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Abstract

Counterfeit medicines represent a global public health threat warranting the development of accurate, rapid, and non-

destructive methods for their identification. Portable near-infrared (NIR) spectroscopy offers this advantage. This work

sheds light on the potential of combining NIR spectroscopy with principal component analysis (PCA) and soft independent

modelling of class analogy (SIMCA) for authenticating branded and generic antibiotics. A total of 23 antibiotics were

measured ‘‘nondestructively’’ using a portable NIR spectrometer. The antibiotics corresponded to six different active

pharmaceutical ingredients being: amoxicillin trihydrate and clavulanic acid, azithromycin dihydrate, ciprofloxacin hydro-

chloride, doxycycline hydrochloride, and ofloxacin. NIR spectra were exported into Matlab R2018b where data analysis

was applied. The results showed that the NIR spectra of the medicines showed characteristic features that corresponded

to the main excipient(s). When combined with PCA, NIR spectroscopy could distinguish between branded and generic

medicines and could classify medicines according to their manufacturing sources. The PCA scores showed the distinct

clusters corresponding to each group of antibiotics, whereas the loadings indicated which spectral features were signifi-

cant. SIMCA provided more accurate classification over PCA for all antibiotics except ciprofloxacin which products shared

many overlapping excipients. In summary, the findings of the study demonstrated the feasibility of portable NIR as an initial

method for screening antibiotics.
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Introduction

Medicine counterfeiting represents a global expanding prob-

lem with increased morbidity and mortality worldwide. The

impact of counterfeit medicines can result in lethal conse-

quences in its worst. A counterfeit medicine is defined by the

World Health Organization (WHO) as ‘‘deliberately/fraudu-

lently misrepresent their identity, composition or source’’.1

A substandard medicine is also known as poor quality medi-

cine that fail to satisfy its manufacturing specifications.1–3

Medicine counterfeiting can occur to any class of medi-

cines, of any formulation and of any source. Antibiotics

represent one of the main classes of medicines sold in

both developed and developing countries, and thus have

high probability of being substandard or counterfeited.4–8

Counterfeit and substandard antibiotics may not be limited

to the lack of active pharmaceutical ingredients (APIs) but

also may have defects in their excipients’ constituents or in

their physical characteristics. The consequences of using

counterfeit antibiotics can range from decreased effi-

cacy,9,10 treatment failure,11–14 antimicrobial resistance

development,5,15 and/or lethal consequences.10,15,16

The literature revealed various methods for antibiotics

authentication. These methods range from simple color

tests to mass spectrometric methods. Color tests and

thin layer chromatography have been used for detecting
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macrolides,17 amoxicillin and co-trimoxazole,18 and fluoro-

quinolones.19 Likewise, inexpensive test cards were used

for the determination of beta-lactam antibiotics.20 Color

tests were also used alongside both the dissolution testing

and the Global Pharma Health Fund (GPHF) Minilab for

screening of specific classes of antibiotics such as amoxicillin

and co-trimoxazole,18 and/or multiple classes.21,22 More

sophisticated techniques used for analysis of counterfeit

and substances antibiotics included high performance

liquid chromatography,18,23–25 ultra-high performance

liquid chromatography,26 liquid chromatography mass spec-

trometry,27 and capillary electrophoresis.28

However, all the aforementioned techniques were

destructive to the samples analyzed and/or required

extensive method development. Portable near-infrared

spectroscopy (NIRS) offers an advantage over the previ-

ous mentioned techniques in being rapid, mobile, and non-

destructive. NIRS offers a further advantage over

alternative chemical techniques in being able to character-

ize the physical properties alongside the chemical charac-

teristics of the samples analyzed. Limited studies utilized

NIRS for authenticating antibiotics such as ciprofloxa-

cin,29,30 fluoroquinolones,31 and macrolides.32 However,

the three aforementioned studies focused on one class

of antibiotics and utilized one multivariate data analysis

algorithm at a time. Thus, there is still a need to look at

a collective method that can authenticate diverse classes

of antibiotics synchronously. This work aimed to evaluate

NIRS and multivariate classification algorithms for authen-

tication of antibiotics purchased worldwide.

