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Abstract

The immune checkpoint programmed cell death protein 1 (PD-1) plays a major role in T cell

exhaustion in cancer and chronic HIV infection. The inhibitor of apoptosis protein antagonist

Debio 1143 (D1143) enhances tumor cell death and synergizes with anti-PD-1 agents to

promote tumor immunity and displayed HIV latency reversal activity in vitro. We asked in

this study whether D1143 would stimulate the potency of an anti-human PD-1 monoclonal

antibody (mAb) to reduce HIV loads in humanized mice. Anti-PD-1 mAb treatment

decreased PD-1+ CD8+ cell population by 32.3% after interruption of four weeks treatment,

and D1143 co-treatment further reduced it from 32.3 to 73%. Anti-PD-1 mAb administration

reduced HIV load in blood by 94%, and addition of D1143 further enhanced this reduction

from 94 to 97%. D1143 also more profoundly promoted with the anti-PD-1-mediated reduc-

tion of HIV loads in all tissues analyzed including spleen (71 to 96.4%), lymph nodes (64.3

to 80%), liver (64.2 to 94.4), lung (64.3 to 80.1%) and thymic organoid (78.2 to 98.2%),

achieving a >5 log reduction of HIV loads in CD4+ cells isolated from tissues 2 weeks after

drug treatment interruption. Ex vivo anti-CD3/CD28 stimulation increased the ability to acti-

vate exhausted CD8+ T cells in infected mice having received in vivo anti-PD-1 treatment by

7.9-fold (5 to 39.6%), and an additional increase by 1.7-fold upon D1143 co-treatment (39.6

to 67.3%). These findings demonstrate for the first time that an inhibitor of apoptosis protein

antagonist enhances in a statistically manner the effects of an immune check point inhibitor

on antiviral immunity and on HIV load reduction in tissues of humanized mice, suggesting

that the combination of two distinct classes of immunomodulatory agents constitutes a

promising anti-HIV immunotherapeutic approach.
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Introduction

WHO and UNAIDS estimated that 40 million people live with HIV. The Centers for Disease

Control and Prevention estimated that 38,500 people were newly infected with HIV in the

United States in 2015, and 2.1 million worldwide [1]. T cells have a critical function in con-

straining viremia during acute and chronic HIV infection. CD8+ T cells are responsible for the

rapid decrease of viremia during acute HIV infection [2–4]. CD8+ T cells inhibit HIV replica-

tion in vitro [5], and CD8+ T cell depletion in SIV-infected primates resulted in a loss of viremia

control during infection [6]. CD8+ T cells control viremia via cytotoxic activities [6] and the

production of soluble factors such as CCR5 chemokine ligands [5, 7–12]. However, AIDS pro-

gression during sustained chronic infection often leads to impairment and exhaustion of effec-

tor and memory CD8+ T cells, resulting in a boost of viremia [13]. CD8+ T cell exhaustion was

observed during chronic lymphocytic choriomeningitis virus (LCMV) infection in mice where

LCMV-specific CD8+ T cells exhibited diminished abilities to both eliminate infected cells and

produce antiviral cytokines [13]. Dysfunctional CD8+ T cells were found in humans during

chronic HIV, hepatitis B virus (HBV), hepatitis C virus (HCV) and human T lymphotropic

virus (HTLV) infections as well as in primates during chronic SIV infection [14].

The immune checkpoint programmed cell death protein 1, also known as PD-1 or CD279

(cluster of differentiation 279) is highly expressed on exhausted CD8+ T cells in chronically

LCMV-infected mice [15]. Neutralizing PD-1 with anti-PD-1 monoclonal antibodies or its

ligand PD-L1 profoundly increased LCMV-specific T cell activities and expansion resulting in

a profound decrease in viral load [15]. Importantly, the PD-1/PD-L1 pathway controls the dys-

function of CD8+ T cells during chronic HIV infection [16–18]. High PD-1 expression on

exhausted HIV-specific CD8+ T cells correlates with elevated viral load and reduced CD4+ T

cell numbers. Ex vivo neutralization of the PD-1/PD-L1 pathway results in HIV-specific CD8

+ T cell multiplication and TNFα, IFNγ and the serine protease granzyme B release, suggesting

a reconstitution of effector functions of CD8+ T cells [16–18]. Neutralization of the PD-1/

PD-L1 pathway in chronically infected macaques not only led to SIV-specific CD8+ T cell pro-

liferation with restored effector functions, but also to both a decrease in viral load and

extended survival [19].

