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ABSTRACT

DNA methylation is an important epigenetic mark but
how its locus-specificity is decided in relation to DNA
sequence is not fully understood. Here, we have ana-
lyzed 34 diverse whole-genome bisulfite sequencing
datasets in human and identified 313 motifs, includ-
ing 92 and 221 associated with methylation (methyla-
tion motifs, MMs) and unmethylation (unmethylation
motifs, UMs), respectively. The functionality of these
motifs is supported by multiple lines of evidence.
First, the methylation levels at the MM and UM motifs
are respectively higher and lower than the genomic
background. Second, these motifs are enriched at the
binding sites of methylation modifying enzymes in-
cluding DNMT3A and TET1, indicating their possible
roles of recruiting these enzymes. Third, these motifs
significantly overlap with “somatic QTLs" (quantita-
tive trait loci) of methylation and expression. Fourth,
disruption of these motifs by mutation is associ-
ated with significantly altered methylation level of the
CpGs in the neighbor regions. Furthermore, these
motifs together with somatic mutations are predic-
tive of cancer subtypes and patient survival. We re-
vealed some of these motifs were also associated
with histone modifications, suggesting a possible in-
terplay between the two types of epigenetic modifica-
tions. We also found some motifs form feed forward
loops to contribute to DNA methylation dynamics.

INTRODUCTION

DNA methylation plays crucial roles in many biological
processes and aberrant DNA methylation patterns are of-

ten observed in diseases. There are three DNA methyltrans-
ferases (DNMTs) in human that are responsible for de novo
or maintaining methylation of cytosine. Although these en-
zymes themselves do not show strong sequence preference in
vivo, DNA methylation is highly locus-specific such as hypo-
methylation of active promoters and enhancers. An urging
question is how such a locus-specific DNA methylation pat-
tern is established. One of the possible mechanisms is that
DNA binding proteins or non-coding RNAs recognize spe-
cific DNA motifs and their binding recruits DNMTs to a
particular locus to methylate cytosines in the region. These
factors can be specifically active in a cell type or state such
that to provide the cell type- and locus-specificity. Accumu-
lating evidence suggests that protein binding such as CTCF
and other proteins can create low methylated regions in
the regulatory sites and introducing specific nucleotide se-
quences can establish DNA methylation (1,2). These obser-
vations suggest the importance of DNA sequence in shap-
ing methylation state. Several studies have illustrated the re-
lationship between sequence features and DNA methyla-
tion (3–14) but the DNA motifs recognized by the DNA
methylation associated proteins have not been well charac-
terized. Therefore, cataloging these motifs would pave the
way towards understanding the mechanism of the locus-
specificity of DNA methylation.

Cataloging DNA methylation associated motifs requires
a comprehensive set of methylomes and whole-genome
bisulfite sequencing (WGBS) is a common technology to
map DNA methylation in the entire human genome. The
NIH Roadmap Epigenomics Project (15) has generated
WGBS data in 34 cell lines or tissues, which provides an
opportunity to discern motifs associated with DNA methy-
lation. We reasoned that contrasting regions that are com-
monly methylated across cells/tissues to those commonly
unmethylated would increase the signal-to-noise ratio to
identify the motifs most relevant to DNA methylation. Fur-
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thermore, to consider the impact of cell type and cell state
on DNA methylation, we also need to uncover motifs asso-
ciated with variable methylation levels across cells/tissues;
a caveat is that these motifs can be confounded by those
only related to cell specificity. To this end, we have defined
commonly methylated (unmethylated) regions across the 34
cells (CMR/CUR) as well as variably methylated (unmethy-
lated) regions (VMR/VUR) that show cell-specific methy-
lation (unmethylation). We have found the DNA motifs that
are discriminative of these regions.

To confirm the association with methylation, we over-
lapped the motifs with DNMT and TET ChIP-seq peaks
and observed strong enrichment. We also used TCGA (The
Cancer Genome Atlas) (27) dataset to further assess the im-
portance of these motifs in shaping DNA methylation. In-
terestingly, we found that, if these are somatic mutations oc-
curring in the motifs, the methylation levels in the nearby
CpGs are significantly altered, i.e. perturbation to a MM
(UM) motif in a highly (lowly) methylated region would
decrease (increase) the local methylation level. This obser-
vation strongly supports the functionality of the identified
motifs in establishing or maintaining locus-specific DNA
methylation. Furthermore, we observed “somatic QTLs”
(quantitative trait loci) of methylation and expression are
enriched in the found motifs. We showed that the combina-
tion of somatic mutations and the found motifs can signif-
icantly improve the prediction accuracy of cancer type and
patient survival than using somatic mutations alone, which
further supported the functionality of these DNA methyla-
tion associated motifs. Additional analyses also revealed the
potential interplay between DNA methylation and histone
modification as well as their contribution to DNA methyla-
tion dynamics.

MATERIALS AND METHODS

De novo motif discovery

11.5 million CpG sites common across all 34 human methy-
lomes were collected from the NIH Roadmap Epigenomics
Project (16). Methylation regions were defined by segments
merged with two or more CpGs with a maximal distance
of 400 bp apart (i.e. CpGs and only CpGs within 400 bp of
each other were merged into a methylation region) and the
region methylation level was defined by the mean CpG beta
values. Each region was then assigned mean and standard
deviation of methylation across all 34 tissues and cells. We
used a normalized score to measure the overall methylation
level of a methylation region across 34 methylomes in com-
parison to the whole genome methylation distribution:

score = μr − μg

sr

where μr and sr are the mean and standard deviation of
the methylation of the region, μg is the mean of methy-
lation genome-wide. We used the ranking of this score in
our analysis to select the methylation regions, i.e. commonly
methylated regions (CMRs) are the CpGs with the top 0.5%
score and commonly unmethylated regions (CURs) bottom
0.5% score, while variably methylated regions (VMRs) are
defined by the top 20% standard deviation (Figure 1A, B).

For common motifs MM and UM, we performed Epigram
(3) contrasting CMRs and CURs. In short, Epigram looks
for enriched motifs that best differentiate the foreground
from the background sequences. In both sets of the input
sequences, Epigram iterates through all possible k-mers to
calculate their occurrences, enrichment over genomic back-
ground and enrichment over shuffled input. These values
are combined to determine the enrichment of k-mers. Po-
sition weight matrices (PWMs) are then generated by first
picking a top k-mer and enriched k-mers similar to itself to
construct a ‘seed’ PWM, which is then extended by adding
more enriched k-mers that are a few base pairs shifted from
the original one. The motifs are then further ranked and fil-
tered based on how well they differentiate the foreground
from the background using LASSO (least absolute shrink-
age and selection operator) logistic regression. The final set
of motifs is then evaluated by random forest.

