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Abstract

The ballistocardiogram (BCG), the induced electric potentials by the head motion

originating from heartbeats, is a prominent source of noise in electroencephalogra-

phy (EEG) data during magnetic resonance imaging (MRI). Although methods have

been proposed to suppress the BCG artifact, more work considering the variability of

cardiac cycles and head motion across time and subjects is needed to provide highly

robust correction. Here, a method called “dynamic modeling of heartbeats” (DMH) is

proposed to reduce BCG artifacts in EEG data recorded inside an MRI system. The

DMH method models BCG artifacts by combining EEG points at time instants with

similar dynamics. The modeled BCG artifact is then subtracted from the EEG record-

ing to suppress the BCG artifact. Performance of DMH was tested and specifically

compared with the Optimal Basis Set (OBS) method on EEG data recorded inside a

3T MRI system with either no MRI acquisition (Inside-MRI), echo-planar imaging

(EPI-EEG), or fast MRI acquisition using simultaneous multi-slice and inverse imaging

methods (SMS-InI-EEG). In a steady-state visual evoked response (SSVEP) paradigm,

the 15-Hz oscillatory neuronal activity at the visual cortex after DMH processing was

about 130% of that achieved by OBS processing for Inside-MRI, SMS-InI-EEG, and

EPI-EEG conditions. The DMH method is computationally efficient for suppressing

BCG artifacts and in the future may help to improve the quality of EEG data recorded

in high-field MRI systems for neuroscientific and clinical applications.
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1 | INTRODUCTION

Electroencephalography (EEG) recording and functional magnetic res-

onance imaging (fMRI) in the same setting (Ives et al., 1993) allows for

the characterization of neuronal and hemodynamic signals. This tech-

nique has been fruitful in elucidating neurovascular coupling effects

(Debener et al., 2005; Laufs et al., 2003) and localizing epileptiform

activity generators (Gotman et al., 2004; Ives et al., 1993; Krakow

et al., 1999; Seeck et al., 1998). However, EEG recorded concurrently

with magnetic resonance imaging (MRI) is seriously deteriorated by

the induced voltage caused by the switching of MRI gradient coils.

Gradient artifacts in EEG data can be effectively suppressed by arti-

fact template estimation and subtraction (Allen et al., 2000), blind

source separation, frequency filtering, dictionary learning (Bullock

et al., 2021), or by minimizing the duty cycles of MRI acquisition (Lee

et al., 2020).

Ballistocardiogram (BCG) artifacts also occur when EEG data are

collected inside an MRI system. In the present context, the BCG
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artifact is the EEG signal fluctuation that is obtained within a strong

static magnetic field, when scalp electrodes move due to cardiac

pulsatility (Allen et al., 1998) or caused by the Hall effect of the pulsa-

tile blood flow (Muri et al., 1998). The amplitude of the BCG artifact

ranges between 150 and 200 μV, which is larger than the typical elec-

trophysiological activity of interest (approximately 1–10 μV; Allen

et al., 1998; Huster et al., 2012; Mulert & Lemieux, 2009). The dura-

tion of the BCG artifact typically lasts for approximately 1 s (Niazy

et al., 2005a). Due to its high amplitude, significant spectrotemporal

overlap with neurophysiologic signals, and large variations in the

waveform shape, timing, and intensity across time and electrode loca-

tions, BCG artifacts substantially reduce the sensitivity and specificity

for detecting the EEG signals of interest. The amplitude of the artifact

scales with the field strength of MRI (Debener et al., 2008; Mullinger,

Havenhand, & Bowtell, 2013). Therefore, suppressing BCG artifacts

becomes more pressing when EEG data are recorded inside a high-

field (≥3 T) MRI system.

Among methods to suppress BCG artifacts, several estimate an

artifact “template” waveform and then subtract the template from the

contaminated EEG signals (Allen et al., 1998;Ellingson et al., 2004;

Sijbersa et al., 2000). The estimation of an artifact template is based

on the collection of EEG signals temporally aligned to a specific time

point in the cardiac cycle, such as the peak of the QRS complex. Either

the average (Allen et al., 1998) or a combination of aligned EEG signal

segments (Ellingson et al., 2004; Sijbersa et al., 2000) are taken as the

artifact template. Although widely used, these methods do not con-

sider the variations in the electrocardiogram (EKG) shape, amplitude,

and QRS complex timing, which may lead to out-of-phase artifact sub-

traction, systematic errors, and large residuals (Jorge et al., 2019;

Musso et al., 2011; Niazy et al., 2005b).

Methods based on Principal Component Analysis (Niazy

et al., 2005b) and Independent Component Analysis (Benar

et al., 2003; Nakamura et al., 2006; Srivastava et al., 2005) provide

alternative ways to suppress BCG artifacts. However, these methods

require a sufficient number of sensors to allow for the decomposition

of the measurements into “signal” and “noise” components. Catego-

rizing the decomposed components as either “signal” or “noise” typi-

cally requires a heuristic definition, which may reduce the

performance of BCG artifact suppression (Grouiller et al., 2007;

Nakamura et al., 2006). More recently, a reference-free harmonic

regression modeling approach was proposed to suppress BCG arti-

facts (Krishnaswamy et al., 2016). This method shows comparable

performance with the Optimal Basis Set (OBS) method (Niazy

et al., 2005b) in revealing evoked potentials, while suppressing BCG

artifacts (21% in harmonic regression vs. 26% in OBS) (Krishnaswamy

et al., 2016).