PD-1 also plays a major role in mediating T cell exhaustion in cancer [20–29]. Importantly

for the present study, the pro-apoptotic and immunotherapeutic agent D1143 promotes the

anti-tumor effect of anti-PD-1/PD-L1 agents [30–31]. D1143 is an inhibitor of apoptosis pro-

tein antagonist (IAPa), which induces apoptotic cell death and blocks pro-survival signaling in

cancer cells, by triggering the degradation of inhibitor of apoptosis proteins (IAP) and activa-

tion of the non-canonical NF-kB signaling pathway [32]. IAPa mimic the structure of a tetra-

peptide sequence from second mitochondria-derived activator of caspases (SMAC) to bind to

the common baculoviral IAP repeat (BIR) domain of members of the IAP protein family,

including XIAP, BIRC2 and BIRC3 [33–35]. IAPa binding modulates the ubiquitin ligase func-

tion of these IAP members [33–35]. We recently reported that the IAPa D1143 modulates the

non-canonical NF-kB pathway by rapidly degrading a repressor of this important signaling

pathway—the baculoviral IAP repeat-containing 2 (BIRC2) [36].

IAP were first identified as promoters of cancer cell survival by regulating the NF-κB path-

way and are now known as critical regulators of multiple pathways that control cell death, pro-

liferation and differentiation [37]. Importantly, IAPa reverse this effect, a property currently

tested in multiple clinical studies for the treatment of hematological and solid cancers in combi-

nation with radio- and/or chemo-therapy and ICI [38]. More recently, IAP were found to regu-

late the innate immunity, especially Toll-like (TLR), NOD (nucleotide-binding oligomerization

domain-like), NLR (NOD-like) and retinoic acid-inducible gene I (RIG-1)-like receptor
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signaling [32]). IAP were also found to control the adaptive immunity including B cell prolifera-

tion and survival, T cell response to antigenic peptides and tumor antigens, and monocyte and

dendritic cell development and activation [39–43]). Altogether these findings suggest that IAPa

have great potential as immunotherapeutic agents against both pathogens and cancers [37].

D1143 has shown promising antitumor activities as a single agent as well as in combination

with different treatment modalities including conventional chemotherapy or radiation, tar-

geted agents, as well as immunotherapies [44–47]. Of note, D1143 augments the tumor-spe-

cific adaptive immunity induced by ablative radiation therapy, while reducing host

immunosuppressive cell infiltrates in the tumor microenvironment in a TNFα, IFNγ and

CD8+ T-cell-dependent manner [48]. D1143 enhanced CD4+ and CD8+ intracellular IFNγ
expression in a concentration-dependent manner following ex vivo [30] anti-CD3/CD28 stim-

ulation. An effect that was further increased in presence of the anti-PD-1 mAb nivolumab

[30]. In MBT-2 tumor-bearing mice, the combination of D1143 and an anti-PD-L1 mAb

decreased tumor growth and increased survival [30]. This synergy will be further explored in a

phase-Ib dose-finding clinical study combining D1143 and Avelumab (anti-PD-L1 mAb) in

patients with advanced solid malignancies and non-small cell lung cancer (CT# 03270176)

[49]. Since D1143 enhances the beneficial effect of PD-1 neutralization in various cancers, we

asked in this study whether D1143 would also enhance the anti-HIV immunity of an anti-PD-

1 mAb by restoring the capacity of exhausted CD8+ cells to kill infected cells, and impact HIV

loads in blood and tissues of humanized BLT mice.

Materials and methods

Drugs and antibodies

D1143 was obtained from Debiopharm International S.A., anti-human PD-1 mAb used for BLT

mouse treatment was obtained from Bio X Cell (Clone J116), anti-human PD-1 mAb (Clone

EH12-1540-29C9) used for cell surface staining was obtained from Synagis [50], and anti-human

CD8 (Clone RPA T8), CD3 (Clone UCHT1), CD4 (clone OKT4), CD45 (Clone HI30) and IFNγ
(Clone 4S.B3) antibodies used for cell staining were obtained from BioLegend. Note that anti-

human PD-1 antibodies Clone J116 and Clone EH12-1540-29C9 recognize distinct epitopes.