Theory

Spectral Pre-Treatment

The multiplicative scatter correction-first derivative (MSC-

D1) spectral pre-treatment approach was applied in order

to correct for the offset and baseline in the spectra that

changes depending on several factors including the sample

age, thickness and optical properties, temperature, mois-

ture content, and performance of the instrument.33,34 MSC

corrected the offset of the scattered light by construction

of a new spectrum that is a linear combination of the ori-

ginal spectrum according to Eq. 1:35,36

yMSC,i ¼
ðyi � aÞ

b
ð1Þ

where yMSC,i is the corrected spectrum value, yi is the

original spectrum value, a is the intercept of the line, and

b is the slope of the line.

The first derivative corrected both for the offset and

baseline of the NIR spectra by using Savitzky–Golay

method where a second-order polynomial was fitted to

the data by least square using 13 data points.35

Correlation in Wavenumber Space

The correlation in wavenumber space (CWS) method

matched the correlation coefficient (r) value of the test

spectrum (A) and a reference spectrum (B). It was calcu-

lated as the momentum product (rp) between both spectra

according to Eq. 235,37

rp ¼

P
ðAi � �AÞðBi � �BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðAi � �AÞ2ðBi � �BÞ2

q ð2Þ

where rp is the correlation coefficient value, Ai is the test

spectrum of A, �A is the average spectrum of A, Bi is the

reference spectrum of B, and �B is the average spectrum of B.

An r value of –1 meant that the spectra were completely

dissimilar whereas an r value of þ1 meant that the spectra

were identical. In this work, an r value of 0.95 was taken as a

match among products because it was difficult to get þ1

among identical samples due to noise in the spectra.35,37

For the evaluation of CWS method, type I and type II

errors were explored.30 Type I errors (known as false posi-

tives) were encountered when an authentic antibiotic was

misidentified by the algorithm (i.e., gave r values< 0.95). On

the other hand, type II errors (known as false negatives)

were encountered when a counterfeit sample was identified

as authentic (i.e., gave r values> 0.95).

Principal Component Analysis

Principal component analysis (PCA) classified spectral data by

reducing its dimensionality into two subspaces being scores

and loadings. The scores showed the distribution of the anti-

biotics in multidimensional space and the loadings showed

significant absorbance values corresponding to the significant

constituents (influencers) within the models. PCA was applied

to the MSC-D1 NIR spectra of the products in order to

visualize patterns on classification among the products. As

with CWS method, PCA was evaluated for type I and type

II errors.30 In this case, type I error was encountered when an

authentic antibiotic was not clustered with authentic anti-

biotics. Moreover, a type II error was encountered when a

counterfeit antibiotic was clustered with the authentic ones.

Soft Independent Modelling of Class Analogy

Soft independent modelling of class analogy, or SIMCA, is a

chemometric approach, based on PCA, which models the

variation within the collection of reference spectra for a

given material, as well as the difference between spectra of

different materials.38 This allows SIMCA to be sensitive to

small spectral differences, even batch-to-batch or sampling

variations. New samples can then be classified to one (or

none) of the established class models, based on their similarity

to the respective model. This is achieved by investigating the

size of its residual, as well as its location on the scores map.
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Materials and Methods

Materials

A total of 23 antibiotic products containing six different

APIs were used in this study (Table I; Figs. S1 to S25,

Supplemental Material). The APIs of the antibiotics

included: amoxicillin trihydrate and clavulanic acid, azithro-

mycin dehydrate, ciprofloxacin hydrochloride, doxycycline

hydrochloride, and ofloxacin. The antibiotic products were

obtained from 11 different countries: Austria, France,

Germany, Ghana, India, Italy, Jordan, Lebanon, Spain,

United Arab Emirates (UAE), and the United Kingdom

(UK). The products were either tablets or capsules and

included both branded and generic medicines. Regarding

the excipients, 19 products had between 7 and 10 excipi-

ents each (Table II). The excipients of the remaining four

products were not reported. In total, 29 excipients were

present in at least one or more products (Figs. S26 to S32).

The recurrent excipients were: hypromellose, magnesium

stearate, maize starch, and titanium dioxide.

Near-Infrared Spectroscopic Analysis

Near-infrared spectra of antibiotic products and their indi-

vidual constituents were collected using the Spectrum

Two N Fourier transform (FT)-NIR (PerkinElmer) instru-

ment equipped with NIR reflectance module (NIRM).