Motivated by a causal modeling method (Sugihara et al., 2012),

the present work proposes a new method called “dynamic modeling

of heartbeats” (DMH) to suppress BCG artifacts. The DMH method

estimates the instantaneous EEG signals at specific phases in the car-

diac cycle by combining EEG signals at those phases in other cardiac

cycles showing similar dynamic features, which are EKG signals at dif-

ferent latencies within a cardiac cycle. The resulting modeled EEG

signal is taken as the estimated BCG artifact and subtracted from the

original recording to generate artifact-suppressed EEG signals. Meth-

odology and empirical results are presented of using DMH to sup-

press BCG artifact in EEG evoked potentials recorded concurrently

with MRI. Specifically, the DMH performance in identifying evoked

potentials is benchmarked with respect to the OBS method. Substan-

tial improvement in BCG artifact suppression will motivate the appli-

cation of DMH to neuroscience and clinical applications of concurrent

EEG-MRI experiments, to obtain high-quality concurrent measure-

ments of electrophysiological and hemodynamic responses, particu-

larly in cases where the MRI gradient artifact over EEG is effectively

suppressed.

2 | METHODS

2.1 | Participants

This study was approved by the Research Ethics Board of Sun-

nybrook Research Institute and Institutional Review Board of

National Yang Ming Chiao Tung University. Thirty healthy control

participants (age: 21–45 years; 18 female) gave written free and

informed consent before participating in the study. Nine participated

in the evoked response experiment. Part of the visual evoked

response data was analyzed in a previous study of fast MRI and EEG

conducted in the laboratory (Lee et al., 2020). The data that support

the findings of this study are available on request from the

corresponding author. The data are not publicly available due to pri-

vacy or ethical restrictions.

2.2 | Experiment design

The experiments involved recording evoked EEG responses in various

MRI acquisition environments. The measurement of evoked responses

involved steady-state visual evoked potentials (SSVEPs). Specifically,

participants were instructed to fixate visually on a crosshair at the

center of the display screen. To ensure that participants maintained

visual fixation, they were instructed to press a button when the cross-

hair changed color from black to red. The red crosshair appeared

for 1 s randomly throughout the experiment. Asynchronous with

the crosshair stimulus, flashing checkerboard patterns (flashing

frequency = 7.5 Hz, stimulus duration 1 s) were also presented ran-

domly with a minimal inter-stimulus interval of 2 s to elicit SSVEPs.

The checkerboard subtended 4.3� of visual angle and contained

24 evenly distributed radial wedges with eight concentric rings of

equal width. The 7.5-Hz flashing checkerboard stimuli were expected

to elicit a strong SSVEP with a frequency of 15 Hz. Onsets of check-

erboard flashing were temporally jittered between 0.2 and 0.9 s after

the beginning of each MRI acquisition of the brain volume to minimize

artifacts caused by MRI gradient coil switching in concurrent fast fMRI

and EEG acquisition (see details below). Three six-minute runs were

collected for each condition from each participant.
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2.3 | MRI collection

All MRI data were measured on a 3 T MRI scanner using a

64-channel head–neck receiver coil array (Prisma or Skyra, Siemens,

Erlangen, Germany) with a hole at the vertex of the head coil for rou-

ting the EEG cables. Structural images were acquired with the

magnetization-prepared rapid gradient echo (MPRAGE) pulse

sequence (repetition time TR = 2530 ms, echo time TE = 3.03 ms,

isotropic voxel resolution = 1 mm, field of view FOV = 256 mm, flip

angle = 7�, matrix size = 224 � 256, generalized auto-calibrating

partial parallel acquisition [GRAPPA] acceleration factor = 2). As

EEG recorded inside MRI suffers from artifacts caused by MRI gradi-

ent coil switching and heartbeats, we took EEG with two different

kinds of fMRI to probe the performance of BCG artifact suppression

with low and high levels of residual gradient artifacts. Specifically,

functional images were acquired with a fast fMRI sequence (simulta-

neous multi-slice inverse imaging (SMS-InI; Hsu et al., 2017);

TR/TE = 2000/30 ms, FOV = 210 mm, flip angle = 30�,

resolution = 5 � 5 � 5 mm3, slice numbers = 24). Spatial encoding

was performed in 0.1 s, leaving 1.9 s (95% of the TR interval) free

from MRI gradient coil operation. We previously showed that concur-

rent temporally sparse fast fMRI and EEG gave much reduced gradient

artifact (Lee et al., 2020). For comparison, T2*-weighted echo-planar

imaging (EPI) was also acquired for fMRI with a typical spatiotemporal

resolution (TR/TE = 2,000/36 ms, FOV = 224 mm, flip angle = 90�,

number of slices = 30, resolution = 3.5 � 3.5 � 4 mm, GRAPPA

acceleration = 2).

2.4 | EEG data collection

EEG was recorded inside the 3 T MRI scanner using an MRI-

compatible system (BrainAmp MR Plus, Brain Products, Gilching,

Germany) with a 32-channel EEG cap (BrainCap MR, Brain Products,

Gilching, Germany). Electrodes were arranged following the 10–20

international standard. The EEG data were referenced with respect to

the FCz electrode, with the ground reference taken at the AFz elec-

trode. The EKG was also measured by placing an electrode on the

back of the participant.

To ensure highly synchronous EEG and EKG recordings with

respect to the fMRI acquisitions, an established procedure

(Mandelkow et al., 2006) was adopted using a frequency divider and

phase-locking device as part of the EEG system (BrainAmp MR Plus,

Brain Products, Gilching, Germany). The phase-locking device received

the 10 MHz transistor-to-transistor logic (TTL) signal from the clock

board of the MRI system via a coaxial cable and produced a 5-kHz

output signal to synchronize the EEG acquisition. The MRI TR value

recorded by the EEG system was confirmed to match the prescribed

TR value at the MRI console with 5-kHz sampling rate. The impedance

of each electrode was verified as <9 kΩ (including the built-in 5 kΩ

impedance) after applying the conductive gel. The EEG cap wire bun-

dle was straightened and fixed along the main magnetic field for

50 cm and connected to an EEG amplifier at the rear of the magnet

(just outside the bore) to reduce artifacts generated by the wire

(Mullinger, Castellone, & Bowtell, 2013). The positions of elec-

trodes over the scalp of a participant were measured by a digitizer

(Fastrak, Polhemus, Vermont, Canada). These positions were used

to register EEG electrodes with the head model derived from

structural MRI.

