1/ . Here, Λ  represents the spatial gradient along the direction of the scattering wavenumber k where 
the sign indicates increasing or decreasing plasma parameters. Unless the spatial gradients are distributed uni-
formly along all directions, as for example in isotropic turbulence, the scattering spectrum will depend on the 
specific geometry. Similarly, the time constant τ gives either the strength of externally driven changes ( e.g., heat-
ing) or the relaxation time within the electron system.

The dielectric response of the system can then be constructed in the usual way
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For noncollective scattering, χ(k, ω) ≪  1, gradients have no significant effect on the dielectric response. On 
the other hand, in collective scattering the susceptibility cannot be neglected, and ϵ (k, ω) ~ ϵ eq (k, ω) follows only 
if kΛ  ~ Λ /λp ≫  1 and ωτ ~ τ/τp ≫  1, as discussed before.

The above expansion can be understood from the constitutive relation between the displacement, D, and the 
electric E, fields in a macroscopic medium30:

∫ ∫ ′ ′= ′ ′ ′ ′
−∞
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where r and t are the space and time coordinates, respectively. This implies that the dielectric tensor is not a func-
tion only of r–r′  and t–t′ , as we would have in a uniform and stationary medium, but instead it is a function of 
the space and time variables (r, t) and (r′ , t′ ) independently. Through a change of variables the dielectric function 
may be expressed as

  µ µ′ ′ → − ′ − ′ ′ ′t t t t tr r r r r( , ; , ) ( , ; , ), (6)ij ij

where the “fast” variables Δr =  r – r′  and Δt =  t – t′  are associated with the microscopic spatial (k) and temporal 
(ω) dispersion in Fourier space. The remaining “slow” variables, μr and μt, account for the macroscopic inhomo-
geneities of the medium. The factor µ λ τ τ≈ Λ/ ; /p p compares the scales of the fast and slow variables. When 
μ  1,the dielectric function is expanded in Taylor series with respect to μ:
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and assuming that the electric field is locally of an eikonal form, ω⋅ ∆ − ∆i tk rexp[ ( )], Eq. (4) is then 
retrieved29,30. From the given dielectric function, the free electron dynamic structure factor of inhomogeneous 
plasmas can be obtained from Eq. (2). As the ideal part is, of course, unchanged, the contribution of gradients to 
the Thomson scattering signal are all contained in the expression for the dielectric constant Eq. (4). Higher-order 
terms in the Taylor expansion are neglected. Accordingly, our theory presents the first-order correction to the 
equilibrium treatment and is thus limited to moderate gradients. Of course, in real experiments this condition 
may not apply and higher-order terms should be considered as they may yield details of the complex relation 
between the the electric and density fluctuations implicit in the non-local Poisson equation. In the latter case, our 
theory will give at least a clear signal that an equilibrium treatment is not applicable. It should be noted here that 
the above result has been derived upon the assumption of geometric optics, thus this method of addressing inho-
mogeneities is applicable not just to the free electron dynamic structure factor, but any calculation of the dynamic 
structure factor which utilizes the dielectric susceptibility. This fact is indeed important if we intend to apply the 
same analysis to the other terms in Eq. (1). The main difference in implementing this formula for terms other than 
the free electron dynamic structure factor, will arise from whether or not Eq. (2) is applicable.

Application of the theory.  In order to evaluate the effects of spatial and temporal density variations in the 
scattering spectrum, we consider a practical example of a fully ionized dense deuterium plasma with an average 
electron density ne =  2.2 ×  1023 cm−3 and an electron temperature Te =  8 eV (see, e.g., Regan et al.19 for the exper-
imental setup). Under such conditions the Fermi energy is comparable to the thermal energy and thus we need 
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to take into account quantum effects by choosing a suitable form for χ(k, ω). For the present example we use the 
random phase approximation6,31:
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where f(p) is the electron distribution function.
This plasma is probed with x-rays with an energy of 2,960 eV at a scattering angle of θ =  40°, giving α =  2.17, 

i.e., collective scattering conditions. The characteristic probe scale length is λp ≈  0.1 nm, and the relaxation time 
is τ ≈  0.2 fs. This suggests that strong spatial gradients may be observable whereas it will be improbable to find 
suitable ultra-fast probes.

