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Abstract

Background: Alternative splicing (AS) offers a main mechanism to form protein polymorphism. A growing body of
evidence indicates the correlation between splicing disorders and carcinoma. Nevertheless, an overall analysis of AS
signatures in stomach adenocarcinoma (STAD) is absent and urgently needed.

Results: 2042 splicing events were confirmed as prognostic molecular events. Furthermore, the final prognostic
signature constructed by 10 AS events gave good result with an area under the curve (AUC) of receiver operating
characteristic (ROC) curve up to 0.902 for 5 years, showing high potency in predicting patient outcome. We built
the splicing regulatory network to show the internal regulation mechanism of splicing events in STAD. QKI may
play a significant part in the prognosis induced by splicing events.

Conclusions: In our study, a high-efficiency prognostic prediction model was built for STAD patients, and the
results showed that AS events could become potential prognostic biomarkers for STAD. Meanwhile, QKI may
become an important target for drug design in the future.
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Background

Gastric cancer (GC) is the fourth major cancer threat to
human health in the world whose etiology remains
unclear, with 989,000 new cases and 738,000 deaths
every year [1]. Most (about 90%) of gastric cancers are
adenocarcinomas, which originate from the epithelial
cells in the most superficial layer of the gastric wall and
are caused by malignant changes in gastric gland cells.
Although significant progress has been made in the
study of epidemiology, pathological mechanisms and
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treatment options, the medical burden still exceeds
expectations [2]. It is not optimistic that complete surgi-
cal resection is still the only solution for doctors to treat
gastric cancer [3, 4]. The widespread implementation
and application of adjuvant and neoadjuvant therapy
have increased the 5-year overall survival rate by 10-15%,
but it is worth thinking that there is no global consensus
on the best treatment scheme [2]. Therefore, it is urgent
to explore new and accurate biomarkers to evaluate the
diagnosis and prognosis of STAD patients.

Eukaryotic cells produce various regulatory changes and
perform complex functions to adapt to changes in the
environment, largely due to the diversity of proteins. A
common mechanism is that a limited number of gene sets
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produce a large number of mRNA isoforms through
alternative splicing of pre-mRNA [5]. Alternative splicing
actually regulates gene expression at the intron/exon
level [6—8]. In addition, alternative splicing causes the
premature occurrence of termination codon in mRNA,
which degrades immediately upon discovery to prevent
its translation [9]. Therefore, alternative splicing is a
key biological process in cells, and different mRNA
splicing isoforms make the final protein products
perform different functions.

More and more studies have found that splicing
disorder can be used as a marker of tumor development
[10] and as a key mechanism involved in the broad
biological process of cancer [11, 12]. It is noteworthy that
some important splicing factors can change the alternative
splicing mode of target genes, thus forming a favorable en-
vironment for promoting the occurrence and develop-
ment of cancer [13]. In general, comprehensive and in-
depth analysis of alternative splicing can dig out potential
biomarkers of malignant tumors, so as to assist physicians
in clinical diagnosis and prognosis judgment [12, 14].

We used a variety of bioinformatics analysis methods
to explore prognostic factors in STAD. COX regression
analysis helped us screen out significant prognostic
markers for further study. According to the regulatory
relationship between AS events and splicing factors in
STAD, a clear network diagram was drawn to find out
the potential mechanism. These results provide a basic
direction for further exploration of the molecular
mechanism and diagnostic markers of STAD.

Results

Survival associated AS events

As a whole, there are 4006 AA events in 2799 genes, 3450
AD events in 2401 genes, 10,004 AP events in 4025 genes,
8390 AT events in 3666 genes, 19,121 ES events in 6973
genes, 226 ME events in 219 genes, and 2944 RI events in
1956 genes for evaluation of prognostic value (Fig. la).
The initial clinical data downloaded from the TCGA
website is in the supplementary files (Additional file 1). A
total of 157 AA events in 153 genes, 174 AD events in 164
genes, 461 AP events in 304 genes, 297 AT events in 203
genes, 805 ES events in 660 genes, 18 ME events in 18
genes, and 130 RI events in 113 genes were identified as
prognostic AS events (P < 0.05) (Fig. 1b, Additional file 2).
Thus, one gene might have two or more AS events that
were markedly related to the survival of STAD patients.
The ES which was vividly revealed by the UpSet plot was
the most common prognosis-related event, and a gene
could have up to seven prognosis-related events (Fig. 1c).