For tissue-specific VMM and VUM, we contrasted top
6000 most methylated and unmethylated regions in each
methylome. In total, we identified 5172 motifs from 35 Epi-
gram runs (34 methylome + 1 common) with default param-
eters of Epigram (3) (Figure 1C). For each run, Epigram
found DNA motifs that discriminate enrichment peaks
of the high methylation region under consideration (e.g.
CMR) from a background of low methylation region (e.g.
CUR). Importantly, the background has equal GC content,
number of regions and sequence lengths as the foreground
to avoid inflated prediction results caused by simple features
or unbalanced data set.

Motif curation and defining motif occurrence site

Following our previous study (3), we matched motifs to
the 1156 known motifs documented by the HOCOMOCO
ChIP-seq consortium (17) using an E-value cutoff of 0.05
with Tomtom (18). Next, we merged the similar motifs to re-
move redundancy. We calculated a pairwise motif distance
using weighted Jensen-Shannon Divergence:

Distance =
√∑n Ali − 1

k = 0 JSD(M1 (i + k) , M2 ( j + k))3

n Ali

+G(n Ali, nGap)

G (n Ali, nGap) = gapP ∗ nG AP2

n Ali

where M1, M2 are PWMs of the two motifs, respectively,
M(i ) represents the i th column in the matrix, JSD(x, y)
is Jensen-Shannon divergence, n Ali and nG AP are respec-
tively the lengths of the aligned sequence and gaps. Gap
penalty function G has gapP as weight parameter set at
0.1. To ensure high similarity within the motif cluster, the
gap penalty function is set to quadratic which is more strin-
gent compared to traditional linear function to prevent
having excessive gaps and hangovers. Motifs were hierar-
chically clustered with UPGMA (19) algorithm and clus-
ters were chosen using a distance cutoff of 0.1. As a re-
sult, we obtained 3226 clusters and selected the motif clos-
est to the centroid of the cluster to represent all the mo-
tifs in that cluster. We combine the P-value of motifs in
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Figure 1. Defining methylated regions and searching for methylation associated motifs. (A) The strategy of identifying DNA methylation associated
motifs. (B) WGBS CpG sites are merged within 400bp regions. Based on average CpG beta values of the region, we defined commonly methylated (CMR),
commonly unmethylated (CUR) and variably methylated regions (VMR). (C) Identification of DNA methylation associated motifs in 34 cells and tissues.
Example motifs are shown on the right (if matched to a known motif, the known motif logo is shown on the top).

the cluster using Fisher’s combined probability test. En-
richment of each cluster was combined by geometric mean.
Each unique motif is named by its group (MM or UM),
combined P-value (log), combined enrichment, number of
similar motifs in the cluster, followed by a short descrip-
tive string. This string is either its best aligned known
motif (e.g. UM 180.0 3.14 0.56 7 known-CTCF) matched
by Tomtom described previously, or a consensus sequence
(e.g. MM 10.2 2.16 0.54 1 ATKGCGSCA) determined by
a minimal information loss method (20). The strongest 313
motifs were filtered by volcano test with combined P < 1e–
10 and enrichment > 2 (Supplementary Figure S1B). Fi-
nally, motif occurrence sites were determined by a P < 1e–5
calculated by FIMO (21).

Normalized motif occurrence and center-to-edge enrichment
at DNMTs and TETs ChIP-seq peaks.

DNMTs and TETs occurrences were downloaded from the
published studies (22–25), including the ChIP-seq peaks of
TET1 in HuES8 (a human embryonic stem cell line) from
Verma et al. (25), TET2 in HEK293T (a human embry-
onic kidney cell line) from Suzuki et al. (22), TET2/TET3
in HEK293T from Deplus et al. (23), and DNMT1/3A/3B
in NCCIT (a human embryonic carcinoma cell line) from
Jin et al. (24). The 5000 bp neighbor regions around the

ChIP-seq peaks were included as the background or edge.
Normalized motif occurrence was calculated using the fol-
lowing formula.

Normali zed Moti f Occurrence = Observed (Moti f Occurrence)
Expected (Moti f Occurrence)

Expected(Moti f Occurrence) = Moti f Length ∗ Chi pSeq Peak ∗ BinWidth
GenomeSize

where Observed(Moti f Occurrence) is the observed oc-
currence number of a motif in a 100 bp bin, Moti f Length
is the total length of genome-wide motif occurrences de-
fined by FIMO (see the above section), Chi pSeq Peakis the
total number of ChIP-seq peaks, BinWidth is 100 bp and
GenomeSize is the genome size of 3.14x109 bp for the hu-
man genome hg19. We did this calculation for each of the
313 top enriched motifs in each 100 bp bin. We also down-
loaded 6251 differential CpGs (dCpGs) with P < 0.05 de-
fined by Kemp et al. (26), which were CpGs showing desta-
bilized methylation level when CTCF contains point mu-
tation or copy number aberrations. Center-to-edge enrich-
ment of motif occurrences in the 500 bp around these re-
ported dCpGs was performed the same as described above.
Results are plotted in Figure 2C and Supplementary Figure
S2B.
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Figure 2. Identified motifs mark methylation level. (A) Example motifs are shown with average CpG methylation level calculated in 50 bp bins around all
motif sites, determined by FIMO at 10–5 P-value cutoff. The examples are chosen from MM, UM, de novo motifs, matched known TFs, common region
and sorted variable regions. Upper panel, from left to right: UM 180.0 3.14 (matched to CTCF); UM 106.1 4.08 (de novo); UM 238.2 3.88 (matched to
WT1); lower panel, from left to right: MM 65.9 2.90 (matched to TOPORS); MM 814.4 2.02 (matched to PAX5); MM 206.3 2.16 (de novo). (B) DNA
methylation levels in the ROADMAP (left) and TCGA (right) data sets over the gene body. Each gene body was split into ten equal bins and the Beta
values of all CpGs in the same bin were averaged over all genes. Lower panel shows the correlation between the motif occurrences and CpG methylation in
ROADMAP (WGBS data from H1, mesoderm, and liver) and TCGA (450K methylation of CpGs averaged in patients from PAAD, LUAD, and BRCA)
around TP53 (chr17:7 540 000–7 650 000). (C) Normalized motif occurrence of UM, MM and known TFs (excluding matched) from HOCOMOCO
(17) at 5000 bp windows centering ChIP-seq peaks of TET1, DNMT3A and DNMT3B collected from various studies (22,24,25). The lower panel shows
the clustered heatmap of normalized z-score. (D). Center-to-edge enrichment of UMs and MMs in comparison with TF NR6A1 and CTCF, which were
reported to recruit DNMT and TET to specific loci, at the ChIP-seq peaks of DNMTs and TETs.
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Further, center-to-edge enrichment was calcu-
lated by Normali zed Moti f Occurrence in the cen-
ter 100 bp ChIP-seq bin divided by the average of
Normali zed Moti f Occurrence at the bins 2500 bp up-
stream and downstream. Average enrichment and standard
deviation were calculated across all MMs or UMs, followed
by a two-tailed two-sample t-test, with P < 0.01 marked as
significant. Results are plotted in Figure 2D.