Animal care

Animal housing: individually ventilated cage (IVC) racks are used to house the majority of

mice. HEPA-filtered air is supplied into each cage at a rate of 60 air changes per hour. Mice are

housed in solid bottom cages. Static mouse cages are changed at least once a week. Mouse indi-

vidually ventilated cages (IVCs) are changed at least once every14 days. Certain strains of

rodents (e.g., diabetic) are changed into clean cages more frequently as needed.

Room environment: heating, ventilation and air conditioning performance is routinely

assessed as part of facility renovations, system repairs, and at least once every 3 years. Each animal

room is equipped with a high/low thermo-hygrometer and its own computerized controlled ther-

mostat. Animal care staff monitor and record animal room high/low temperatures and humidity

daily on the room activity log. Temperature settings are consistent with Guide recommendations

and are calibrated by the Engineering Department. Alarm points are set at ± 4˚F. High or low-

temperature alarms are annunciated to the engineer on duty 24 hours a day. DAR management

is notified of excursions. Most of the animal facilities are also equipped with an Edstrom Indus-

tries Watchdog environmental monitoring system in addition to the automated building man-

agement system (BMS). The Watchdog system registers temperature and humidity and also

sends alarms to Animal Resources management personnel. Humidity levels are not controlled in

any of the facilities but are reliably maintained between 30–70% most of the year.
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Diet: Food (Teklad LM-485 autoclavable diet) is provided ad lib to mice in wirebar lids.

Water: the IMM animal facility is equipped with a reverse osmosis (R/O) water purification

system and automatic watering distribution system from Edstrom Industries. DAR receives

monthly water quality reports from the City of San Diego. R/O purified water is monitored

daily during the workweek. A number of parameters are monitored including conductivity,

temperature, pH level and chlorine concentration. Automatic water delivery systems (room

and rack distribution lines) are timed for daily in-line flushing. Quick disconnect drinking

valves are sanitized with each cage change or more often if needed. System sanitation and pre-

ventive maintenance is performed by the DAR equipment technicians.

Acclimation period: mice are allowed up to 72 hours to stabilize into their new housing

environment. Some experimental paradigms involve examining the behavioral response to

novelty and therefore the animal cannot be habituated to the procedure.

Animal suffering: In order to minimize suffering, all surgical procedures are carried out

under anesthesia using isoflurane (1–4%) in conjunction with ketamine/xylazine ip (90–120 mg/

Kg and 10 mg/Kg). Mice are monitored every 15 minutes after induction for respiratory and

heart rates if the surgical procedure requires more time. Animals are provided buprenorphine

(0.05–2.5 mg/Kg s.c.) for 6–12 h followed by flunixine meglumine (2.5 mg/Kg s.c.) as a post-

operative analgesic for 2 days post-implantation. Mice are observed 2 h, 6 h and 24 h post-sur-

gery with daily monitoring during the course of the study. Mice are supplied with acidified water

supplemented with sulfamethoxazole (or, sulfadiazine) with trimethoprim at a final concentra-

tion of 0.65–1.6 mg/mL to reduce chances of opportunistic bacterial colonization. Fetal human

liver and thymus tissues were purchased from Advanced Bioscience Resources, Inc., Alameda,

CA. Humanized mice were maintained at the Department of Animal Resources (DAR) at The

Scripps Research Institute (TSRI) in accordance with protocols approved by the TSRI Ethics

Committee, the Institutional Animal Care and Use Committee (Permit Number: 13–0001).