Tablet formulations were measured as received from

both sides. The contents of each capsule formulation

were emptied into glass vials and were measured through

the vials. Likewise, excipients were powders and were

measured using glass vials. Two spectra were collected

per each tablet and three spectra per each vial over the

wavenumber range of 10 000–4000 cm–1 with spectral

resolution of 8 cm–1. Each spectrum was the sum of

32 scans.

Data Analysis

Spectra were exported into Matlab R2018b where data

pre-treatment was applied. Pre-treatment of NIR spectra

was made using MSC-D1. Multivariate data analysis was

conducted using CWS, PCA, and SIMCA methods. CWS

was applied to the MSC-D1 NIR spectra in Matlab R2018b

where the R values of products were compared and an R

value of 0.95 was considered a threshold. PCA was applied

in Matlab R2018b where clustering among antibiotics was

evaluated. SIMCA analysis was carried out using

PerkinElmer AssureID materials verification software to

create five PCA models of the antibiotic products. A

global PCA of all materials was also created to provide an

overview of the complete model and understand relation-

ships between material types. The threshold taken for

intermaterial distances was 1.5 where a distance below

1.5 was considered a similarity.

Results and Discussion

Diversity of the Sample Set Relating to the APIs and
Excipients

In order to evaluate the identification potential of the

method, 23 antibiotic products relating to 5 APIs were

chosen. The products were of both branded and generic

types, of tablet and/or capsule formulations and were

obtained from different sources across the wholesale

supply chain including community pharmacies, hospital phar-

macies, humanitarian aid supply, online pharmacies, street

market, and wholesalers (Table I). The APIs of the evaluated

products were amoxicillin trihydrate and clavulanic acid

(AMC), azithromycin dehydrate (AZ), ciprofloxacin hydro-

chloride (CIP), doxycycline hydrochloride (DOX), and

ofloxacin (OFL). The numbers of products per antibiotic

varied between 2 and 12 products for each API depending

on availability and were: 2 for each of DOX and OFL, 3 for

AMC, 4 for AZ, and 12 for CIP. In some cases, the afore-

mentioned products had overlapping excipients (Table II).

Excipients were always reported for branded but not gen-

eric products. Where reported, the minimum number of

excipients per product was six and the maximum was 10.

However, in most cases, the main excipients were consistent

among products of the same API. For instance, AMC prod-

ucts (AMC1, AMC2, and AMC3) were from three different

manufacturers in Lebanon, Spain and, the UK and had over-

lapping excipients being: Hypromellose, microcrystalline cel-

lulose (MCC), magnesium stearate (MgS), and titanium

dioxide. Likewise, OFL products (OFL1 and OFL2) were

from two different manufacturers and had six common

excipients being: croscarmellose sodium, hypromellose, lac-

tose, maize starch, MCC, and titanium dioxide. CIP branded

products (CIP1-CIP5) were all from the same manufacturer

and had the same list of excipients. Three generic CIP prod-

ucts (CIP7, CIP8, and CIP9) had common excipients as

branded CIP products being: crospovidone, colloidal anhyd-

rous silica, hypromellose, macrogol 4000, maize starch, MgS,

MCC, and titanium dioxide. On the other hand, AZ products

(AZ1, AZ2, AZ3, and AZ4) were manufactured by two

manufacturers and showed different excipients between

both manufacturers. Moreover, CIP11 and CIP12 had differ-

ent list of excipients to the other CIP products.

The excipients were not reported for CIP6, CIP10, DOX1,

and DOX2 that were manufactured by generic

manufacturers.

Spectral Evaluation

The spectra of the antibiotic products showed characteris-

tics for their main excipients that were keys in identifying the

products using NIRS (Figs. S33 to S37). Hence, NIRS offered

the advantage of giving more information on the samples’

constituents including the API and excipients. Thus, it could

serve as a fingerprinting in spectral identification.39 This was
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confirmed when the branded medicine of each antibiotic was

compared against its main excipient (Fig. 1). However, the

matching degree depended on the amount of API or excipi-

ents in the product. OFL1 showed spectral similarity for

MCC and maize starch with correlation coefficient (r)

values of 0.73 and 0.69, respectively, that confirmed that

these excipients were present in adequate amounts.

Likewise, DOX1 showed spectral similarity for MCC and

Table I. Details of the antibiotics used in this study.