EEG was measured separately in three different conditions. EPI-

EEG and SMS-InI-EEG denote the concurrent recording of EEG with

EPI and SMS-InI, respectively. In addition, EEG was recorded inside

the MRI system without imaging (Inside-MRI) providing a condition

that yielded EEG signals with BCG artifact but no gradient arti-

fact (GA).

2.5 | EEG data analysis

2.5.1 | GA suppression and filtering

The EEG processing was implemented in MATLAB (Mathworks,

Natick, MA, U.S.A.). For EPI-EEG and SMS-InI-EEG, GA was

suppressed using the average artifact subtraction (AAS) method (Allen

et al., 2000). To account for the timing difference in the clock accu-

racy between MRI (10 MHz) and EEG (5 kHz) systems, further align-

ment between the GA template and the EEG data was achieved by

interpolating with an accuracy of 0.2, 0.02, 0.002, and 0.0002 samples

in four iterations to achieve numerical sampling rates of 0.025, 0.25,

2.5, and 25 MHz, respectively. The GA template was dynamically esti-

mated over seven TR intervals. The EEG data were further zero-phase

band-pass filtered between 1 and 50 Hz, and down-sampled to

500 Hz.

2.5.2 | BCG artifact suppression

To suppress BCG artifacts, peaks of the QRS complex were first

identified automatically from the recorded EKG waveform (Pan &

Tompkins, 1985). The subsequent proposed approach was to build

a dynamic model of the EEG signals with BCG artifacts. This pro-

cedure was motivated by the convergent cross mapping method

(Sugihara et al., 2012), a method to test causal relationship

between two time series. Instead of estimating a cause-and-effect

relationship, the method was modified to estimate the BCG

artifact templates. The modeled EEG time series was then sub-

tracted from the original one to yield the signal with suppressed

BCG artifacts.

Describing the DMH method in mathematical detail, given an

EKG time series sEKG(t) with the temporal index t, instants were first

detected corresponding to the peak timing of the QRS complex and

these were taken as the temporal references for individual cardiac

cycles. Next, the mapping f(t) was established to transform the tempo-

ral index t to the mth cardiac cycle with a latency φ:

f tð Þ! m,φf g,m¼1, � � �,mmax ð1Þ
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Thus, sEKG(t) was mapped to its cardiac cycle m and latency φ

according to

sEKG tð Þ! smEKG φð Þ, ð2Þ

where smEKG φð Þ represents the EKG signal at latency φ with respect to

the mth QRS complex in the recording.

In analogous fashion, the mapping f(t) also allowed a given EEG

signal at the temporal index t, sEEG tð Þ, to be related to the mth cardiac

cycle with a latency φ.

sEEG tð Þ! smEEG φð Þ: ð3Þ

Note that φ in the mth EKG cycle can be related to the beginning of

the recording by f(t).

An e-dimensional manifold of cardiac dynamics was created from

time-lagged samples at multiples of latency τ of the EKG:

kmEKG φð Þ¼ smEKG φð Þ,smEKG φþ τð Þ, � � �,smEKG φþ e�1ð Þτð Þ� �
, ð4Þ

where φ denotes the latency within the mth cardiac cycle with respect

to its QRS complex. e denotes the dimension of cardiac dynamics

manifold, that is, the number of data points within a cardiac cycle to

describe the dynamic feature at latency φ in the mth cardiac cycle. As

so, kmEKG φð Þ is a vector of e EKG values sampled in multiples of τ with a

latency φ with respect to the QRS complex in the mth cardiac cycle.

Next, a matrix KEKG φð Þ was created by vertically concatenating

kmEKG φð Þ across cardiac cycles:

KEKG φð Þ¼ k1EKG φð Þ;k2EKG φð Þ;…;kmmax
EKG φð Þ

h iT
, ð5Þ

where the superscript T denotes the matrix transpose. For the

EKG at cycle m, it was then possible to search across cardiac

cycles to identify n cycles that were in the proximity of kmEKG φð Þ in
the KEKG φð Þ manifold. The “neighboring” cardiac cycles were indexed

by mi, i = 1, …, n; n≤mmax. In the KEKG φð Þ manifold, the distance dmi

between kmEKG φð Þ and kmi
EKG φð Þ was measured by the Euclidean dis-

tance. All n cardiac cycles in the vicinity of the mth cardiac cycle were

then sorted in the ascending order: dm1 ≤ dm2 ≤ � � �≤ dmn . A

linear combination of EEG signals in all cardiac cycles (i = 1, …, n; n

≤mmax) with the latency φ was then used to develop a model of the

EEG signal, bsmEEG φð Þ, in the mth cardiac cycle with the latency φ, as

follows:

bsmEEG φð Þ¼
Xn

i¼1
wis

mi
EEG φð Þ: ð6Þ

Suggested by the prediction procedure in modeling dynamics in a

manifold (Sugihara et al., 2012), the weights wi were calculated by

ui ¼ e�dmi
=e�dm1 , ð7Þ

wi ¼ ui=
Xn

i¼1
ui: ð8Þ

Briefly, the weighting coefficients wi and data smi
EEG φð Þ to model

the EEG measurement smEEG φð Þ by bsmEEG φð Þ were based on the similarity

between the representations of smEEG φð Þ and smi
EEG φð Þ in the cardiac

dynamics in KEKG φð Þ. Although alternative interpolation methods may

also work in DMH, for the sake of computational simplicity, we only

limited ourselves to a linear interpolation method to model smEEG φð Þ by
bsmEEG φð Þ. The modeled EEG bsmEEG φð Þ can be transformed to the temporal