Generation of Humanized BLT Mice

Humanized BLT mice (32 animals) were generated as described previously [50–55], by

implanting 1-mm3 pieces of human fetal liver and thymus tissues (Advanced Bioscience

Resources) under the kidney capsule in 6 to 8-week-old female NSG mice (Jackson Laborato-

ries) bred at The Scripps Research Institute (TSRI). The cohort was produced with tissues

from a single donor. CD34+ HSPC were purified from autologous fetal liver tissue, isolated by

magnetic bead selection for CD34+ cells (Miltenyi), phenotyped cytometrically [50–55], and

cryopreserved until injection (200,000–350,000 CD34+ cells) into mice 3 weeks after Thy/Liv

implantation. Human reconstitution in peripheral blood was verified by flow cytometry as

described previously [50–55]. Mice were maintained at the Department of Animal Resources

(DAR) at TSRI in accordance with protocols approved by the TSRI Ethics Committee, the

Institutional Animal Care and Use Committee (Permit Number: 13–0001). This study was car-

ried out in strict accordance with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All surgery was performed under

sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. The method

of sacrifice used for the experimental mice is cervical dislocation.

HIV Infection of Humanized BLT Mice and Viral Load Quantification in

Blood and Tissues

Stocks of HIV JR-CSF were prepared as previously described [50–55] and standardized by p24

ELISA. Humanized BLT mice were challenged i.v. with HIV JR-CSF (100 ng of p24 or 104

Median Tissue Culture Infectious Doses (TCID50). We used a “simple randomization” for the
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4 arms by choosing randomly 8 mice per arm. Three weeks post-HIV challenge, infection was

confirmed by quantifying viral RNA by PCR viral load in peripheral blood (plasma) using

one-step reverse transcriptase quantitative real-time PCR (qRT-PCR) (ABI custom TaqMan

Assays-by-Design) according to the manufacturer’s instructions. Primers were 5-CATGTT
TTCAGCATTATCAGAAGGA-3 and 5-TGCTTGATGTCCCCCCACT-3, and MGB-probe

5-FAM-CCACCCCACAAGATTTAAACACCATGCTAA-Q-3, where FAM is 6-carboxyfluores-

cein as we recently described [51–52]. The assay sensitivity was of 423 RNA copies per mL of

plasma. For quantification of HIV RNA loads in tissues, RNA was extracted from at least 2x

106 CD4+ cells isolated from the harvested tissues using EasySep™ Human CD4+ T Cell Isola-

tion Kit (STEMCELL Technologies) and the RNeasy Mini Kit (Quiagen) and viral loads quan-

tified by qRT-PCR as described above.

FACS analyses

Ficoll-Hypaque density gradient centrifugation-derived PBMCs from blood collected from

HIV-1-infected BLT mice were stained with conjugated anti-human CD8 and PD-1 antibod-

ies. Expression of PD-1 in total gated CD8-positive cells was analyzed by FACS on a Novocyte

3000 flow cytometer (ACEA Biosciences). The primary data analysis was performed using

NovoExpress.

Ex vivo human CD8 T Cell Activation Analysis

At the end of week 16 –end of the four treatments–the percentage of human CD3+ and CD45

+ cells in blood of HIV-infected BLT mice was quantified and isolated by FACS. CD45+ cells

were isolated by EasySep™ Human CD45+ Cell Enrichment Kit (STEMCELL Technologies).

Isolated human CD45+ cells (100,000) (Clone HI100, BioLegend) were stimulated ex vivo for

24 h with anti-CD3 (clone UCHT1, BioLegend) (200 ng/mL) and anti-CD28 (Clone CD28.2,

BioLegend) (500 ng/mL) antibodies and the percentage of IFNγ+ CD8+ cells from gated total

CD8+ cells (Clone RPA-T8, BioLegend) was quantified by FACS. Intracellular IFNγ staining

(Clone 4S.B3, BioLegend) was performed according to the manufacturer’s instructions using

Cytofix/Cytoperm Kit (BD Biosciences), which saponin-permeabilized and fix cells prior to

staining.

Statistical analysis

Percentages of cells and HIV viral load among different groups were evaluated by analysis of

variance, followed by Bonferroni’s multiple comparison tests through Prism (GraphPad Soft-

ware; San Diego, CA). The alpha level was set at 0.05. Data are presented as the

mean ± standard error, with indicated p-values from Bonferroni’s multiple comparison tests.

Results

D1143 and anti-PD-1 mAb overcome human CD8+ T cell exhaustion

Twelve weeks after infection with HIV-1, thirty-two BLT mice were split in 4 groups (n = 8),

treated with four regimens and analyzed for 4 weeks (Fig 1). Group A received both vehicles.