AN API Dose (mg) B/G

Manufacturing

place Source

Formulation

Type

AMC1 Amoxicillin

trihydrate/clavulanic acid

500/

125

B UK Lebanon/

Community pharmacy

Tablet

AMC2 amoxicillin

trihydrate/clavulanic acid

500/

125

G Lebanon Lebanon/

Humanitarian aid

Tablet

AMC3 Amoxicillin

trihydrate/clavulanic acid

500/

125

G Spain Lebanon/Humanitarian aid Tablet

AZ1 Azithromycin

dihydrate

250 G UK UK/wholesaler Tablet

AZ2 Azithromycin

dihydrate

250 B Italy Italy/wholesaler Tablet

AZ3 Azithromycin

dihydrate

250 B Italy Italy/wholesaler Capsule

AZ4 Azithromycin

dihydrate

250 B Italy Italy/wholesaler Capsule

CIP1 Ciprofloxacin

hydrochloride

500 B Germany UK/wholesaler Tablet

CIP2 Ciprofloxacin

hydrochloride

500 B Germany UK/wholesaler Tablet

CIP3 Ciprofloxacin

hydrochloride

750 B Germany UK/online pharmacy Tablet

CIP4 Ciprofloxacin

hydrochloride

500 B Germany UK/online pharmacy Tablet

CIP5 Ciprofloxacin

hydrochloride

250 B Germany UK/online pharmacy Tablet

CIP6 Ciprofloxacin

hydrochloride

500 G Ghana Ghana/street market Tablet

CIP7 Ciprofloxacin

hydrochloride

500 G UAE Saudi

Arabia/hospital pharmacy

Tablet

CIP8 Ciprofloxacin

hydrochloride

500 G India UK/wholesaler Tablet

CIP9 Ciprofloxacin

hydrochloride

500 G UK UK/community pharmacy Tablet

CIP10 Ciprofloxacin

hydrochloride

250 G India Lebanon/Humanitarian aid Tablet

CIP11 Ciprofloxacin

hydrochloride

500 G UK UK/community pharmacy Tablet

CIP12 Ciprofloxacin

hydrochloride

500 G UK UK/community pharmacy Tablet

DOX1 Doxycycline

hydrochloride

100 G Jordan Lebanon/Humanitarian aid Capsule

DOX2 Doxycycline

hydrochloride

100 G Austria Lebanon/community pharmacy Capsule

OFL1 Ofloxacin 200 G UK UK/wholesaler Tablet

OFL2 Ofloxacin 200 B France UK/wholesaler Tablet

AM: amoxicillin; AN: antibiotic number; API: active pharmaceutical ingredient; AZ: azithromycin; B: branded; G: generic; CIP: ciprofloxacin; DOX:

doxycycline; OFL: ofloxacin; UAE: United Arab Emirates
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maize starch with r values of 0.71 and 0.75, respectively.

However, excipients that were present in low amounts

within a tablet did not show peaks in the NIR spectra of

the tablets. For instance, talc was present in OFL1 but no

characteristic peak for it was seen within its spectra.

Authentication of Branded Antibiotic Products

Principal component analysis was successful in showing the

chemical variation between different antibiotics. The PCA

model showed good classification following MSC-D1 treat-

ment of the NIR spectra of the products. The first three

PCs contributed to 89.2% of the variance with 76.4% of the

variance explained by PC1 and PC2. Figure 2 shows the 2D

and 3D scores plots of AMC1, AZ1, CIP1, DOX1, and

OFL1. A distinct cluster was observed for each antibiotic

product and that showed the effectiveness of PCA in differ-

entiating between the five authentic products (Fig. 2). The

highest variance on PC1 was observed for the CIP1 cluster.

This was followed by the clusters corresponding to AMC1,

DOX1, and OFL1 that were neighboring each other. AMC1

and OFL1 contained around 50% of API and 50% of excipi-

ents. Two excipients were common among both products

and were MgS and hypromellose. This also could indicate

that DOX had similar excipients to AMC and OFL. To

interpret the influences of individual constituents on anti-

biotic products, PC loading plots were visualized. Figure 3

shows the PC1 loading plot of the different antibiotic PCA

model that corresponded to 51.2% of the variance. The

aforementioned PC1 loading showed contribution over

the wavenumber ranges of 9172–8124 cm–1, 7572–

6502 cm–1, 6260–5632 cm–1, 5340–4880 cm–1, and 4752–

4016 cm–1. The aforementioned five regions showed spec-

tral features corresponding to MgS, ciprofloxacin and MCC,

ciprofloxacin and lactose, amoxicillin, and ciprofloxacin

(Figs. S33 to S37). This suggested that the five antibiotic

products could be principally separated on the basis of dif-

ferences in their APIs and excipients.