Somatic quantitative trait loci (QTL) enrichment analysis
with TCGA

We downloaded the processed data (level 3) of 36 TCGA
cancers from the Firebrowse service (http://firebrowse.org/)
including patient survival, somatic mutations, 450K methy-
lation array, and RNA-seq data. All the somatic muta-
tions taken from TCGA were first detected in Affymetrix
Genome-Wide Human SNP Array 6.0, and determined by
contrasting variants in cancer primary tissues with germline
tissues, according to the TCGA Consortium (27). Matrix
eQTL (28) linear model was used to identify somatic QTL of
methylation and expression co-variating with methylation
and transcript RNA-seq level, with 5000 bp distance cutoff
from somatic mutation to CpG and transcript TSS, respec-
tively. We used a conservative P-value cutoff of 0.01 on top
of an FDR cutoff of 10%. Then we calculated the number of
somatic mQTL or eQTL out of all somatic mutations in 10
bins of gene body, i.e. 0–10%, 10–20%, . . . , 90–100% of the
mRNA transcript length, defined in Gencode v19 (29). We
performed such analysis on all genes and repeated it with
the UM and MM occurrence sites (Figure 2A). To deter-
mine the significance of enrichment, a chi-square test was
carried out in each of the 10 bins of gene body, with the
null hypothesis that somatic mQTL% or eQTL% occurring
at motif sites are the same as the rest of all genes, with P <
0.01 marked as significant.

Methylation quantitative trait loci (mQTL) enrichment anal-
ysis with three independent datasets

Three human methylome studies with independently called
mQTLs were collected, i.e. human life course study (30),
GenCord Cohort study (31) and a Schizophrenia study (32).
We took the mQTL SNPs identified from the original stud-
ies and these can be either somatic or germline mutations,
which were not distinguished in the publication work. In to-
tal, there are around 16 000–30 000 identified mQTLs col-
lected from these published studies. We defined an enrich-
ment score using the following formula.

EnrichmentScore = Observed (mQTL Occurrence)
Expected (mQTL Occurrence)

Expected(mQTL Occurrence) = Total mQTL ∗ Moti f Length
GenomeSize

where Observed(mQTL Occurrence) is the observed oc-
currences of mQTLs in the occurrence sites of the 313
motifs genome-wide, Total mQTL is the total number of
mQTLs identified in each study, Moti f Lengthis the total
length of genome-wide motif occurrences, and GenomeSize
is the genome size of 3.14E9 bp for the human genome hg19.

The occurrences of motifs have been defined by FIMO (see
the above section).

We repeated this process in all samples from all three
studies and calculated the standard deviation. Specifically,
(i) five life stages from birth, childhood, adolescence, preg-
nancy and middle age in human life course study (blood
samples from 1018 mother–child pairs), (ii) three tissues
from fibroblasts, LCLs and T-cells in GenCord cohort by
Maria el al (204 newborn umbilical cord samples) and (iii)
three regions from prefrontal cortex, striatum and cere-
bellum of adult brain regions in the Schizophrenia study
(173 fetal brain samples ranging from 56 to 169 days post-
conception). Finally, we used a single-tail one-sample t-test
to determine the statistical significance (P < 0.01, Supple-
mentary Figure S3A).

Predicting TCGA cancer type with somatic mutation and mo-
tif

For each of the 32 TCGA cancers (in total 7120 patients),
we trained two gradient boosting models (33) (mutation and
mutation + motif) to distinguish one specific cancer from
the other cancers. We chose gradient boosting implemented
in Scikit-learn (34) and tuned its parameter based on a re-
cent study (35), which showed that this decision-tree-based
model is robust and performs well. Note that TCGA has
four aggregated cancer types (GBMLGG, COADREAD,
KIPAN and STES) that combine individual cancers such as
GBMLGG combining GBM and LGG; we excluded them
from the 32 TCGA datasets to avoid inflating the perfor-
mance due to using the same patients in both the training
and testing sets. In a mutation-only model, the cancer sub-
type of each patient was predicted only by somatic muta-
tions as features. Because the input features are large (1.3
million unique somatic mutations for 7120 patients), we first
reduced feature number. Each feature was assigned a score
by the gradient boosting out-of-bag importance and aver-
aged in 5-fold cross-validation to avoid overfitting. Features
with negative importance scores were removed. The optimal
number of features were determined as we observed the best
model performance at around 500 features (Supplementary
Figure S4A, left panel). Top 500 somatic mutations ranked
by the average score were used while assuring equal or bet-
ter performance compared to the full model (Supplemen-
tary Figure S4A, right panel).

After feature selection, we obtained 500 selected somatic
mutations (from here referred simply as mutation). We used
a series (length 500) of 0s and 1s to indicate which muta-
tions a patient has. For example, 1, 1, 0, 1, . . . indicates pa-
tient have the first, second and fourth mutation. For a muta-
tion + motif model, each patient was represented not only
by these 500 selected mutations but also by whether each
of the 313 motifs is disrupted by mutations. We used a se-
ries (length 313) of integers to indicate how many mutations
(without feature selection) are harbored in the occurrence
sites for each of the 313 motifs. For example, 10, 20, 0, . . .
indicates there are 10 mutations in all the occurrence sites
of the first motif, 20 in the second and none in the third.
The performances of the two models were evaluated by au-
ROC and auPRC with 5-fold cross-validations for each can-
cer (Figure 4A). Feature importance was determined by the

http://firebrowse.org/


6758 Nucleic Acids Research, 2019, Vol. 47, No. 13

default out-of-bag (OOB) important scores using the mean
decrease of Friedman squared error over all cross-validated
predictions in mutation+motif models. We filtered features
with importance score >0.01 within the enriched 313 mo-
tif groups and mutation located in the well-studied driver
genes identified by the IntOGen Consortium (36). To re-
duce false positives of selecting predictive features, we only
considered 26 out of 32 TCGA cancers that showed auPRC
> 0.3 (Figure 4B).