Group B received D1143 (100 mg/kg; QD1-5, p.o.) for 4 weeks (D1143 was given 5 days a

week for 4 weeks). Group C received the anti-PD-1 mAb (8 doses of 200 μg, i.p., BIW) for 4

weeks. Group D received the combination of D1143 (100 mg/kg; QD1-5, p.o.) together with

the anti-PD-1 mAb (200 μg/dose; BIW) for 4 weeks. The vehicle for the anti-PD1 antibody

was PBS and the vehicle for D1143 is malic acid with sodium acetate, pH 4.5. In order to facili-

tate the interpretation of the data, we examined as an initial step the effect on viral loads

D1143 stimulates PD-1 blockade-mediated HIV load suppression
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reduction by the combination of D1143 and anti-PD-1 mAb in HIV-infected BLT mice. Body

weight and HIV loads were analyzed at selected weeks. After the 4 weeks of treatment, three

mice per group were sacrificed and immunologic markers assessed ex vivo by FACS (PD-1

expression on CD8+ T cells, intracellular IFNγ expression on anti-CD3/CD28 antibody-stimu-

lated CD8+ T cells, CD3, CD45). The remaining mice (4x5 = 20) continued to be analyzed

BIW for body weight, HIV loads and PD-1 expression on CD8+ T cells for two additional

weeks. At the end of the study, animals were sacrified and viral RNA loads from human CD4+

cells in tissues (spleen, thymic organoid, lung, spleen, lymph nodes and liver) were quantified

by qPCR as previously described [51–52].

Previous studies demonstrated that HIV infection induces elevated PD-1 expression on

human CD4+ and CD8+ T cells of humanized mice [50, 55–57] or infected individuals [25–

29]. Thus, we examined PD-1 expression levels on human CD8+ T cells during HIV-1 infec-

tion of our humanized BLT mice. We confirmed that PD-1 expression increases over time

(week 0 to 18) during HIV infection in vehicle-treated mice (Fig 2) [56]. We found that anti-

PD-1 mAb 4-week treatment (from week 12 to 16) reduced PD-1 expression on human CD8

+ T cells. Note that we analyzed the respective percentages of human CD4+ and CD8+ T cells

among human CD45+ cells at day 0 and 14 (beginning and end of treatments). As previously

described [56], the percentage of human CD4+ cells decreased in vehicle- (17.7 to 11.4%) or

D1143-treated mice (17.2 to 10.8%) likely due to the HIV-1 infection-mediated depletion of

human CD4+ cells while the percentage of human CD4+ cells slightly increases in anti-PD-1-

(17.7 to 19.2%) and anti-PD-1/D1143-treated mice (18.1 to 20.2%). The percentage of human

CD8+ cells remained relatively stable during the short two weeks of treatments in vehicle- (7.8

to 8.1%), anti-PD-1- (7.6 to 7.9%), D1143- (7.7 to 7.5%) and anti-PD-1/D1143-treated mice

(7.6 to 8%). As previously reported, the anti-PD-1 treatment did not influence PD-1 expres-

sion on CD4+ T cells or CD4+ T cell counts [50]. D1143 alone has no effect on PD-1 expres-

sion on human CD8+ T cells (Fig 2). However, when combined with anti-PD-1 mAb, D1143

amplified the reduction of PD-1 surface expression on human CD8+ T cells mediated by the

anti-PD-1 mAb treatment (Fig 2). Specifically, the anti-PD-1 mAb treatment decreased PD-1

+ CD8+ cell population by 32.3% after four weeks of treatment, and D1143 co-treatment fur-

ther reduced it from 32.3 to 73%. The enhancement of the anti-PD-1-mediated effect by

D1143 is statistically significant (Fig 2F). The reduction of the percentage of PD-1-positive

Fig 1. Experimental design for D1143 and anti-PD-1 mAb treatments and blood and tissue analyses in HIV-infected BLT

mice.

https://doi.org/10.1371/journal.pone.0227715.g001
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cells may arise from an expansion of PD-1-negative cells, a decrease in PD-1 levels or both.

The raw data are presented in S1 Appendix.