Taking the aforementioned model forward, the next step

was to classify the branded and generic medicines for each

antibiotic and look into tracking their manufacturing

sources (Figs. 4 and 5). The discriminative capability of

PCA depended on sample size and sample type.37 For

both AMC and AZ products, two distinct clusters were

seen between the branded and generic products (Figs. 4a

and 4b). AMC1, AMC2, and AMC3 showed three distinct

clusters that confirmed their three distinct manufacturing

sources being the UK, Lebanon, and Spain. The PC1 loading

(95.2% of the variance) showed characteristic features for

amoxicillin, MCC, and talc. Amoxicillin spectral features

were seen in the regions of 8910–8378 cm–1, 6178–

5636 cm–1, and 5334–5082 cm–1. Talc spectral features

were featured at 7318–6992 cm–1, whereas MCC spectral

features were seen at 4550–4000 cm–1. Moreover, the PCA

Figure 1. MSC-D1 NIR spectra of (a) amoxicillin/clavulanic acid, (b) azithromycin, (c) ciprofloxacin, (d) doxycycline, (e) ofloxacin

branded antibiotic products and their main excipients including (f) lactose, (g) maize starch, (h) MCC, and (i) talc measured using the

PerkinElmer Spectrum Two N FT-NIR instrument equipped with NIRM.
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scores plot of AZ showed three distinct clusters that cor-

responded to both their manufacturing sources and formu-

lation type. In this respect, AZ3 and AZ4 products were

clustered together where both products were capsules and

manufactured by the same manufacturer. Two distinct clus-

ters were seen for AZ1 and AZ2 which were both of tablet

formulation but manufactured by two different manufac-

turers. It is noteworthy to mention here that AZ2 had

the same manufacturer as AZ3 and AZ4 but was of tablet

instead of capsule formulation. This confirmed the ability of

NIR to distinguish physical differences between samples of

the same chemical makeup.40 The PC1 loading plot of AZ

products (75.2% of the variance) showed characteristic

peak between 7270–7138 cm–1, which corresponding to

talc that was an excipient in AZ1 (of tablet formulation).

Additional spectral features in the PC1 loading plot were

seen in the regions of 8804–8350 cm–1, 7074–6800 cm–1,

6584–6290 cm–1, 6064–5646 cm–1, 5334–5004 cm–1,

4984–4668 cm–1, and 4550–4668 cm–1. The aforemen-

tioned seven regions corresponded to lactose. DOX prod-

ucts scores plot showed type I error in the cluster of one

product (Fig. 4c). Hence, DOX1 and DOX2 products were

separated in three clusters (instead of two) where DOX1

was separated in two distinct clusters. The PC1 loading of

DOX products (90.7% of the variance) showed character-

istic features for talc in the region of 7242–7088 cm–1.

Other features for this PC1 loading were seen in the

region of 6156–5670 cm–1, 5348–4750 cm–1, and 4650–

4000 cm–1. The aforementioned three regions corres-

ponded to lactose and MCC. Nonetheless, OFL1 and

OFL2 products were clustered into two distinct clusters

that corresponded to their manufacturing sources being

the UK and France, respectively (Fig. 4d). However, type I

error was encountered in this latter PCA score plot where

both products had outlier(s) within their score plot. The

PC1 loading (82.9% of the variance) of OFL products

showed characteristic spectral features for talc in the

region of 7246–7136 cm–1. Additional peaks were seen in

the regions of 6170–5598 cm–1, 5312–5124 cm–1, and

4752–4000 cm–1. The aforementioned three regions cor-

responded to lactose.

In addition to identifying manufacturing source and discri-

minating branded from generic medicines, the potential for

NIR and PCA for spotting a potential counterfeit product

Figure 2. (a) Two-dimensional and (b) three-dimensional PCA scores plots of the MSC-D1 NIR spectra of branded antibiotic products

of amoxicillin/clavulanic acid (blue), azithromycin (red), ciprofloxacin (green), doxycycline (cyan), and ofloxacin (black) measured using

the PerkinElmer Spectrum Two N FT-NIR instrument equipped with NIRM.