Predicting TCGA patient survival with somatic mutation and
motif

All patients in 22 TCGA cancers with patient survival and
mutation information were dichotomized based on 5-year
survival to train two gradient boosting models (mutation
and mutation+motif). We used the same 500 mutation fea-
tures and 813 mutation+motif features from the diagnosis
analysis and cross-validations were performed the same way
as described above. The model performance was evaluated
by the log2 hazard ratio and Kaplan–Meier estimator of the
patient 5-year survival rate in the R package survival (37)
(Figure 4C). Multivariate survival analysis was performed
to show factors significantly (P < 0.05) correlated with pa-
tient survival with 95% confidence interval (Figure 4D).

Feedforward loop analysis

We built a network with three types of nodes: motifs,
TET1/DNMT3A, genes. We defined promoters as the re-
gion –1000 bp and +500 bp from the transcription start
sites (TSS) of protein-coding genes (including TET1 and
DNMT3A) from Gencode v19 (29), as previously de-
scribed. A directed edge was defined if the source node
has an occurrence site at the promoter of the target nodes.
For TET1 and DNMT3A, occurrence site was defined by
ChIP-seq data previously measured in hESC and NCCIT
cells, respectively. For motifs, the occurrence site was de-
fined by FIMO with P < 10–5. When a coding gene is a
target, we first check if the gene is a known transcription
factor, then define its binding site by FIMO with P < 10–5.
Finally, tracks were visualized in integrated genome viewer
and the methylation tracks were provided by WGBS from
The Epigenomics Roadmap Project (15) and 450K array
from the TCGA consortium (27).

RESULTS

Defining DNA methylation regions and the de novo motif dis-
covery

We aimed to identify DNA motifs associated with DNA
methylation and thus started with searching for methylation
regions that have the strongest signals. We collected whole
genome bisulfite sequencing (WGBS) data of 34 human
methylomes generated by the NIH Roadmap Epigenomics
Project (16,38) (Figure 1A). We took an approach similar to
the Ziller et al. study (39) and defined 1.55 million methy-
lation regions containing 11.5 million CpG sites in the 34
methylomes. Because the methylome data is noisy, we only
considered regions containing two or more CpGs within
400 bp apart, which covers 29.2% of the human genome.

Methylation level is associated with different functions.
For example, low methylated regions (LMRs) are impor-
tant in hematopoiesis and leukemia development (40),
DNA methylation valleys (DMVs) are long hypomethy-
lated regions involved in embryonic development and
tissue-specific regulation (41,42); focal hypermethylation
and long-range hypomethylation are found in cancer (43);
variably methylated regions (VMR) are associated with hi-
stone modification and enhancer (44). In this study, we de-
fined three types of methylation regions based on the mean
and standard deviation of the CpG methylation level in each
region (Figure 1A, B): (i) Top 0.5% (or 7726) commonly
methylated regions (CMR) which have the highest methy-
lation level across 34 methylomes; (ii) Top 0.5% (or 7726)
commonly unmethylated regions (CUR) with the lowest
methylation levels; (3) Top 20% (or 309 040) variably methy-
lated regions (VMR) with the highest standard deviation
and this percentage is consistent with the previously re-
ported 21.8–22.6% VMRs in the methylome (39,44). We are
aware that these regions can vary upon the data sets used to
define them. Because the 34 methylomes are derived from
diverse cells and tissues, we argue the derived motifs are still
reasonable starting points of revealing DNA binding pro-
teins recruiting DNA methylation enzymes.

Defining commonly and variably
methylated/unmethylated regions allow identification
of motifs that are associated with DNA methylation inde-
pendent of cell type or cell-type specific. CMRs and CURs
are regions that show consistent methylation pattern across
a diversity of 34 cells and tissues, and therefore they likely
harbor motifs associated with methylation/demethylation
in a cell-type independent manner. GREAT (45) analysis
showed CMRs are strongly (P < 1e–30) linked to DNA
repair and mitosis and are mostly (68%) found in introns
(Supplementary Figure S1A) (46). CURs prefer promoters
(66%) associated with (P < 10–30) cell differentiation,
development, and morphogenesis, indicating the impor-
tant roles of demethylation in these processes (47,48)
(Supplementary Figure S1A). By contrasting CMRs to
CURs, we identified 55 CMR and 87 CUR motifs using
a motif finding algorithm Epigram (3) (Figure 1A, C).
A 5-fold cross-validation using Epigram (3) successfully
discriminated CMRs from CURs using the motifs (AUC
= 0.97) (Figure 1C). Note that Epigram balances the GC
content, sequence number, and length in the foreground
and background, which avoids identification of trivial
sequence motifs (see details in Materials and Methods and
(3)). Because these motifs are associated with high or low
methylation regions commonly shared by diverse cell types,
it is reasonable to argue that they are important or even
casual for establishing, maintaining or removing DNA
methylation.

Similar to TFs whose binding motifs are defined but their
activities are specific, the usage of DNA methylation asso-
ciated motifs is determined by the cellular state. The VMRs
show cell type-specific methylation patterns, which provides
an opportunity to identify motifs active in particular cell
types. We contrasted top 6000 methylated and unmethy-
lated VMRs sorted in each cell type and discovered average
63 methylation- and 85 unmethylation-associated motifs in
each methylome, with an average AUC of 0.79 (Figure 1C).
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In total, 5172 motifs were identified from 35 Epigram
runs (1 common + 34 cell-specific). Because the same or
similar motifs could be found in multiple cells, we clus-
tered these motifs into 3226 unique ones using motif sim-
ilarity measurement based on Jensen-Shannon divergence
(see Materials and Methods). To control false discovery rate
(FDR), we further conducted a robust volcano test (49) with
a stringent requirement (P-value < 10–10 and enrichment
> 2), resulting in 313 methylation motifs for the follow-up
analysis (Figure 1A, Supplementary Figure S1B), including
221 unmethylation motifs (UM) and 92 methylation mo-
tifs (MM). Among them, 36 (16.2%) and 14 (17.1%) are
matched to 50 known motifs in the latest version of HOCO-
MOCO (17). The matched included previously confirmed
factors to influence methylation levels such as CTCF (2) and
PAX5 (50) as well as factors KLF4, SP4 and EGR1 that
have been reported to regulate gene expression by binding
to CpG rich promoters (51). Furthermore, we also found
22 (24%) top enriched MMs were matched with the 657
reported methyl-specific motifs (52). In addition, we have
profiled the binding of 845 known TFs with ChIP-seq ex-
periments documented in the latest GTRD (Gene Tran-
scription Regulation Database) (53) in the motif occurrence
sites (Supplementary Figure S2C). These TFs can collab-
orate with the MMs/UMs to define the local methylation
state. All motifs, their alignment results, and the TF occu-
pancy profile can be found on our website (http://wanglab.
ucsd.edu/star/MethylMotifs). The majority of the motifs
are novel and showed strong sequence preference. UMs are
more similar to each other and have higher GC content
(e.g. CCGCCGCCG) than MMs (Supplementary Figures
S1C, D). Note that these motifs were found by Epigram af-
ter sequence balancing which removes GC content bias (3).
While high GC content and CpG-rich sequences are known
to be associated with hypomethylation in regions such as
CG-islands (54) and in specific cells (55–57), our analysis re-
vealed specific DNA motifs with sophisticated patterns that
may be recognized by proteins or ncRNAs.