Molecular characteristics of survival related AS events
The distributions of AS events significantly correlated
with patient survival are displayed in Fig. 2a. The 20
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most significant prognosis-related AS events are also
shown (Fig. 2b-h). To reveal the molecular characteris-
tics of genes with survival-associated AS events, several
bioinformatics analyses were conducted. First, a PPI net-
work was constructed to demonstrate the relationships
among these genes. UBA52, STAT3 and PLK4 ranked at
the core in the network (Fig. 3). According to the func-
tional annotations, “organelle organization”, “positive
regulation of cellular process” and “protein localization”
were the three most significant biological process terms.
“intracellular organelle”, “membrane-bounded organelle”
and “intracellular membrane-bounded organelle” were
the three most significant cellular component terms. For
molecular function, “enzyme binding” and “GTPase
binding” were two most enriched categories (Fig. 4).

Prognostic signatures for STAD patients

By applying the LASSO Cox analysis following univariate
Cox, which aims to filter out redundant genes and prevent
overfitting of the model, we developed seven types of
optimal prognostic signatures based on AA, AD, AP, AT,
ES, ME and RI (Fig. 5, Table 1). According to Fig. 6, the
eight models we constructed were able to separate the high
and low risk groups well, because the differences between
the high and low risk groups were very significant (although
there were some overlaps of confidence intervals in the
several subfigures, the overlaps were less, and the p values
were very small, and the differences were significant).
Therefore, the eight models could be used to predict the
clinical results of STAD patients in clinical practice (Fig. 6).
Eight ROC curves validated the performance of prognostic
signatures in prognosis prediction, and their AUC values
were all greater than 0.7, indicating that these eight models
had certain accuracy (Fig. 7). Figure 8 shows the patient’s
survival status and risk score, as well as the splicing pattern
of AS signatures for each AS type or a combination of
seven AS types. The upper risk score curve classified
patients with low and high risk. The middle survival status
figure indicated that the risk value was related to survival;
although the decline of survival time was not obvious, the
survival status was different. The bottom heat map shows
the PSI value change of AS events with the increase of the
risk value, in which if the PSI value of an AS event increases
with the risk value, it indicated that the AS event was a
high-risk AS event (Fig. 8). In univariate Cox analysis, the
eight riskScores we constructed were all correlated with
prognosis and high-risk factors (Fig. 9). According to multi-
variate independent prognostic analysis, riskScores obtained
by the eight models could be used as independent prognos-
tic factors, and all of them were high-risk factors (Fig. 10).

Survival-associated SF-AS network
Because events are primarily orchestrated by SFs that
often bind with pre-mRNAs and regulate RNA splicing
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Fig. 1 Prognosis-related alternative splicing (AS) events. a The number of AS events and corresponding genes included in the present study; b The
number of prognosis-related AS events and corresponding genes obtained by using univariate COX analysis; ¢ UpSet plot of interactions between the
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via influencing exon selection and splicing site. Therefore,
exploration of the SF-AS regulatory network is imperative
in STAD. Next, correlation analyses between the SFs’
expression and the most significant AS events’ PSI value
(P<0.001) were conducted (Fig. 11a). We observed that
QKI was most significantly connected in the network, so
we compared the influence of QKI expression on STAD’s
survival rate. The consequence showed that low QKI
expression significantly improved the survival rate of
patients with STAD, and the five-year survival rate of the
patients with low QKI expression was almost twice that of
the patients with high QKI expression (Fig. 11b, Fig. 11c).