index t by a mapping

bsmEEG φð Þ!bsEEG tð Þ: ð9Þ

Because bsEEG tð Þ was linearly interpolated from the EEG recording

with the same cardiac latency in other cardiac cycles, ideally it

contained only BCG features without other physiological informa-

tion specific to time instant t. If the effect of interest occurred

asynchronously to cardiac cycles, then subtracting bsEEG tð Þ from

sEEG tð Þ yielded sBCGEEG tð Þ as the EEG signal after BCG artifact

suppression:

sBCGEEG tð Þ¼ sEEG tð Þ�bsEEG tð Þ: ð10Þ

Figure 1 illustrates the procedure of building a two-dimensional

KEKG (e = 2) and seeking five nearest neighbors (n = 5) to derive

bsEEG tð Þ. In this example, the time instant of interest (green dot) has five

time instants (red dots) in the EKG waveform (Figure 1a) with the

same cardiac phase and the most similar dynamics features, which are

EKG signals at two latencies (0 and τ¼10 samples) within the cardiac

cycle (Figure 1b). EEG signals at the interested time instant (red dot)

and five time instants of the most similar dynamic features in terms of

the Euclidean distance in the two-dimensional manifold are shown in

Figure 1c. The modeled (red) and acquired (blue) EEG signals with the

BCG artifact bsEEG tð Þ are shown in Figure 1d and e (temporally

zoomed).

For comparison, BCG artifacts in the EEG data were separately

suppressed by the optimal basis set (OBS) method (Niazy

et al., 2005a). Suggested by previous studies on OBS, the order of the

Principal Component Analysis was chosen to be three (Debener

et al., 2007; Niazy et al., 2005b).

Subsequently, the SSVEPs were calculated by first extracting

EEG signals between 200 ms before and 1000 ms after the onset

of each visual stimulus for all trials of a given measurement (EPI-

EEG, SMS-InI-EEG, and inside-MRI). For all EEG trials, the constant

and the linear drift were removed by linear regression. Spurious

trials with a maximum EEG signal >700 μV were excluded. The

SSVEPs were then derived by averaging across trials at each elec-

trode. Oscillatory features in the evoked EEG signals were quanti-

fied using the Morlet wavelet transform with a temporal window of

5 cycles. The 15-Hz oscillations were then investigated for the

SSVEPs.
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F IGURE 1 An illustration of the dynamic modeling of heartbeats approach to suppress the BCG artifacts in EEG. (a) An EKG waveform. (b) a
two-dimensional manifold (e = 2) of cardiac dynamics. Each blue dot indicates one cardiac cycle. A pair of EKG signals at its QRS peak and a delay
τ = 10 samples was used to represent one cardiac cycle. The dot with a green circle indicates the cardiac cycle of specific interest. five nearest
cardiac cycles on this 2D manifold are indicated by red circles. (c) EEG waveforms. red vertical lines indicate the detected QRS peaks. The green
and red dots correspond to the analogous cardiac cycles identified on the 2D manifold (a)). (d) the recorded (blue) and interpolated (red) EEG
waveforms based on the EEG signals at five instants, whose cardiac cycles are nearest to the current one on the 2D manifold. Both waveforms
are expected to have similar BCG artifacts. (e) Details of the recorded (blue; sEEG tð Þ) and interpolated (red; bsEEG tð Þ) EEG waveforms showing
reasonable estimates of the EEG signal with clear BCG artifacts
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2.5.3 | EEG source modeling

The SSVEP measured by EEG electrodes at scalp originated from

the visual cortex. It is difficult to define the ensemble of EEG elec-

trodes and their relative contribution to summarize the SSVEP over

the scalp. In order to provide spatially specific assessment of

SSVEP, we estimated the distribution of neuronal activity responsi-

ble for generating SSVEP. The scalp EEG data and the neuronal

current sources at time t were related to each other by the linear

equation

y tð Þ¼Ax tð Þþn tð Þ, ð11Þ

where y(t) denoted the collection of EEG data across electrode con-

tacts, x(t) denoted the neuronal current strength, and n(t) denoted the

contaminating noise, and A was the lead field matrix (Lin et al., 2006).

Specifically, for a unit current dipole source at location r in

the +x, +y, or + z direction, the electric potentials measured at all

electrode contacts were

a rð Þ¼ ax rð Þ,ay rð Þ,az rð Þ½ �: ð12Þ

Assembling a(r) across all possible current dipole source locations cre-

ated the lead field matrix A:

A¼ a r1ð Þ,a r2ð Þ,…,a rkð Þ,…½ �,k¼1,…,d: ð13Þ

where d denotes the total number of current dipole source locations

and rk denotes the location of the kth current dipole source location.

The lead field matrix A was created from the T1-weighted

MPRAGE MRI data using scalp, skull, and brain models generated by

FreeSurfer (https://surfer.nmr.mgh.harvard.edu). Potential EEG

source locations at the gray and white matter boundary were identi-

fied with approximately 5-mm separation between the nearest

neighboring source locations. The locations of EEG electrodes were

manually registered to the scalp model. The matrix A was then calcu-

lated by the OpenMEEG package (Gamfort et al., 2010) (https://

openmeeg.github.io/).