Identified motifs are associated with the local DNA methyla-
tion deviated from the background

We first investigated the DNA methylation levels around the
identified motif occurring sites (determined by FIMO (21)
using P < 10−5, the same parameters were used for all the
relevant analyses thereinafter). We did observe hypomethy-
lation and hypermethylation in the neighbor CpGs of the
UM and MM motifs, respectively. Several representative ex-
amples are shown in Figure 2A. It is obvious that DNA
methylation levels around the motif sites show a sharp ‘dip’
or ‘peak’, suggesting the association is highly locus-specific.
Interestingly, this trend remains the same in different cell
types despite that the methylation levels in the surround-
ing regions vary. For example, motif UM 238.2 3.88 0.53 5
(matched to the WT1 motif) was identified from VMRs in
the right ventricle tissues; the methylation level at its occur-
ring sites decreases in all the cell types although the methy-
lation level ranges from 0.6 to 0.8 in the surrounding regions
(Figure 2A). This observation confirms the functionality of
individual UM and MM motifs even though the local envi-
ronment is overall hyper- or hypo-methylated.

We further examined the impact of these motifs on
methylation in the gene coding regions. UM and MM con-
sistently mark lower and higher local CpG methylation lev-
els in the gene coding regions (Figure 2B). In the Roadmap
dataset, we observed a significant impact of UMs or MMs
on DNA methylation level around the transcription start
sites (TSS) (Figure 2B, left panel). DNA methylation in the
promoters is important for regulating gene expression (58)
and thus itself is likely under active regulation. We observed
the same trend in the TCGA DNA methylation data of 9037
patients from 32 cancers measured by Illumina 450K array
(27) (Figure 2B, right panel). On average, CpG methyla-
tion decreases from the beta value of 0.81 in the Roadmap
dataset, dominated by normal cell lines and tissues, to 0.59
in the TCGA cancer patients across 20,260 protein-coding
genes. This observation is consistent with the global hy-
pomethylation in cancer cells that have been reported in
the literature (41,47,59). However, the MM and UM occur-
ring bins still showed respectively higher and lower methy-
lation levels than the background. As an example, UM and
MM occurrence sites are characterized by lower and higher
methylation in the gene coding region of TP53 (chr17:7 540
000–7 650 000) in both TCGA and Roadmap data. Collec-
tively, our results on two separate data sets generated by dif-
ferent technologies support that the identified DNA motifs
play critical roles in influencing the local CpG methylation.

Identified motifs are significantly enriched at TETs and DN-
MTs binding sites

Locus-specific DNA demethylation or methylation depends
on the recruitment of specific enzymes such as TET (60)
and DNMTs (61) to particular genomic regions (62–64).
We reasoned that, if the identified motifs are important
for recruiting the enzymes, these motifs would be enriched
around the binding sites of the recruited enzymes. To this
end, we have collected all the available ChIP-seq experi-
ments of TET and DNMT enzymes (22–25). Indeed, at
the center of TET1 ChIP-seq peaks in hESC H1 cells (25),
the UM sites occur 26.7 times of expected counts (see de-
tails in Materials and Methods), whereas MM motifs oc-
cur roughly same (1.4 times) as the expected counts (Figure
2C). This observation is consistent with the previous reports
that TETs can be recruited to specific locus by DNA binding
factors (60,64). Interestingly, the wide distribution of UM
around TET peaks compared to MM-DNMT overlap is
consistent with the previously reported role of TET in pro-
tecting spanned low-methylation regions termed methyla-
tion canyons against hypermethylation (65). Furthermore,
TET prefers CpG-rich patterns such as CpG island which
spans several kilobases (66) and can bind CpG-rich DNA
sequences (62) in mammalians to maintain stable demethy-
lation (67); consistently, UMs have significantly higher GC
content than MMs and known motifs (P < 0.05, Supple-
mentary Figure S1C).

We observed different motif occurring patterns around
the binding sites of different DNMT enzymes. DNMT3A
and DNMT3B are responsible for de novo methylation (68).
At the center of DNMT3A ChIP-seq peaks in the human
NCCIT cells (24), we observed a peak of the MM motif
occurrence compared to the known and UM motifs (Fig-

http://wanglab.ucsd.edu/star/MethylMotifs


6760 Nucleic Acids Research, 2019, Vol. 47, No. 13

ure 2C). Interestingly, the MMs are enriched at the shoul-
der regions of the DNMT3B binding sites but depleted at
the center (Figure 2C). Note that only 2.2% of DNMT3A
and 3.8% of DNMT3B peaks overlap with each other (24)
(Supplementary Figure S2A). Several studies have demon-
strated some distinct roles of DNMT3A and DNMT3B,
showing that DNMT3B preferentially targets gene bodies
marked with H3K36me3 (69–72); in fact, H3K36me3 is 4.27
times enriched at the DNMT3B compared to DNMT3A
peaks in gene coding regions (Supplementary Figure S2A).
These observations suggest that the MMs are likely rec-
ognized by DNA binding factors involved in actively re-
cruiting DNMT3A, whereas DNMT3B may be recruited
by flanking sequences containing MMs and together with
chromatin marks and/or other factors such as H3K36me3.
Interestingly, DNMT1, an enzyme involved in DNA methy-
lation maintenance and recognizing hemimethylation (73),
shows a different profile from DNMT3A/B (Figure 2C).
This difference may have resulted from the different mecha-
nisms or factors involved in active and passive DNA methy-
lation.