Figure 3. PC1 loading plot of the different brands that con-

tributed to 51.2% of the variance among the data.
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was demonstrated through the PCA scores plot of CIP prod-

ucts (Fig. 5). In this sense, the PCA score of a CIP branded

product (CIP5) overlapped with one of the generic products.

In order to address this overlap, the PC1 loading (67.8% of the

variance) of the CIP products had been examined and had

shown a major influence of 7260–7150cm–1 that is character-

istic for talc.41 It is noteworthy to mention in this case that talc

was not listed in the label claim of any of the branded products.

Talc had been found in counterfeit antibiotics as it is cheap and

increases the bulk of the medicine.20,42 Therefore, CIP5 did

not match the manufacturers’specification relating to the iden-

tity and could be counterfeit30

Development of SIMCA Classification Models

To further address the type I error encountered with PCA,

PCA was taken forward and SIMCA models were con-

structed. The first SIMCA model showed agreement with

PCA Model 1. Hence, distinct classification of the five

branded products was observed with no overlapping mater-

ials. SIMCA provided a further advantage over PCA in

detecting type I and type II errors in the classification of

different products.43 In this respect, the distances between

the five products were calculated and were found above

zero and this showed no type I or type II errors (Table

III). Hence, Table III shows all distances above the threshold

that was 1.5. Successively, individual SIMCA models were

applied to each antibiotic (Fig. 6). For AMC products, the

global PCA showed three distinct PCs for AMC1, AMC2,

and AMC3 that confirmed their different manufacturing

sources. The four AZ products showed three distinct clus-

ters: one corresponding to AZ1, second to AZ2, and the

third to AZ3 and AZ4. AZ3 and AZ4 were of the same

formulation (both capsules) and had the same manufacturer

but purchased in different countries; therefore, SIMCA was

further successful in detecting differences in manufacturing

sources and formulation. On the other hand, misclassifica-

tion was observed among CIP branded and generic products

where no clear clustering was observed between both

groups of products. Two products were misclassified and

seen as two distinct clusters (CIP 6 and CIP 10) and that

denoted type I error. Moreover, the aforementioned model

Figure 4. PCA scores plots of the MSC-D1 spectra of antibiotics products including (a) amoxicillin/clavulanic acid, (b) azithromycin,

(c) doxycycline, and (d) ofloxacin measured using the PerkinElmer Spectrum Two N FT-NIR instrument equipped with NIRM. The first

three PCA scores plots were two-dimensional, whereas the latter score plot was three-dimensional.

Figure 5. PCA scores plot of the MSC-D1 NIR spectra of

branded (blue) and generic (red) ciprofloxacin batches measured

using the PerkinElmer Spectrum Two N FT-NIR instrument

equipped with NIRM.
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could not distinguish the counterfeit CIP batch (CIP 5)

that indicated type II error. Likewise, type I error was

observed for DOX global PCA where DOX1 was scattered

in two distinct clusters. On the other hand, OFL1 and

OFL2 products were separated between two individual clus-

ters that corresponded to their different manufacturing

sources.

Conclusion

The findings of the study demonstrated the effectiveness of

portable NIRS and chemometrics as a tool in authenticating

antibiotics. The combination of NIRS with PCA and SIMCA

proved to be efficient in discriminating branded from gen-

eric medicines and in tracking the manufacturing sources of

medicines. Moreover, the algorithms could give initial indi-

cation for the presence of a potential counterfeit. However,

some limitations were encountered in this study. The first

limitation related to sample size and sourcing of the sam-

ples that had been a challenge especially that the medicines

had been sought from different countries. The second

limitation related to the precision of classifying authentic

products particularly with large datasets with overlapping

excipients such as CIP. Other limitations were associated

with the sensitivity of NIRS for characterizing constituents

where constituents with low amounts in a medicine will not

show spectral features. In summary, portable NIRS could

serve as an initial screening method for authentication of

antibiotics saving time and money associated with importing

the samples to the laboratory. However, for identity con-

firmation of the API in antibiotics, more quantitative tech-

niques are needed.
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