The Minimum-Norm Estimate (MNE) was used to estimate x(t)

(Hämäläinen & Ilmoniemi, 1984):

xMNE tð Þ¼RAT ARAT þλC
� ��1

y tð Þ, ð14Þ

where R was the source covariance matrix and C was the noise

covariance matrix

C¼ ⟨n tð ÞnT tð Þ⟩, ð15Þ

with the operator ⟨�⟩ taking the ensemble average across realizations.

In practice, C was estimated from y(t) during the pre-stimulus interval

(from �200 to 0 ms) with data concatenated across trials in the

SSVEP measurements. The regularization λ tuned the balance

between the strength of the estimated neural current strength and

the discrepancy between the modeled and measured data. The value

λ¼10 was used in this study as suggested by previous work (Lin

et al., 2006).

The spatial distribution of estimated neuronal currents at each

time instant from each participant was then spatially registered to an

arbitrarily selected individual: “fsaverage” in the FreeSurfer library.

This registration was done via a spherical coordinate system (Fischl

et al., 1999). The neuronal currents were averaged across partici-

pants for each condition separately. The significance of the neuronal

current distribution was estimated at each source location by calcu-

lating the ratio between the instantaneous value and the standard

deviation calculated over the baseline interval. These ratios consti-

tuted dynamic statistical parametric maps (dSPMs) and were

reported to follow a t-like distribution (Dale et al., 2000). To model

the oscillatory neuronal current distributions in the brain, EEG sig-

nals were first filtered by the Morlet wavelet transform and then

modeled by the MNE. The filtered coefficients were then used to

generate the MNE and dSPMs.

2.6 | Performance measures

The performance of BCG artifact suppression was measured for the

SSVEP experiments by first characterizing the difference of 15-Hz

oscillatory responses, for scalp EEG at O1, O2, and Oz electrodes

over the interval of + 0.2 and 1.0 s after the visual stimulus onset.

The electrode topology and time interval were chosen based on

practice in previous SSVEP studies (Norcia et al., 2015; Srinivasan

et al., 2006). The SSVEP waveforms were also characterized in

terms of their total power, transient response, and oscillatory

response. The detection of neuronal sources for SSVEPs was also

compared between OBS and DMH methods for the three MRI con-

ditions (Inside-MRI, EPI-EEG, SMS-InI-EEG) using Receiver Operat-

ing Characteristic curves (Hanley & McNeil, 1982), where the

boundary of the primary visual cortex was delineated from an inde-

pendent structural MRI and fMRI studies (Benson et al., 2014;

Hinds et al., 2008). The true-positive and false-negative detection

was taken as the areas intersecting the anatomically defined pri-

mary visual cortex and the brain area showing significant and insig-

nificant 15-Hz oscillations, respectively. The true-negative and

false-positive detection was taken as the areas intersecting the

brain area outside the anatomically defined primary visual cortex

and the brain area showing insignificant and significant 15-Hz oscil-

lations, respectively. The difference in the detection of SSVEP

between OBS and DMH was statistically quantified by a bootstrap

analysis, where data across participants were sampled with replace-

ment for 100 times to generate 100 bootstrap samples of the group

response. A two-sample t-test was applied to evaluate if the differ-

ence between these bootstrap group responses of OBS and DMH

was significant.
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3 | RESULTS

Figure 2 shows the post-stimulus 15-Hz oscillatory power difference

between SSVEP results using DMH and OBS to suppress BCG arti-

facts. These differences were calculated for different combinations of

DMH parameters (n = 5, 10, or 15; e = 6, 8, or 10; τ = 7, 10, or 13),

for EEG collected concurrently with EPI (EPI-EEG), SMS-InI (SMS-InI-

EEG), and inside the magnet without MRI (Inside-MRI). Except for a

few cases in EPI-EEG, DMH generally improved the detection of

post-stimulus 15-Hz oscillation of the averaged EEG across O1, O2,

and Oz electrodes by showing positive power differences for DMH

compared to OBS regardless of MRI condition (EPI-EEG, SMS-InI-

EEG, or Inside-MRI). This suggested that DMH outperformed OBS

stably among parameter combinations. In the following sections, all

results for DMH are provided with the parameter combination of

(ε = 8, τ = 10, and n = 10) which reasonably approximate the average

performance of the method.

Figure 3a shows the averaged EEG traces across O1, O2, and Oz

electrodes using OBS or DMH to suppress BCG artifacts. The aver-

aged EEG power after the stimulus onset was found to be consis-

tently higher after using DMH to suppress BCG artifacts in

comparison to using OBS, regardless of whether EEG was recorded

concurrently with EPI (EPI-EEG; OBS: 1.73 +/� 0.03 μV2, DMH:

2.55 +/� 0.04 μV2; two-sample test: t = 13.76, p < 10�10), SMS-InI

(SMS-InI-EEG; OBS: 1.08 +/� 0.02 μV2, DMH: 1.78 +/� 0.04 μV2;

two-sample test: t = 13.51, p < 10�10), or inside the magnet with-

out MRI (Inside-MRI; OBS: 1.51 +/� 0.03 μV2, DMH:

F IGURE 2 The difference of the evoked response 15-Hz
oscillatory power between DMH and OBS processing for different
DMH parameter combinations. Differences were averaged across
O1, O2, and Oz electrodes and participants. Positive differences
correspond to larger 15-Hz oscillatory power by DMH compared
to OBS

F IGURE 3 Average evoked responses (a) and average 15-Hz time-frequency representation amplitude (b) across O1, O2, and Oz
electrodes
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8.64 +/� 0.14 μV2; two-sample test: t = 54.32, p < 10�10). This

amounted to a 48% (2.55/1.73–1), 65% (1.78/1.08–1), and 472%

(8.64/1.51–1) gain in the averaged EEG power for EPI-EEG, SMS-InI-

EEG, and Inside-MRI, respectively.