Discussion

Currently, scientific research on the role of AS events
in STAD still has many unanswered questions owing
to the shortage of available large-sample public AS
profiles and the paucity of systematic analysis refer-
ring to their clinical significance and deep molecular
function. These bottlenecks have prevented cancer re-
searchers from effectively recognizing the widespread
applicability of AS events in STAD. Exploration of AS
patterns broadens our vision and our understanding
of traditional transcriptome molecular biomarkers. In
this  project, we adopted several biomedical
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Fig. 2 Top 20 most significant alternative splicing (AS) events in STAD. a Volcano plot of AS events. Each dot represents an AS event that occurs
in a gene. The red dots represent AS events that are significantly correlated with patient survival. The blue dots represent AS events without
correlation. Both z-score and p-value are statistical values generated by the previous univariate COX analysis, and they have a corresponding
relationship (that is, the p-value can be obtained by searching the table according to z-score). Z-score represents Wald statistic, z-score > 0
corresponds to high risk AS events, z-score < 0 corresponds to low risk AS events. So all dots form a parabola finally. The top 20 AS events
correlated with clinical outcome based on acceptor sites (b), alternate donor sites (c), alternate promoters (d), alternate terminators (e), exon skips
(f), mutually exclusive exons (g), and retained introns (h)

computational approaches, which integrate the AS
event profiles and clinical information of STAD pa-
tients to mine prognosis-related AS and construct
splicing prognostic signatures that could stratify
STAD patients into subgroups with distinct survival
outcomes. Moreover, the SF-AS network could pro-
vide further insights into regulatory mechanisms in
patients with STAD from the perspective of splicing.

Gastric cancer is a highly heterogeneous malignant
tumor. Therefore, a single drug is not significantly useful
for various types of gastric cancer. Classical cytotoxic
therapy cannot be fully effective because of the presence
of patients resistant to specific drugs. At present, the
diagnosis and treatment of gastric cancer rely on histo-
pathological diagnosis and definite classification. There-
fore, in addition to targeted treatment with trastuzumab,
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we need to develop new targeted drugs to provide better
treatment for patients. Potential biomarkers can be mined
and used to predict patient outcomes, and treatment
strategies can be developed for specific tumor parameters.

The next-generation sequencing technology devel-
oped in recent years adopts the whole- genome
sequencing method, which has great advantages in ex-
ploring alternative splicing. Previously, several studies
conducted SpliceSeq analyses to generate alterative
splicing profiles for some types of cancer, as well as to
construct prognostic signatures for cancer prognosis
monitoring, including non-small cell lung cancer [15],
colorectal cancer [16], and esophageal cancer [17].
This computational bioinformatics analysis could open
up different perspectives on the clinical application
and potential pathological mechanism of AS on a
macro level. Previously, several studies have proposed
transcriptomic signatures related to epithelial-to-
mesenchymal transition and diagnosis of gastric cancer
[18, 19]. The present in-depth study further explored
alterations of transcriptomes used as prognostic pre-
dictors and could broaden our horizons in the clinical
significance of transcriptomic signatures.

Given the multitude of AS events impacted by their
own pre-mRNAs, the downstream functional impact is
partly used to describe the molecular function of AS
alteration events. In the PPI network analysis, UBA52,
STAT3 and PLK4 were the hub genes. Previous studies
have shown that UBA52 and STAT3 are all considered
to be related molecules involved in the biological process
of STAD. For example, bioinformatics analysis has veri-
fied the correlation between UBA52 and GC progress
and metastasis [20]. STAT3 is a crucial transcription
factor that regulates the transcription of many genes. It
plays an extremely important role in promoting the oc-
currence and development of gastric cancer, and chronic
STATS3 activation is a key event to induce the occur-
rence and development of gastric cancer [21]. STAT3
can directly up-regulate the epithelial expression of
TLR2 in gastric tumors, which is related to the low
survival rate of GC patients [22]. STAT3 signaling drives
transcription activation of EZH2 and mediates poor
prognosis in gastric cancer [23]. STAT3 promotes the
increased expression of IncRNA HAGLROS, which leads
to further progress of gastric cancer [24]. PLK4 is a
serine/threonine protein kinase that regulates centriole
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duplication. Its maladjustment can lead to abnormal
centrosomal numbers, mitotic defects, chromosomal
instability, and ultimately tumorigenesis [25]. The
relevant study has also shown that PLK4 overexpression
in gastric cancer induces centrosome amplification and
chromosomal instability, and leads to inhibition of
primary cilia formation [26]. These findings also pave
the way for future clinical applications, and related target
inhibitors are being widely studied and clinically tested
as new anticancer drugs. Functional enrichment analysis
showed that in STAD, the main molecular function of
AS event gene related to prognosis is to bind to GTPase,
so it may provide selective advantages for cancer cells by
regulating GTPase. Increased RhoA activity leads to
poorer survival outcomes for the Lauren diffuse type of
gastric adenocarcinoma (DGA), and inhibition of RhoA
can correct the drug resistance of DGA [27]. RacGAP1
is closely associated with malignant progression and
poor survival [28]. Leptin promotes GC migration
through the Rho/ROCK mechanism [29]. RASSF6
partially regulates the effect of mir-181a-5p on GC
progression through the MAKP pathway [30]. It is worth
considering that, in gastric cancer cells, RhoA promotes
cell proliferation and RhoC stimulates cell migration and
invasion, while RhoB functions contrary to RhoA and/or