To further validate if the observed co-occurrence around
methylation enzyme is significant, we also compared the
center-to-edge enrichment of UM and MM with TFs
known to regulate DNA methylation (Figure 2D, method).
Previous studies have reported that introducing a CTCF
binding site at a particular locus leads to local DNA
demethylation and enrichment of TET (2). NR6A1 has also
been confirmed to recruit DNMT to methylate at target
genes (74). Here, we show that at the center of TETs binding
sites, UMs are significantly more enriched than MMs, and
have even higher enrichment than CTCF (Figure 2D, left
panel). Similarly, MMs are significantly more enriched than
UMs at the center of DNMT3A binding sites, surpassing
that of NR6A1 (Figure 2D, right panel). The enrichment
of MMs and UMs were further compared with the known
TFs such as PAX5, TOPORS, WT1 and PPARG that are
most enriched at the TETs and DNMT3A sites. Further-
more, we downloaded the most confident (P < 0.05) dif-
ferential CpGs (dCpGs) defined by Kemp et al. (26), i.e.
CpGs showing destabilized methylation level when CTCF
contains point mutation or copy number aberrations in sev-
eral human cancers. The CTCF’s critical role in affecting the
local DNA methylation in these loci was confirmed and we
indeed found that CTCF and UMs were even more enriched
at these loci (Supplementary Figure S2B). These results
demonstrated that the identified motifs can be recognized
by particular DNA binding factors that in turn recruit the
methylation modifying enzymes in a locus-specific manner.
Given that the majority of MMs (71.4%) and UMs (83.9%)
are de novo motifs, our findings pave the way towards iden-
tifying particular factors involved in locus-specific methyla-
tion regulation.

Genetic variants at identified DNA motif sites are associated
with altered methylation level

To validate the functionality of the identified motifs, we in-
vestigated the enrichment of quantitative trait loci of ex-
pression (eQTL) and methylation (mQTL) at motif oc-
currence sites. Note that we only took somatic mutations

identified by the TCGA consortium in this analysis. We
analyzed the relationship between somatic mutation and
methylation level using the TCGA data (27) and identi-
fied “somatic” methylation quantitative trait loci (mQTL),
which are somatic mutations correlating with CpG varia-
tion within 5000 bp. Using Matrix eQTL (28), we identi-
fied 26 341 mutation-CpG pairs, corresponding to 17 038
unique mutations and 20 043 CpGs, from a total of 1.3
million somatic mutations in 9037 patients of 32 cancers.
We observed an average 11.7% mQTL discovery rate at the
motif sites compared to 2.3% in the background (Figure
3A, left panel). This enrichment difference is most promi-
nent around the transcription start site, suggesting that
the identified motifs have a stronger impact on methyla-
tion at TSS (Figure 2B) (75–77). Enrichment of mQTL
in both MM and UM sites was also found in three ad-
ditional human methylome datasets using the reported
mQTLs in the original studies (30–32) (Supplementary Fig-
ure S3A), which confirms the generality of this observation.
Because DNA methylation is associated with gene expres-
sion (39,78), it is not surprising that MMs and UMs sig-
nificantly overlap with somatic expression quantitative trait
loci (eQTL), which are mutations correlated with gene ex-
pression level (Figure 3A, right panel).

To investigate the causality between these motifs and
DNA methylation level, we analyzed whether disrupting
these motifs would lead to DNA methylation change. We
chose to focus on the possible binding sites of TET1 and
DNMT3A containing these motifs because the significant
enrichment of the found motifs in the enzyme-binding re-
gions implies that the active methylation/demethylation
is most likely mediated by DNA binding factors to re-
cruit TET1/DNMT3A. Despite the ChIP-seq experiment
of TET1/DNMT3A was done in one particular cell type,
the sequence features, i.e. the motif composition in these re-
gions, do not change and thus the mechanism of the active
methylation regulation. The methylation change is decided
by which factors are expressed and active in a specific cell
type or state. Disrupting these motifs would lead to methy-
lation change in the nearby CpGs.

Using the TCGA data, we first identified 5372 CpG
sites from 15 cancers within 5000 bp of the TET1 binding
peaks that also contain mutations overlapping with UMs
in at least one patient. Because we did not have TET1
ChIP-seq data in the cancer patients, we used the pub-
lished data measured in hESC (see Figure 2C, D). We com-
pared the methylation change of these CpGs between pa-
tients with and without the mutation in each cancer. Thir-
teen out of 15 cancers showed significant (P < 0.01) in-
creased methylation level of with-mutation compared to
the without-mutation patients (background) (Figure 3B, see
Methods for details). One example is given in Figure 3C
for a UM motif UM 91.0 3.11 0.56 2. This motif is within
a TET1 peak and is disrupted by a C→T somatic muta-
tion at chr16:68002415 on the first exon of SLC12A4 in
one LUAD cancer patient. All 4 CpGs within 500 bp up-
stream of the mutation showed increased methylation (beta
value increased from 6.2% to 52%, 8.8% to 55%, 6.2% to
44% and 17% to 56%, respectively). Hypomethylation in
the SLC12A4 promoter is related to resistance to platinum-
based chemotherapy in ovarian cancer (79); the four CpGs
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Figure 3. Somatic mutation at motif sites co-occur with local methylation alteration. (A) Distribution of somatic quantitative trait loci corresponding
to methylation (mQTL) and gene expression (eQTL) over gene body (see details in Materials and Methods). Each gene body is split into ten equal bins.
(B) Methylation level change of CpG sites nearby TET1-UM sites (TET1 binding peaks containing UM motifs) overlapping with somatic mutations.
Asterisks indicate P < 0.01 calculated with paired one-tail t-test, pairing foreground observed methylation change to the corresponding background
expected methylation change. Foreground (FG), somatic mQTL at TET1-UM sites. Background (BG), somatic mQTL at TET1 binding peaks (22,24,25).
To ensure the statistical significance, we only considered the 15 cancers with >100 CpGs within 5000 bp of TET1-UM sites (see details in Methods).
(C) An example showing disruption of a UM motif (no match with known motifs) by a C→T somatic mutation at chr16:68002415 significantly increases
the methylation level of the four nearby CpGs in the LUAD patients.

affected by the mutation are located in the SLC12A4 pro-
moter, suggesting a mechanism of how the mutation may
affect response to chemotherapy through regulation of lo-
cal DNA methylation. More examples of mutation-induced
methylation change through disrupting UMs are shown in
Supplementary Figure S3B.

Overlapping MM and mutations with DNMT3A peaks
only resulted in <100 CpGs sites in two cancers. Although
we observed decreased methylation level of DNMT3A-MM
overlapping with somatic mQTL as predicted, the analysis
did not have enough statistical power. Because the methy-
lation was measured by 450K array and mutations were de-
tected and called from Affymetrix Genome-Wide Human

SNP Array 6.0, it is reasonable to expect that more sites can
be observed with whole methylome and whole genome se-
quencing data.