Figure 3b shows the 15-Hz time-frequency representation (TFR)

of the EEG waveform averaged across O1, O2, and Oz electrodes. For

EPI-EEG, the difference between waveforms after OBS and DMH

suppressing BCG artifacts was not visually clear. This difference was

clearer for SMS-InI-EEG after +500 ms. For Inside-MRI, the 15-Hz

TFR was consistently stronger with DMH than with OBS after +200

ms. Two-sample t-tests were performed to quantify the TFR differ-

ence between OBS and DMH processing. All conditions show signifi-

cantly larger 15-Hz TFR by DMH than OBS (EPI-EEG: OBS:

326.24 +/� 2.16, DMH: 378.38 +/� 2.27; t = 14.73, p < 10�10;

SMS-InI-EEG: OBS: 566.64 +/� 2.16, DMH: 627.65 +/� 2.77;

t = 17.38, p < 10�10; Inside-MRI: OBS: 497.94 +/� 2.50, DMH:

606.68 +/� 3.47; t = 25.41, p < 10�10).

The neuronal current distributions of the 15-Hz SSVEP were

examined next. Figure 4 shows the average (calculated over the time

window from +200 to +1000 ms) ratio of the power of the 15-Hz

time-frequency representation with respect to that in the pre-stimulus

interval. The difference between OBS and DMH was not readily

apparent in the EPI-EEG maps. Both maps showed the expected high

power ratios around the posterior occipital lobe with intriguing signals

around the right frontal pole. For SMS-InI-EEG, the difference

between OBS and DMH was clear: a much stronger power ratio of

15-Hz oscillation was found around the visual cortex in DMH than

OBS. This performance was similarly observed for the Inside-MRI

results. The DMH method yielded a stronger and more balanced

15-Hz power ratio between left and right visual cortices than the OBS

method. A strong power ratio around the cingulate cortex was found

in both OBS and DMH. This may be due to the supplementary eye

field activity to suppress saccades to fixate at the center of the visual

field and ignore the flickering visual stimuli at the periphery of the

visual field (Schlag-Rey et al., 1997).

Figure 5 shows the time courses of the estimated neuronal cur-

rents at the visual cortex in three conditions after either OBS or DMH

suppressing BCG artifacts. All time courses exhibited a transient

response at around 200 ms, followed by oscillatory activities. In EPI-

EEG, the transient response and the following oscillatory activities

were visually similar between DMH and OBS. In SMS-InI-EEG, a

stronger transient response was found with DMH than OBS (56 for

DMH and 41 for OBS; 36% gain). Visually clear 15-Hz oscillation was

found in data processed with both methods. DMH visually out-

performed OBS in Inside-MRI by a much stronger transient response

(105 for DMH and 56 for OBS; 88% gain) and 15-Hz oscillation (see

quantification next).

Figure 6a shows the TFRs of the estimated neuronal current at

the visual cortex. Slightly stronger 15-Hz oscillation was inspected in

EPI-EEG using DMH than OBS. The 15-Hz oscillation differences

were visually clearer in SMS-InI-EEG and Inside MRI conditions. The

15-Hz oscillation between +0.2 and + 1.0 s after the stimulus onset

F IGURE 4 Spatial distributions of 15-Hz time-frequency representation of the estimated neuronal current power over cortical surfaces.
Distributions were Z scores averaged over the time interval from +200 to +1000 ms after the visual stimulus onset, with respect to the baseline
pre-stimulus interval.
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F IGURE 5 Time courses of the estimated
neuronal current over cortical surfaces at the
visual cortex with DMH or OBS to suppress BCG
artifacts. The boundary of the visual cortex is
illustrated by pink cortical patches in the inlet of
the top panel.

F IGURE 6 Time-frequency representations of the estimated neuronal current at the visual cortex using DMH or OBS to suppress BCG
artifacts. (a) Plots of time-frequency representations between 5 Hz and 30 Hz. (b) Plots of noise-normalized time-frequency representations
between 5 Hz and 30 Hz
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for DMH and OBS were 4.99 � 10�3 ± 8.16 � 10�4 and

3.88 � 10�3 ± 7.68 � 10�4, respectively. DMH offered significantly

stronger 15-Hz oscillation (29% gain; two-sample t-test t = 19.83;

p < 1 � 10�20). In SMS-InI-EEG, the 15-Hz oscillation between +0.2

and + 1.0 s after the stimulus onset for DMH and OBS were

7.57 � 10�3 ± 7.24 � 10�4 and 5.79 � 10�3 ± 6.35 � 10�4, respec-

tively. DMH offered significantly stronger 15-Hz oscillation (31% gain;

two-sample t-test t = 36.86; p < 1 � 10�20). In Inside-MRI, the 15-Hz

oscillation between +0.2 and + 1.0 s after the stimulus onset for

DMH and OBS were 7.62 � 10�3 ± 7.24 � 10�4 and

5.79 � 10�3 ± 5.88 � 10�4, respectively. DMH also offered signifi-

cantly stronger 15-Hz oscillation (32% gain; two-sample t-test

t = 39.09; p < 1 � 10�20);