RhoC [31]. Therefore, targeted GTPase therapy is also
being explored. For example, ALEX1 functions in gastric
cancer through the PAR-1/Rho GTPase signaling path-
way, becoming a new target for tumor inhibition [32].
RhoA-mediated Fbxw7 regulates the apoptosis of tumor
cells and other phenotypes in gastric cancer [33]. Simi-
larly, Gastrokine 1’s inhibition of gastric cancer progres-
sion may also be dependent on RhoA [34]. Our findings
suggest that a group of AS events play a biological role
in the alteration of GTPase in STAD.

The highlight of the current study was that we pro-
posed prognostic signatures based on AS events for
monitoring the prognosis of STAD patients. Recently,
some prognostic signatures in STAD have been pro-
posed. Zhang H et al. found that the efficacy of postop-
erative adjuvant chemotherapy for gastric cancer was
affected by the degree of neutrophil infiltration of the
tumor [35]. Jiang Y et al. developed an immune score
GC classifier that can effectively predict the recurrence
and survival of patients with gastric cancer, which plays
a good role in complementation of the prognosis judg-
ment for the TNM staging system [36]. The clinical
management of STAD patients still needs to be im-
proved, and the above mentioned molecular biomarkers
have broad prospects. In order to facilitate clinical
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practice, we selected a group of AS events using the
LASSO Cox regression model, and the prognostic model
proposed on which showed satisfactory results. However,
our prognostic model has limitations because our work
completely based on the bioinformatic analysis and
lacked an independent validation cohort. In addition, in
order to provide more explanation details, our study also

needed a wet lab validation. Due to the limited public
alternative splicing data currently, the sample size used
to construct a prognostic model is small. If these
samples are forcibly divided into a training group and a
validation group, the sample size used to construct the
prognostic model will be less, leading to poor accuracy
of the prognostic model. Besides, on account of the
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Type

Formula

Hazard ratio
(95%Cl)

AUC

AA

AD

AP

AT

ES

ME

RI

All

ST5-14270-AA*(— 5.351641) + PLK4-70545-AA*(— 50.075071) + BDKRB2-29192-AA*(— 2.251191)
+ NAT6-64990-AA*2.558247 + APOBEC3B-62,269-AA*(— 58.382634) + ECT2-67658-AA*(— 9.1490
68) + MORF4L2-89,778-AA*(— 2.400196) + STAT3-41041-AA*3.052117 + PARPBP-24045-AA*(- 3.
451740) + CBX7-62286-AA*5.771950 + TRAPPC2L-38,043-AA*5.892537 + C190rf60-48 492-AA*
(—2.837545) + DHPS-47831-AA*(— 3.486833) + TROAP-21565-AA*2.928574 + ZNF410-28332-AA
*13.901426 + HNRNPR-1047-AA*2.702840

UBA52-48486-AD*(— 3.817624) + PHRF1-13700-AD*(— 2.535869) + TCIRG1-17286-AD*(— 15.912
327) + CCDC51-64653-AD*(— 1.376775) + HMBS-19096-AD*(— 1.858043) 4+ SNX27-7647-AD*(— 1