In Fig. 1a, we have plotted the dynamic structure factor S(k, ω) giving the form of the expected Thomson scat-
tering signal for different values for the spatial scale Λ  (and taking τ →  ∞ ). We observe large changes in both the 
width and relative heights of the blue and red shifted plasmon resonances when λΛ/ p  10. Moreover, the relative 
intensity of the two resonances changes depending on the direction of the gradients with respect to the probe (par-
allel or anti-parallel). In Fig. 1c, we have considered the case of temporal fluctuations comparable to the probe 
duration (and with no spatial gradients). Again, the predicted dynamic structure factor is significantly broadened 
for τ τ/ p  2.This effect is to be expected, since a shorter pulse duration would have the same effect as a higher 
collision frequency between scatterers, which results in a broadening of the plasmon lines.

As expected, the detailed balance relation is not recovered for nonhomogeneous and nonequilibrium sys-
tems. In a homogeneous plasma, the intensity of the plasmon resonances is determined by detailed balance21,32. 
Detailed balance is a consequence of LTE, which, in this case, is governed by Fermi statistics where scattering 
events for which the electron final state falls into an energy level lower than the ground state (and consequently 
an energy gain for the photon) are not allowed. In an inhomogeneous system, however, currents induced by the 
gradients provide an additional sink or source in the energy exchange between electrons and photons. This effect 
is also well-known from scattering measurements of ion acoustic waves in classical plasmas in the presence of a 
heat flow5.

The change in the detailed balance relation bears important consequences in the analysis of Thomson scat-
tering data from solid density plasmas. As discussed in refs 4,33 and 34, the intensity ratio of the two plasmon 
peaks is often assumed to provide a direct measurement of the temperature, without relying on any additional 
approximations. On the other hand, as discussed by Chapman and Gericke35, once the homogeneous plasma or 
equilibrium assumption is relaxed, the intensity ratio of the plasmon peaks is no longer uniquely defined by the 
electron temperature. In such cases, nonequilibrium distributions and spatial gradients determine the shape and 
intensity of the plasmon peaks in the scattering signal.

Figure 2 demonstrates how the ratio of the upshifted and downshifted plasmon signals dramatically diverges 
from the equilibrium case as density varies for the same conditions given in the example above. The ratio of 

Figure 1.  Effects of gradients in the intensity of the plasmon resonances. (a) Calculation of Thomson 
scattering intensity, which is proportional to S(k, ω), with different values of Λ  and τ =  ∞ . The spatial gradients 
are all assumed to have a component parallel to k where k =  1.03 ×  10 m−1. (b) Same as (a) but with the 
direction of the gradients reversed. (c) Calculation of S(k, ω) with different values of τ and Λ  =  ∞ .
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plasmon signals is maximized when ≈ . × −n m2 8 10 ce
23 3 which occurs when χ ωRe k[ ( , )]qe  reaches a minimum 

for both resonances, ω =  ± ωpe, while χ ω∂
∂

Im k[ ( , )]
k

qe  reaches a maximum for the upshifted plasmon and a min-
imum for the downshifted plasmon. It is due to this latter term being an odd function with respect to ω that the 
detailed balance condition is violated. We may conclude that given a sufficiently nonequilibrium plasma probed 
in the collective scattering regime, assuming the ratio of the plasmon peaks to yield a measure of temperature may 
lead to large errors.

Similarly, in Fig. 3 we show how significantly the red and blue shifted plasmon peak intensities change as a 
function of the inhomogeneity scale lengths. The simulations were conducted for the same plasma parameters as 
discussed above, while varying either Λ  or τ. Here we see that the results of the new approach deviate from equi-
librium starting at around Λ ∼k 100. It is important to note, that although the figure gives a sense of how gradients 
may alter the scatter signal, the change is not the same for all plasma parameters. This is due to the inhomogene-
ous dynamic structure factor depending on differences between the real and imaginary components of the dielec-
tric susceptibility as described above.