We also calculated noise-normalized TFRs for each data set,

where the noise level was separately estimated by the standard devi-

ation of signals in the pre-stimulus interval at each frequency

(Figure 6b). Ratios were taken between post-stimulus instants and

the estimated noise level. Results with DMH and OBS were similar

in the time-frequency representation between 5 Hz and 30 Hz with

similar 15-Hz dynamics in EPI-EEG. The average 15-Hz noise-

normalized TFR was 11.07 +/� 3.81 and 9.81 +/� 3.51 for OBS

and DMH, respectively. The difference was not significant. DMH

shows stronger and persistent noise-normalized 15-Hz oscillation

than OBS in SMS-InI-EEG. Quantitatively, the average 15-Hz TFR

was 83.94 +/� 14.52 and 103.59 +/� 21.72 for OBS and DMH,

respectively. The difference between the two methods was signifi-

cant (two-sample t-test; p < .001). This difference was significant for

the EEG data recorded during the Inside-MRI condition, where the

strongest noise-normalized 15-Hz oscillation was found. In this

case, the noise-normalized 15-Hz TFR was 25.16 +/� 5.36 and

111.12 +/� 23.05 for OBS and DMH, respectively (two-sample t-

test; p < .0001). Note that the noise-normalized 15-Hz oscillation for

inside-MRI was smaller than SMS-InI-EEG when using OBS (left

middle and bottom panels; Figure 6b). This was likely attributed to

the difference in baseline noise level between SMS-InI-EEG and

Inside-MRI, because of their similar strength without noise normali-

zation (left middle and bottom panels; Figure 6a).

Based on the boundary of the primary visual cortex as the ground

truth for the activated brain areas in the SSVEP experiment from an

independent structural MRI and fMRI studies (Benson et al., 2014;

Hinds et al., 2008), Figure 7 shows ROC curves used to quantify the

sensitivity and specificity of detecting the estimated 15-Hz neuronal

current oscillation in the visual cortex using either OBS or DMH

methods in EEG source modeling. For EPI-EEG, the area under the

ROC curve (AUC) value for OBS and DMH was 0.85 and 0.87, respec-

tively. For SMS-EPI-EEG, the AUC value for OBS and DMH was 0.93

and 0.98, respectively. For Inside-MRI, the AUC value for OBS and

DMH was 0.91 and 0.97, respectively. The AUC increased progres-

sively from EPI-EEG, SMS-InI-EEG, and Inside-MRI. In all three condi-

tions, DMH consistently had a larger AUC value than OBS. The

bootstrap analysis revealed that the difference in the AUC between

DMH and OBS approaches was statistically significant in EPI

(t = 3.32, p = 1.6 � 10�3), SMS-InI (t = 3.92, p = 2.4 � 10�4), and

Inside-MRI (t = 10.27, p = 1.1 � 10�14).

4 | DISCUSSION

The present study proposes a method—dynamic modeling of heart-

beats (DMH)—for modeling the ballistocardiogram (BCG) based on

recorded EKG data, and then subtracting the artifact from EEG data

recorded inside an MRI system. Performance of the DMH method

was systematically characterized in comparison to the conventional

OBS method in EEG BCG artifact suppression for EEG evoked poten-

tials. Specifically, a steady-state visual evoked response experiment

was undertaken to record EEG data inside an MRI system either

F IGURE 7 Receiver-operating characteristic curves of the 15-Hz time-frequency representation averaged between 200 and 1000 ms after
the visual stimulus onset. SSVEPs with DMH have larger areas under the ROC curves in EPI-EEG, SMS-InI-EEG, and inside-MRI conditions than
OBS. Shaded areas represent one standard error in the bootstrap analysis above and below the ROC from the group averages. FPR, False-positive
rate; TPR, True-positive rate
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concurrently with EPI, with fast MRI, or in the static magnetic field

without performing MRI. The DMH approach was stable across

choices of parameter combinations (Figure 2). Compared to OBS,

DMH significantly improved time courses (Figure 3a) and their 15-Hz

oscillations (Figure 3b) from occipital electrodes over the scalp in BCG

suppression. Source modeling of SSVEPs revealed a stronger transient

and oscillatory neuronal current in the visual cortex with DMH than

with OBS (Figures 4 and 5). The estimated 15-Hz oscillation in the

visual cortex was found to be about 30% stronger with DMH than

with OBS in SMS-InI-EEG and Inside-MRI conditions, respectively

(Figure 6). An ROC analysis showed that use of DMH resulted in

higher power in detecting the oscillatory visual cortex neuronal activ-

ity in all three EEG acquisition scenarios (Figure 7). In summary, the

proposed DMH method reduced BCG artifacts further than was pos-

sible with the OBS method in the experimental conditions that were

assessed, resulting in EEG signal time courses that were more related

to neuronal activity.

The DMH method likely outperformed OBS in BCG artifact sup-

pression because DMH adaptively identified BCG artifacts by pooling

EEG recordings with similar cardiac dynamics, while accounting for

variability in cardiac phase and signal amplitudes within the pool. The

DMH method assumes that time instants of similar EKG dynamics

have similar EEG BCG artifacts. This assumption was supported by

early studies on the origin of BCG artifacts induced by the cardiac-

related motion of the head and electrodes in a static magnetic field

(Allen et al., 1998; Debener et al., 2008). One limitation of DMH is

that the method requires identification of EKG events correlated to

EEG signals. If the neuronal responses of interest are asynchronous

with cardiac cycles, then DMH is expected to reveal these

responses by adaptively synthesizing BCG artifacts from the EEG

data with similar cardiac dynamics. The other limitation of DMH is

the need to record the EKG, which is used to identify cardiac phase

in modeling the BCG artifact. The EKG recording is also required by

OBS, but not by the harmonic regression method (Krishnaswamy

et al., 2016).

The performance difference between DMH and OBS became

progressively smaller from Inside-MRI, SMS-InI-EEG, and EPI-EEG.

This is likely due to the residuals in GA suppression, which is the least

and largest in Inside-MRI and EPI-EEG, respectively. A better perfor-

mance by DMH than OBS was consistently observed in evoked

responses. Therefore, it is recommended that DMH should be used to

process EEG data with MRI collected using a minimal MRI acquisition

time and an acceptable spatiotemporal resolution and a field-of-view

to obtain high-quality EEG and MRI at the same time.