0.039140) + RAP1B-22,959-AD*(— 5.215765) + SERPINA3-29154-AD*(— 4.624829) + RPS6KA4-16,6
51-AD*14.672505 + MBD4-66720-AD*(— 3.903928) + NKG7-51322-AD*(— 13.306358) + RALGPS1

—-87614-AD*(— 4.395804) + TMEM106C-21,404-AD*(— 5.264665) + FAH-32181-AD*(— 0.998076) +

SMIM19-83739-AD*(— 1.958156) + HYI-2185-AD*5.019022

KIAA1147-82046-AP*(— 26.932098) + CDKN3-27569-AP*(— 16.593603) + WEE1-14328-AP*(— 4.5
89803) + RCAN1-60494-AP*0.979582 + MID1-88465-AP*3.529023 + TUBATA-21,538-AP*7.03130
9+ PDZK1IP1-2893-AP*(— 77.071138)

PPHLN1-21214-AT*4.712066 + ABCB5-78909-AT*1.406777 + TLN2-30978-AT*(— 3.649182) + TET
2-70188-AT*2.736038 + MFSD2B-52,798-AT*(— 4.976167) + BRSK1-52060-AT*(— 3.402968) + ZC3
H12D-78,076-AT*1.091190 + IL7R-71,774-AT*(— 4.704211) + ZNF846-47399-AT*1.093000 + ZFYV
E28-68559-AT*(— 1.498791)

CD44-14986-ES*(— 5.431100) + RASSF4-11351-ES*(— 15.542342) + PPP2R5D-76,200-ES*(— 9.1425
04) + LOH12CR1-20,507-ES*(— 14.620773) + CBWD3-86515-E5*2.727266 + GNPDA2-69151-ES*
(—13.336665) + EIF3K-49,681-ES*(— 5.515884) + CLEC4A-20,178-ES*(— 4.701354) + FANCA-38149-
ES*(—378.778875) + ZNF106-30164-ES*(— 34.393642) + NME6-64602-ES*(— 23.597673) + PAOX-
13555-ES%(— 2.845972) + DYNC2H1-18,489-ES*(— 7.577542) + CYP2B6-50,020-ES*(— 1.561095) +
TMX2-15906-ES*(— 4.527987) + D2HGDH-58 425-ES*(— 16.861342) + DUSP22-75134-ES*(— 16.67
9166)

ANK3-11852-ME*0.617693 + AMT-64866-ME*9.363879 + C4orf21-70,379-ME*8.722888 + MCFD
2-102349-ME*(— 2.786243) + CS-22420-ME*1.961533 + MTHFSD-102413-ME*3.738460 + KDM6A-
98,323-ME*(— 1.285022) + ATE1-91855-ME*(— 2.737012) + USP10-37863-ME*1.511545 + RAB6A-
17,707-ME*2.671001 + GRB10-79717-ME*1.261053 + [TGB1-126615-ME*1.273771

SRSF7-53276-RI*(— 1.721712) + RPS15-46490-RI*(— 2.387697) + DTD2-27118-RI*(— 6.362278) +
DUSP18-61796-RI*(— 5.322993) + ADRA2C-68,651-RI*(— 5.026148) + LGALS3BP-43,940-RI*(— 2.54
9496) + BICD2-86883-RI*(— 1.137099) + ALS2CL-64,462-RI*1.664472 + THAP7-61211-RI*(— 1.8728
50) + KAT5-169

14-RI*(— 1.868716)

CD44-14986-ES*(— 6.883160) + PPHLN1-21214-AT*5.396354 + RASSF4-11351-ES*(— 14.293402)

+ KIAAT147-82046-AP*(— 22.278949) + PPP2R5D-76,200-ES*(— 6.035515) + LOH12CR1-20,507-ES
*(=10.075293) + CDKN3-27569-AP*(— 18.653016) + UBA52-48486-AD*(— 3.222755) + CADPS-65
499-AT*(— 1.957771) + SRSF7-53276-RI*(— 2.217781) + WEE1-14328-AP*(— 5.279043)

1.034 (1.021-1.047)

1.175 (1.136-1.215)

1.072 (1.047-1.099)

1.183 (1.130-1.239)

1.037 (1.028-1.046)

1.636 (1.436-1.863)

1.138 (1.097-1.180)

1.043 (1.030-1.057)

0.843

0.841

0.71

0.77

0816

0.781

0.902

0.882

Corona virus disease 2019 pandemic, our Wuhan labora-
tory has been closed for a long time, and there is no
objective condition to collect clinical samples for genetic
testing.