Combining Motifs and somatic mutation Shows Diagnosis
and Prognosis Power

DNA methylation has been shown to be predictive for can-
cer diagnosis and patient survival prospective (80,81). Since
we have shown motif disruption is associated with methy-
lation change, we hypothesized that combining motifs with
mutations can improve prediction for cancer diagnosis and
patient survival. To evaluate this, we trained gradient boost-
ing models (33) using mutation and mutation+motif as fea-
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Figure 4. Combining motif and mutation improves the prediction of cancer diagnosis and patient survival. (A) auROC and auPRC for cancer type predic-
tion. Classification model of each cancer built with gradient boosting. Performance evaluated with auROC (area under the receiver operating characteristic,
good for an overall evaluation.) and auPRC (area under the precision-recall curve, good for an unbalanced dataset where the positive label is scarce). La-
bel: mutation: using somatic mutations as features. mutation+motif: using both somatic mutations and collective disruption of motif site as features (see
Materials and Methods for details). * Adjusted P < 0.05. (B) Results of top predictive features (score > 0.01) using gradient boosting out-of-bag estima-
tion. Twenty six cancers with auPRC > 0.3 are shown. (C) Survival analysis with gradient boosting with mutation and mutation + motif as models. Left:
multivariate survival analyses for all solid TCGA cancers. Forest plots showing log2 hazard ratio (95% confidence interval) of the predicted high-risk group
by both models. *Adjusted P < 0.05 (blue for the mutation model and red for the mutation+motif model). Right: Kaplan–Meier survival estimation (95%
confidence interval) in the high-risk group versus low-risk group predicted by both models. (D) Multivariate survival analysis showing factors correlating
with patient survival (P < 0.05) with the log2 hazard ratio (95% confidence interval).

tures in 32 TCGA cancers from 7120 patients (see Materi-
als and Methods for details). We calculated both auROC
and auPRC (a metric for an imbalanced dataset to avoid in-
flated evaluation of the performance) (82). The inclusion of
the motifs in the models resulted in increased auROC and
auPRC in all the 32 cancers. On average, auROC increased
from 0.78 to 0.92 and auPRC from 0.45 to 0.56, whereas
26 (for auROC) and 13 (for auPRC) improvement are sta-
tistically significant (P < 0.01) (Figure 4A). Notably, sev-
eral cancers showed drastic improvement, including ovar-
ian cancer (OV, auPRC from 0.41 to 0.79), thyroid carci-
noma (THCA, auPRC from 0.49 to 0.82), acute myeloid
leukemia (LAML, auPRC from 0.6 to 0.88), pheochro-

mocytoma and paraganglioma (PCPG, auPRC 0.49–0.75)
(Supplementary Figure S4B). These cancers all have re-
ported aberrant methylome and have methylation associ-
ated diagnosis and therapeutic targets (83–86).

For 26 cancers with auPRC >0.3, the 67 most predic-
tive features (score > 0.01) determined by the gradient
boost estimator are shown in Figure 4B (see Materials and
Methods for details), including 13 mutations, 20 MMs,
and 34 UMs. Only two MMs are matched to known mo-
tifs (RXRB and PAX5), whereas seven UMs to AP2B,
BTD, PLAL1, GLIS2, WT1, CNOT3 and GTF3A. The
predictive mutations include those occurring on the can-
cer driver genes such as BRAF (in 16 cancers), TP53 (in
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14 cancers), IDH1 (in 14 cancers), PIK3CA (in 13 can-
cers) and KRAS (in 12 cancers). Strikingly, we found nu-
merous MMs and UMs very predictive in multiple can-
cers. Notably, MM 814.4 2.02 0.62 8 (PAX5) that has been
shown to strongly impact local methylation level (Fig-
ure 3C) is important in 12 cancers. The five UMs pre-
dictive in >10 cancers are UM 78.3 2.97 0.58 2 (BTD),
UM 13.5 2.17 0.53 2, UM 195.4 2.88 0.56 5 (GTF3A),
UM 35.4 2.56 0.54 3 and UM 61.9 2.40 0.56 4 (Figure
4B).

To evaluate the prognosis power of the motifs, we
trained two gradient boosting models (mutation and mu-
tation+motif) to discriminate low-risk from high-risk pa-
tients. We evaluated the performance using the survival
hazard ratio of the predicted high-risk group (higher ra-
tio means better performance). The mutation-only model
found 6 out of 22 cancers having significant (P < 0.05)
hazard ratio. In comparison, the mutation+motif model
achieved 16 out of 22 cancers having significant (P < 0.05)
hazard ratio (Figure 4C, left panel, see Materials and Meth-
ods for details). Kaplan–Meier test showed a better separa-
tion of patient survival between the predicted low-risk and
high-risk groups by considering motifs (P = 3.6x10–43 for
the mutation-only model and P = 3.2x10–270 for the mu-
tation+motif model, Figure 4C, right panel). Multivariate
survival analysis on the full model revealed important fac-
tors correlated with patient survival (P < 0.05), including 6
mutations, 7 MMs and 20 UMs (Figure 4D). These results
further confirmed the functionality of the discovered motifs
and highlighted the potential for clinical application.

Motifs involved in both DNA methylation and histone modi-
fications

Both DNA methylation and histone modification play im-
portant roles in regulating gene expression and their in-
terplay has been well recognized (87,88). In a separate
study, we identified 361 histone motifs (89) that are associ-
ated with 6 (H3K4me1, H3K4me3, H3K27ac, H3K27me3,
H3K9me3, H3K36me3) histone modifications from 110
diverse human cell types/tissues. By comparing the 313
methylation motifs with these 361 histone motifs, we found
that 56.5% MMs (52 out of 92) overlap with them (e-value
cutoff of 0.05 using Tomtom) (Figure 5A). Among these,
35 MMs are aligned to H3K36me3 motifs as H3K36me3
can recruit DNMT3A/3B through their PWWP domain
(90,91). In contrast, 74.2% (164 out of 221) UMs found
no match to histone motifs. 57 UMs are matched to mo-
tifs associated with the active promoter or enhancer marks:
12 UMs matched to H3K27ac, an active promoter and en-
hancer mark; another 12 UMs matched to the promoter
mark H3K4me3. As active enhancers and promoters tend
to have low methylation (16), this observation is not unex-
pected. Interestingly, we observed another 12 UMs matched
to the motifs associated with the poised promoter markers
H3K4me3+H3K27me3. Previous studies also suggested the
colocalization of H3K4me3 and H3K27me3 marks DNA
hypomethylation in pre-implantation embryos (92).