D1143 enhances the anti-PD-1 mAb-mediated reduction in HIV loads in

blood and tissues

As previously reported [50, 55], the anti-PD-1 mAb treatment profoundly reduced blood

HIV-1 loads (Fig 3B) compared to the vehicle treatment (Fig 3A). D1143 treatment enhanced

blood HIV load compared to the vehicle treatment (Fig 3C) likely by enhancing viral transcrip-

tion as we described previously [36]. D1143 amplified the anti-PD-1 mAb-mediated suppres-

sion of blood HIV loads at week 13, 14 and 15 (Fig 3D) although the D1143 enhancement of

the anti-PD-1 treatment was not statistically significant (Fig 3F). Specifically, the anti-PD-1

mAb administration reduced HIV load in blood by 94%, and addition of D1143 further

Fig 2. PD-1 expression on human CD8+ T cells from HIV-infected BLT mice. Blood was collected at week 0, 3, 6, 9, 12 (beginning of

treatments), 14, 16 (end of treatments) and 18 (time of animal sacrifice) and isolated PBMCs stained with directly conjugated anti-human

CD8 and anti-human PD-1 antibodies and analyzed by FACS. Data (median value of 8 mice per group/treatment and median value of 5

mice per group/treatment from week 16 to 18) are presented as percentage of human PD-1+ CD8+ T cells.

https://doi.org/10.1371/journal.pone.0227715.g002
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enhanced this reduction from 94 to 97%. The raw data are presented in S2 Appendix. None of

the treatments affected general mouse health although some weight changes were observed

(Fig 4). The raw data are presented in S3 Appendix.

At the end of the experiment (week 18), the five remaining mice per treatment group were

sacrificed and HIV RNA levels in CD4+ cells from collected tissues were quantified by qPCR.

Elevated HIV loads were detected in spleen, thymic organoid, lung, lymph nodes and liver

from vehicle-treated (Fig 5A) or D1143-treated mice (Fig 5B). The anti-PD-1 mAb treatment

significantly reduced HIV loads in tissues compared to vehicle and D1143 treatments (Fig 5C),

suggesting a correlation between blood and tissue HIV loads. Importantly, D1143 once more

enhanced the anti-PD-1 mAb mediated viral load suppression in all organs (Fig 5D) in a statis-

tically manner (Fig 5E). Thus, D1143 more profoundly promoted with the anti-PD-1-medi-

ated reduction of HIV loads in tissues than blood including spleen (71 to 96.4%), lymph nodes

Fig 3. HIV loads in blood of HIV-infected BLT mice. Blood was collected at week 0, 3, 6, 9, 12 (beginning of treatments), 14, 16 (end of treatments) and 18

(time of animal sacrifice). HIV RNA levels in plasma were quantified using one-step reverse transcriptase quantitative real-time PCR as described previously

[51–52]. Data (median value of 8 mice per group/treatment from week 0 to 16 and median value of 5 mice per group/treatment from week 16 to 18) are

presented as HIV RNA copies per mL of plasma.

https://doi.org/10.1371/journal.pone.0227715.g003
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(64.3 to 80%), liver (64.2 to 94.4), lung (64.3 to 80.1%) and thymic organoid (78.2 to 98.2%),

achieving a>5 log reduction of HIV loads in CD4+ cells isolated from tissues 2 weeks after

drug treatment interruption. The raw data are presented in S4 Appendix.

D1143 enhances the anti-PD-1 mAb-mediated activation of effector CD8+

T cells

We examined at the end of week 16 –end of four treatments (beginning week 12 to end week

16) whether anti-PD-1 mAb treatments restored effector functions of CD8+ T cells, especially

IFNγ production upon activation by CD3/CD28 antibody stimulation. We analyzed in three

HIV-1-infected mice per treatment group percentages of blood CD3+ cells, CD45+ cells as

well as percentage of IFNγ+ CD8+ cells after ex vivo stimulation of CD45+ cells for 24 h with

anti-CD3 and anti-CD28 antibodies. Levels of human CD3+ and CD45+ cells were similar