We believe that the TCGA data we used were appro-
priately standardized. However, the Lasso model adopts
the square loss function and applies the same tuning
parameter to all variables. Once outliers exist in the data,
the estimator obtained is biased, resulting in poor
robustness. Therefore, it may be a potential problem
that leads to the imperfect accuracy of the prognostic
model. Robust analysis methods using outliers to process
data for high-dimensional genetic data analysis have
been developed and are rapidly gaining popularity.
Among them, LAD (least absolute deviation) —LASSO is
a method to combine the regression shrinkage and

selection of LASSO and robustness of LAD for outliers
and heavy-tailed errors [37, 38]. In theory, the test
results may be more meaningful through robust variable
selection.

A large number of AS events are programmed by finite
SFs in cells [39]. The altered profile of AS events in mul-
tiple tumor types emphasizes the important mechanism
of splicing factors in cancer, which is disordered splicing
[40]. It is increasingly believed that changes of SFs in
STAD can be involved in tumorigenesis and progression
through various mechanisms [41-43]. The splicing
correlation network analysis has also found out the
larger regulated nodes, indicating that they occupy a
significant position in the SF-AS network. QKI, which is
recognized as a tumor suppressor in a wide range of
cancers, is highly connected in the network, which can
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play a significant part in the prognosis induced by spli-
cing events [44—46]. Multiple-factor analysis of a related
study shows that QKI expression is an independent
prognostic factor for the survival of GC patients [47].
But the role of QKI in STAD has not been fully
discussed yet. Our study indicates that the level of QKI
expression is significantly correlated with the survival
rate of patients with STAD, and it can become an

important target for drug design in the future. Neverthe-
less, our algorithm suggested deregulated AS events as a
hallmark of STAD. However, there are some limitations
inevitably affecting the reliability of the study. Firstly, we
didn’t use a separate cohort for more validation.
Secondly, more functional experiments are needed to
further investigate the impact of dysregulated AS events
and SFs on carcinogenesis.

A B
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Fig. 8 Determination and analysis of the prognostic AS signatures in the STAD cohort. STAD patients were divided into high- and low-risk
subgroups based on the median cut of the risk score calculated separately. The upper part of each assembly represents the risk score curve (low
risk patients are represented by green dots, high risk patients by red dots, and dash lines correspond to the median of all samples riskScore). The
middle section represents the distribution of survival status and survival time of patients ranked by risk score (more green dots on the left for
low-risk patients, and more red dots on the right for high-risk patients. From left to right, with the increase of the risk value, more and more
patients died, indicating that the risk value is related to survival). The bottom heatmap displays the splicing pattern of the AS signature from each
AS type or all seven AS types (the color transition from green to red indicates that the PSI value of the corresponding AS event increases from
low to high). a Alternate Acceptor site (AA); b Alternate Donor site (AD); ¢ Alternate Promoter (AP); d Alternate Terminator (AT); e Exon Skip (ES); f
Mutually Exclusive Exons (ME); g Retained Intron (RI); and h All types of AS
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Fig. 10 Multivariate Cox regression analysis of clinical parameters and riskScore in STAD. For the results of univariate and multivariate independent
prognostic analysis, if the riskScore P-value of both is less than 0.05, it indicates that riskScore is independent of other clinical parameters and can be
used as an independent prognostic factor in clinical practice. a Alternate Acceptor site (AA); b Alternate Donor site (AD); ¢ Alternate Promoter (AP); d
Alternate Terminator (AT); e Exon Skip (ES); f Mutually Exclusive Exons (ME); g Retained Intron (RI); and h All types of AS
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Conclusions

In conclusion, the current study has found out a phenom-
enological relationship between AS events and prognosis
in STAD patients, which is the base of unscrambling the
functional contribution of AS events in STAD. These find-
ings are conducive to develop new genomic models for
clinical cancer management. In addition, the further
identification of predictive splicing factors for prognosis
and the construction of SF-AS networks will pave the way
for further exploration of splicing related mechanisms.