Regulatory loops on DNA methylation

DNA methylation is dynamically regulated in response
to the cell state change. We analyzed the putative reg-
ulatory connectivity between the identified motifs, tran-
scription factors and the modifying enzymes of TET1 and
DNMT3A. We only considered TET1 and DNMT3A here
because their binding peaks are significantly enriched with
UMs and MMs, respectively (Figure 2C). It is well accepted
that a known TF motif occurring in the promoter of a gene
suggests a possible regulation of the gene expression by the
TF. Similarly, we infer the occurrence of a UM or MM in a
gene’s promoter indicates putative regulation on the DNA
methylation level and thus affecting gene expression.

We first analyzed the promoters of TET1 and DNMT3A.
We found 19 UMs in the promoters of both TET1 and
DNMT3A. We also found these UMs appearing in the pro-
moters of 25 TFs that also have motifs in the promoters
of both TET1 and DNMT3A and presumably regulate the
two enzymes (Figure 5B). Such a topology forms a feed-
forward loop (FFL) (93) that involves three nodes: two
regulator nodes (motifs and TFs), one regulates the other
(motifs regulates TFs), and both jointly regulating a target
(TET1 or DNMT3A) (see Materials and Methods). UMs
induce demethylation of TET1/DNMT3A and their regu-
lator TFs, which forms positive FFLs to enhance the ex-
pression of both TET1 and DNMT3A once the motifs are
activated. We also found two and five MMs occurring in
the promoters of TET1 and DNMT3A, respectively. These
MMs appear in the promoters of 14 TFs as the other reg-
ulator of TET1 or DNMT3A, of which one TF only reg-
ulates TET1, seven TFs only regulates DNMT3A and six
TFs regulate both (Figure 5B); these FFLs form enhanced
dynamic regulation to repress TET1 and DNMT3A expres-
sions. Overall, there are many more activating than repres-
sive FFLs on regulating TET1 and DNMT3A.

Previous reports have also shown TET1 and DNMT3A
have competitive binding to regulate promoters in mouse
embryonic stem cells (94). In addition, in honey bees, Dnmt
and Tet (homolog of vertebrate DNMTs and TETs) were
found to target memory-associated genes sequentially, while
Dnmt3 was found in a negative feedback loop for DNA
methylation (95). We found six genes targeted by UMs and
also by both TET1 and DNMT3A (as indicated by their
ChIP-seq peaks in hESC and NCCIT cells, respectively)
(Figure 5C). Interestingly, four of them (KLHL3, C1orf61,
ACVR1C, PTPRO) are also targeted by MMs and either
TET1 or DNMT3A (Figure 5C). One of them, PTPRO,
a cancer suppressor and therapeutic target of a variety of
solid and liquid tumors, is silenced by promoter hyperme-
thylation (96). In fact, we observed higher methylation at
the promoter of the first TSS of PTPRO (TSS1, chr12:15
474 979–15 476 332) in the TCGA patients (beta value av-
erage at 0.15) compared to the Roadmap methylomes (beta
value averaged at 0.05) (Figure 5C). PTPRO has multiple
TSSs and alternative splicing forms (97), and each TSS has
a TET1 or DNMT3A ChIP-seq peak (Figure 5C). As com-
petitive binding of activator and repressor can lead to sharp
turn on/off of the gene expression (98–100), we speculate
the competitive FFLs formed by the motifs and modifying
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Figure 5. Methylation motifs interplay with TET1, DNMT3A, and histone modification. (A) Methylation motifs matched to histone motifs (89). Motifs
are aligned with Tomtom with e < 0.05. Lower panel showing several examples. (B) Feedforward loop targeting TET1 and DNMT3A. C. Feedforward
loop via TET1 and DNMT3A.
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enzymes would thus allow dynamic regulation of the methy-
lation and presumably the expression levels of these genes.

DISCUSSION

In this study, we present a comprehensive catalog of the
DNA motifs associated with DNA methylation. We did ob-
serve coincident higher and lower methylation levels around
the MM and UM occurring sites, respectively. Furthermore,
the motif sites are also enriched with functional mutations,
including somatic mQTL and eQTL. We also showed that
combining DNA motifs and mutations can achieve accu-
rate prediction of diagnosis and prognosis in TCGA cancer
patients, which supports the importance of these motifs.

Our analysis suggested that these motifs are most likely
involved in recruiting TET and DNMT3A for active
demethylation and methylation, as indicated by their signif-
icant enrichment in the binding sites of these enzymes. The
passive or maintenance methylation mediated by DNMT1
seems to be regulated by mechanisms other than DNA
binding co-factors because we did not observe an enrich-
ment of the found motifs in the DNMT1 binding sites.

Interestingly, some of these motifs may also play roles in
histone modifications as they were also found associated
with histone modifications, particularly those relevant to
DNA methylation such as H3K36me3 that were reported to
recruit DNMT3A/B through their PWWP domains. Fur-
thermore, these motifs can form feed-forward loops (FFLs)
with TFs to regulate TET1 and DNMT3A or regulate genes
together with TET1/DNMT3A. These FFLs allow possible
regulation of the DNA methylation dynamics and presum-
ably the gene expression dynamics. The interplay between
DNA and epigenetic signatures is central to TF recruitment
and eukaryotic gene expression regulation. Binding sites of
TFs are determined by combined factors including DNA
sequence, methylation (101), histone modification (102) and
nucleosome landscape (103). Our motif analysis suggests
putative mechanisms for experimental test.

We have shown multiple lines of evidence to support
that the identified motifs are involved in regulating DNA
methylation. To confirm the causal relationship between
TF-DNA binding and methylation, additional experimen-
tal tests are needed such as mutating the found motifs in a
specific locus and measuring its impact on the local DNA
methylation change. We have made all the motifs and their
occurrence sites available, which will allow designing partic-
ular experiments for testing the functions of these motifs in
disease or other biological contexts. These experiments are
still challenging nowadays because it requires to simultane-
ously mutate multiple short motifs. Given the fast advance-
ment of the genome editing technology, it will become fea-
sible to perform such a test in a high-throughput fashion of
the predicted motifs in the future. There exist more than one
mechanism of establishing and maintaining locus-specific
DNA methylation patterns (63,101), which may require dif-
ferent combinatorial interactions between different factors.
Our study establishes a catalog of the possible participating
motifs, which provides a starting point towards fully deci-
phering the grammar of regulating the locus-specific DNA
methylation.
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