The DMH method is computationally efficient: it took less than

10 s to complete the BCG suppression on 32-channel EEG data

recorded at 5,000 Hz for approximately 8 min. The calculation was

performed by a CPU without the need for dedicated parallel proces-

sors or large memory capacity. In comparison, OBS took about 70 s to

complete BCG suppression for the same data set using the same com-

putational resource. About 7-fold higher computational load in OBS

than DMH is due to the use of Principal Component Analysis in OBS

but not in DMH. Higher computational demand is common across

component analysis methods (Debener et al., 2008; Nakamura

et al., 2006; Niazy et al., 2005b; Srivastava et al., 2005).

In the present study, OBS was taken as the benchmark to test

DMH performance. Other alternatives for advanced BCG suppression

include harmonic regression (Krishnaswamy et al., 2016) and deep

learning strategies such as BCGnet (McIntosh et al., 2021). However,

harmonic regression gave an evoked response similar to OBS

processing for EEG recorded inside a 3 T magnet in the absence of

MRI, an ideal case of avoiding potential residual errors that arise from

GAs during EEG-MRI (Krishnaswamy et al., 2016). Given concurrently

recorded EPI and EEG data inside a 3 T MRI system, the BCGnet

approach and OBS generated similar evoked responses even though

the response variability was smaller using BCGnet than OBS

(McIntosh et al., 2021). In contrast, in the present work, DMH gave

more specific evoked responses. Given the preliminary nature of

these results, it would be useful to conduct additional comparisons of

DMH, OBS, and BCGnet in other EEG-MRI scenarios in the near

future.

Like OBS, DMH depends on the availability of the EKG to esti-

mate time instants in terms of phases of cardiac cycles. Therefore, the

quality of EKG affects the performance of DMH. In cases of low-

quality EKG and associated failures to detect QRS complexes, DMH

may not perform optimally. Component analysis methods (Debener

et al., 2008; Nakamura et al., 2006; Niazy et al., 2005b; Srivastava

et al., 2005), however, assume either statistical independence or

uncorrelation (orthogonality) between signal and noise time series to

separate neuronal activity from measurement artifacts. The DMH

method does not rely on these assumptions, nor does it require sub-

stantial ancillary hardware to record signals specific to noise processes

(Chowdhury et al., 2014; Mullinger, Castellone, & Bowtell, 2013;

Mullinger, Havenhand, & Bowtell, 2013). A typical setup of MRI-

compatible EEG with EKG suffices to suppress BCG noise and recover

neuronal signals.

The present study investigated EEG evoked potentials corrupted

by BCG inside a 3 T MRI scanner. The BCG artifact has been shown

to scale with MRI field strength (Debener et al., 2008; Mullinger, Cas-

tellone, & Bowtell, 2013; Mullinger, Havenhand, & Bowtell, 2013),

suggesting that EEG data recorded in 7 T MRI systems may have

higher quality after DMH processing than OBS processing. In addition

to improving the EEG-MRI data from healthy participants, DMH may

also be useful to assist clinicians in detecting interictal spikes (IIS) from

concurrent EEG-fMRI of epilepsy patients. In such clinical applications,

detecting IIS occurrences is the crucial step for subsequent analysis of

fMRI data. Improving the EEG quality may improve the sensitivity and

specificity of spike detection and subsequent fMRI-based delineation

of the irritative zones, thus assisting neurosurgical decision-making.

The present study demonstrated the performance of DMH in

EEG evoked potentials experiments. However, DMH can be helpful

beyond this exemplary case. Recently, converging evidence suggested

that the human brain has evolved to deal with complex naturalistic,

which can elicit neuronal responses more reliably than simplified stim-

uli in conventional laboratory experiments (Belitski et al., 2008;

Mechler et al., 1998; Yao et al., 2007). Accordingly, there is an

4454 LEE ET AL.



emerging trend of using naturalistic stimuli, including movies, TV

shows, and musical pieces, to study human brain function. (For

review, see [Hasson et al., 2010]). This experimental technique has

been suggested to be more appropriate to probe the neuronal

responses related to complex cognitive processes common in our

daily life, such as narrative comprehension (Regev et al., 2013;

Wilson et al., 2008) and movie watching (Hasson et al., 2004;

Hasson et al., 2008; Jaaskelainen et al., 2008). To date, most neuro-

imaging studies using complex naturalistic stimuli are limited to

fMRI. Concurrent EEG-MRI study with the complex naturalistic

stimuli paradigm can elucidate the neurophysiological basis and the

neurovascular coupling in an ecologically valid setting. DMH will be

useful in such studies because the improved EEG quality can dis-

close neuronal responses more sensitively by suppressing BCG

artifacts.

In clinical neurology, integrating EEG and fMRI is one useful

way to localize epileptiform activity generators (Gotman

et al., 2004; Ives et al., 1993; Krakow et al., 1999; Seeck

et al., 1998). Specifically, the locations of IIS generators have been

estimated by identifying brain areas with significant hemodynamic

changes after inter-ictal spikes (IIS). The IIS time window can either

be annotated by epileptologists (Gotman, 2008; Lemieux

et al., 2001; Salek-Haddadi et al., 2006) or informed by the correla-

tion between the instantaneous EEG topography and patient-

specific EEG topographies (Grouiller et al., 2011). Full concordance

between fMRI maximum response and surgical resection is indica-

tive of seizure freedom, whereas a resection leaving the fMRI

maximum response intact is likely to lead to a poor outcome (An

et al., 2013). We plan to further quantify the DMH performance in

spontaneous neuronal activity, including epileptic events and

spontaneous oscillations, to translate this method to clinical

practice service.
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