Fig 4. Body weight of HIV-infected BLT mice. Humanized mice were weighted at week 0, 3, 6, 9, 12 (beginning of

treatments), 14, 16 (end of treatments) and 18 (time of animal sacrifice). Data (median value of 8 mice per group/

treatment from week 0 to 16 and median value of 5 mice per group/treatment from week 16 to 18 and) are presented as

HIV RNA copies per mL of plasma.

https://doi.org/10.1371/journal.pone.0227715.g004
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between the four treatment groups (Fig 6). We analyzed the percentages of total CD45+

human cells and double positive CD45+ CD3+ human T cells. We found that after ex vivo
anti-CD3/CD28 antibody exposure, the percentage of IFNγ+ levels in CD8+ T cells derived

from anti-PD-1 mAb-treated HIV-1-infected mice (Fig 6B) were superior to those derived

from vehicle- (Fig 6A) and D1143-treated mice (Fig 6C). Importantly, D1143 enhanced the

anti-PD-1 mAb-mediated enrichment in IFNγ+ CD8+ cells (Fig 6D) although not in a statisti-

cally manner. Specifically, the anti-PD-1 treatment increased the activation of human CD8+ T

cells isolated from humanized mice using IFNγ as activation marker by 7.9-fold (5 to 39.6%),

and an additional increase by 1.7-fold upon D1143 co-treatment (39.6 to 67.3%). The raw data

are presented in S5 Appendix. This finding suggests that the combination of D1143 with anti-

PD-1 mAb restored the effector functions of human CD8+ T cells in HIV-infected BLT mice

and that the reduction of HIV loads in blood and tissues could be explained in part due to an

enhancement of the CD8+ T cell-mediated antiviral immune response by the combination of

the two distinct classes of immunomodulators, IAPa and ICI.

Discussion

Testing new therapeutic approaches to reduce or even eliminate these HIV cellular reservoirs

is of critical clinical importance. One attractive approach would be to reinvigorate the

exhausted immune system during chronic infection, especially CD8+ T cells, in order to

restore their ability to recognize and kill latently infected CD4+ cells. Effector antiviral CD8+

T cells possess several functional properties including cytokine (IFNγ, TNFα, IL-2, etc.) pro-

duction, cytotoxic potential (i.e., perforin, granzymes), high proliferative potential, and low

apoptosis [58]. CD8+ T cell exhaustion is a feature of chronic infections (HIV, HBV, HCV,

etc.) in primates and humans [23–24, 26, 58]. Previous work suggests that PD-1 plays a key

role in the exhaustion of virus-specific CD8+ T cells during HIV infection [23–24, 26, 58]. PD-

1 expression is high on HIV-specific CD8+ T cells and that that relief of exhaustion through

PD-1/PD-L1 leads to increased CD8+ T cell proliferation and effector molecule production,

suggesting an overall increase in effector function [23–24, 26, 58]. Altogether these findings

suggest that PD-1 blockade represents an attractive approach to reinvigorate exhausted HIV-

specific CD8+ T cells and reinstate their capacity to kill infected CD4+ cells. In this study, we

tested a novel strategy with the goal of reducing HIV loads in blood and tissues by restoring

the capacity of exhausted CD8+ cells to kill infected cells. This strategy consists of combining

the IAP inhibitor D1143 with the ICI anti-PD-1 mAb in order to reinvigorate the exhausted

immune system by PD-1 blockade.

To test the pre-clinical safety and efficacy of this strategy, we took advantage of the human-

ized BLT mouse model. This model is reliable across study groups (production of sufficient

numbers of mice from a single tissue donor), and ideal to create group sizes that support

strong statistical comparisons. We found that PD-1 expression on human CD8+ T cells

increased during HIV infection, and that anti-PD-1 mAb treatment reduced it. This is in

accordance with previous studies that showed that HIV infection elevates PD-1 expression on

CD4+ and CD8+ T cells of infected humanized mice or individuals and that PD-1 blockade

inhibits this effect [25–30, 55]. Importantly, D1143 intensifies the anti-PD-1 mAb-mediated

reduction of PD-1 expression by CD8+ T cells. We found that D1143 enhances the anti-PD-1

mAb-mediated reduction in HIV loads in both blood and tissues including spleen, thymic

organoid, lung, lymph nodes and liver. The D1143 enhancement of the anti-PD-1 effect on