Comparison with previous approaches.  An approximate, but often applied36–40, method to account for 
the effects of spatial gradients on the Thomson scattering spectrum is to simply take the average over a given 
region. Thus, individual scattering spectra are generated for different plasma regions using the FDT, weighted by 
the number of electrons present in the subvolume selected and finally added to obtain the full spectrum:

ω
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Σ
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V n S
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k
k
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(9)

j j e j j

j j e j
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,
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where Vj, ne,j and Sj(k, ω) are the volume, electron density and structure factor of cell j, respectively. The simplest 
approximation consists in taking ω ω≡S Sk k( , ) ( , )j j

eq , where ωS k( , )j
eq  is the equilibrium structure factor inside 

the jth cell. This is the method discussed in refs 36–38, for example. As already mentioned, this incoherent addi-
tion of scattering spectra is strictly valid only if α ≪  1 or both λΛ / 1p  and τ τ / 1p . One might assume that 
dividing the volume into infinitesimally small cells would make this method applicable even for steep gradients, 
however, one neglects the explicit influence of the gradients in this way. Technically, the problem with the LTE 
treatment is that the local dynamic structure factors which are being used assume that only the imaginary, dissi-
pative component of the dielectric susceptibility is important, as in Eq. (2), but don’t consider the current flows. 
This assumption fails for large gradients where the real component of the dielectric susceptibility becomes critical. 
Such an effect is also common in Onsager-violating media where cross-terms between the energy storing and 
dissipative components of the dielectric susceptibility emerge41. Here, instead, we propose to replace the calcula-
tion of the equilibrium structure factor inside each subvolume element with its non-equilibrium version.

Let us continue our practical example and test the above approach by assuming that the plasma exhibits den-
sity variations on a scale of Λ  =  1.45 nm. The density gradient is then given by = Λdn dr n/ /e e . We notice that such 
gradients are, for example, quite common in shocked dense matter. For the conditions of ref. 19, we expect the 
electron mean free path to be λ ∼ .0 4mfp  nm, and thus the shock width to be a few mean free paths, which is indeed 

Figure 2.  Ratio of upshifted over downshifted plasmon signals. The ratio of the integrated plasmon signals is 
given for different gradient conditions as well as the equilibrium case. The intermediate gradient (red) steadily 
diverges from the equilibrium case (blue) with increasing density. We see two effects for the larger gradient 
(green). First, the green curve begins to diverge from the equilibrium case at a lower density, as expected. Second, 
as density increases, the green curve peaks and subsequently decreases rapidly; this is due to the coincidental 
minimization of χ ωkRe[ ( , )]qe  which emphasizes the effect of the gradient expansion terms on the DSF.
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of the same order as assumed here. Figure 4 shows a comparison between the overall structure factors calculated 
with the methods described above. Large modifications to the whole spectrum are seen when the full effect of 
inhomogeneities is accounted for in the weighted sum.

Figure 3.  Effects of gradients on plasmon peak intensities. We show the variation in the peak intensities 
of the plasmons with respect to the gradient parameter. For spatial gradients this is Λ k and for temporal 
gradients this is τωpe. For spatial gradients we see a sharp rise in the blue shifted plasmon and a dip in the red 
shifted plasmon as we approach steeper gradients (i.e., lower gradient parameter). For temporal gradients both 
plasmons are reduced with higher gradients.

Figure 4.  Predicted spectra. We have compared the homogeneous case (green line) against our full 
inhomogeneous scattering model (red line) using the weighted sum method in both cases and for the plasma 
conditions given in the text with Λ  =  1.45 nm and where k =  1.03 ×  10 m−1. The weighted sum method was 
implemented by assuming a linear density profile, with ne varying from 1.1 ×  1023 cm−3 to 3.3 ×  1023 cm−3 over 
a distance equal to Λ . This profile is then divided into 220 equal cells and the scattering from each cell summed 
together. The equilibrium structure factor (assuming an homogeneous plasma) is also shown in the figure (blue 
line). It is clear that the upshifted plasmon peak intensity for the inhomogeneous weighted sum case is much 
higher than even the downshifted plasmon intensities. This plasmon peaks at an intensity of 3 relative to the rest 
of the curves (not shown).
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Concluding Remarks
Our work indicates that collective Thomson scattering by free electrons from strongly inhomogeneous matter 
requires a modeling of the dielectric response including not only the effects of microscopic, but also macroscopic 
spatial and temporal gradients. The treatment presented here gives results that differ significantly from those 
assuming uniform plasma conditions for systems with gradients as often encountered in experiments, in particu-
lar the violation of detailed balance. Further work must be done to incorporate inhomogeneities for Thomson 
scattering by screening clouds and ion acoustic modes, which are ubiquitous in warm dense matter and tend to 
be strongly correlated.
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