HIV load is more profound in organs than in blood. We found that only the anti-PD-1/D1143

combination could decrease HIV RNA levels in thymic organoid and lymph nodes at levels

below the threshold of detection. Moreover, we obtained evidence that D1143 amplifies the

D1143 stimulates PD-1 blockade-mediated HIV load suppression

PLOS ONE | https://doi.org/10.1371/journal.pone.0227715 January 24, 2020 10 / 17

https://doi.org/10.1371/journal.pone.0227715


anti-PD-1 mAb-mediated activation of effector functions of CD8+ T cells. Thus, there is a cor-

relation between reduction of cell surface expression of PD-1 on CD8+ T cells, the reactivation

of CD8+ T cell functions and the reduction in HIV loads in tissues by the anti-PD-1 treatment.

Altogether these data suggest that the IAPa D1143 enhances the activation of CD8+ T cells and

elimination of HIV by the anti-PD-1 mAb due to its co-stimulatory properties leading to

Fig 5. HIV loads in tissues of HIV-infected BLT mice. Selected tissues were collected at week 18 (time of animal sacrifice). HIV RNA levels in

isolated human CD4+ cells were quantified using one-step reverse transcriptase quantitative real-time PCR as described previously [51–52]. Data

(median value of 5 mice per group/treatment) are presented as HIV RNA copies per 100,000 isolated CD4+ cells.

https://doi.org/10.1371/journal.pone.0227715.g005
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enhanced CD8+ T cell activation. Therefore, the combination of D1143 with ICIs should

improve the effects of immune checkpoint blockade and increase both cytopathic and

immune-mediated reduction of HIV-infected cells in blood and tissues. Further studies should

determine whether D1143 enhances the anti-HIV effects of all ICI members to a similar

degree.

Fig 6. Ex vivo IFNγ production by human CD8+ effector T cells isolated from HIV-infected BLT mice. At the end

of week 16 –end of the four treatments–percentages of human CD3+ and CD45+ cells in blood of HIV-infected BLT

mice were quantified by FACS. Isolated human CD45+ cells were stimulated ex vivo for 24 h with anti-CD3 and anti-

CD28 antibodies and the percentage of IFNγ+ CD8+ cells was quantified by FACS. Data (median value of 5 mice per

group/treatment) are presented as percentages of CD3+, CD45+ and IFNγ+ CD8+ cells.

https://doi.org/10.1371/journal.pone.0227715.g006
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It remains to be fully understood how D1143 promotes the beneficial effects of the PD-1

blockade on the exhaustion reversal of CD8+ T cells for efficient HIV load reduction. One pos-

sibility is that D1143 enhances the effects of PD-1 blockade on CD8+ T cells by modulating

the NF-kB response via degradation of specific components of the pathway as suggested previ-

ously [59]. Dougan et al. obtained evidence that IAPs play an important role in regulating T

cell-dependent responses, suggesting that IAPa represent a strategy for developing novel

immunomodulating therapies against cancer and chronic infections [59]. Another possibility

is that D1143 induces direct or indirect apoptosis of infected cells, providing an explanation

for the decrease in HIV cellular reservoirs in tissues. We will test this hypothesis in a subse-

quent D1143/anti-PD-1 humanized mouse experiment, by analyzing the ex vivo effect of

D1143 on CD8+ T cells isolated from anti-PD-1 mAb-treated mice. Our finding that the PD-

1-mediated decrease in HIV loads in blood by D1143 is not statistically significant while that

in tissues is may arise from either distinct methodological procedure analyses or from a true

biological phenomenon, indicating that further investigations are necessary to address these

possibilities.

Our previous finding that D1143 reverses HIV latency by modulating the non-canonical

NF-kB response [36], and our present finding that D1143 enhances PD-1 blockade effects on

CD8+ T cells represent attractive properties for testing the combination of D1143 and anti-

PD-1 mAb in a HIV latency model. Therefore, a similar study will be conducted in HIV-

infected humanized mice under ART. The HIV latency model in BLT mice has been well

described [60–61]. This approach should determine whether the properties of D1143 –HIV

latency reversal and immunomodulation–represent a promising approach for the elimination

of HIV reservoirs in blood and tissues.
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