Methods
Data acquisition
TCGA SpliceSeq [48] is a data portal that provides AS
profiles across 33 tumors based on TCGA RNA-seq
data. SpliceSeq evaluates seven types of splice events,
including alternate acceptor (AA), alternate donor (AD),
alternate promoter (AP), alternate terminator (AT), exon
skip (ES), mutually exclusive exon (ME) and retained in-
tron (RI). TCGA SpliceSeq processed the percent spliced
in (PSI) value for cancer research analysis, which indi-
cates the inclusion of a transcript element divided by the
total number of reads for that AS event. Alterations in
PSI values range from 0 to 100 (%), which suggests a
shift in splicing events. The filtering condition for
downloading data from the TCGA SpliceSeq website
was the percentage of samples with PSI value >75. The
AS events with standard diversion < 1 were removed.
Clinical information of STAD patients was also ob-
tained from the TCGA database. Only pathologically
confirmed STAD patients with both follow-up and AS
event data were included for our analysis. For clinical in-
formation downloaded from TCGA, we deleted patients
with survival time < 90 days or null data, and included a
total of 338 patients (Table 2) for subsequent analysis.
For advanced cancer patients with survival time <90

days (usually along with severe metabolic disorders such
as cachexia and endotoxin), the effect of alternative
splicing events in promoting cancer development is no
longer accurate, so patients with survival time < 90 days
were removed. The same TCGA ID was used to inte-
grate clinical information and AS events data.

Survival analysis

In the survival analysis, the follow-up periods ranged
from 90 days to 3720 days after removal of patients with
survival less than 90 days. Univariate Cox analysis was
conducted to assess the correlations between the PSI
value (from O to 100) of each AS event and the survival
data of STAD patients (P<0.05). We input the corre-
sponding genes into the Search Tool for the Retrieval of
Interacting Genes (STRING) database [49], and the
constructed protein-protein interaction (PPI) network
was adjusted by Cytoscape software [50]. Meanwhile, we
applied the ClueGO plug-in [51] in Cytoscape software
for Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis and
drew the enrichment network. The least absolute shrink-
age and selection operator (LASSO) method is a widely
used regression analysis method of high-dimensional
predictors [52]. LASSO has been extended for use in
Cox regression survival analysis and is ideal for high- di-
mensional data. We selected the LASSO Cox regression
model to determine the accurate coefficient for each
prognostic feature and to estimate the deviance likeli-
hood via 1-standard error (SE) criteria. The coefficients
and partial likelihood deviance were calculated with the
“glmnet” package in R.

Prognostic signature construction
The significant AS events in univariate Cox analysis
were submitted to LASSO regression analysis to develop
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prognostic signatures based on seven types of AS events.
Finally, prognostic signatures for survival prediction
were calculated by multiplying the PSI values of prog-
nostic indictors and the coefficient assigned by LASSO
regression analysis. The riskScore of each patient was
calculated according to the constructed prognostic
signatures. Based on the median value of all patients’
riskScores, all patients were divided into high and low
risk groups. Then, survival analysis was carried out for
the high and low risk groups to obtain the P-values of
survival difference and survival curves. The ROC curve

was plotted using the survivalROC package, primarily to
determine the accuracy of the prognostic model. By in-
corporating the following parameters into multivariate
Cox regression analysis, splicing-based prognostic
signature was evaluated as independent predictors: age,
gender, grade, stage, TMN stage.

SF-AS regulatory network

A compendium of 404 splicing factors was obtained
from a previous study [53]. The expression profiles of SF
genes were curated from the TCGA dataset. We selected
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Table 2 Clinical characteristics of STAD patients in the TCGA

database
Characteristics Total %
All 338 100.00
Age () >65 189 55.92
<65 149 44.08
Gender Male 216 63.91
Female 122 36.09
Grade G1 7 207
G2 116 34.32
G3 215 63.61
G4 0 0.00
Stage I 42 1243
Il 112 33.14
Il 153 45.27
v 31 9.17
T stage T 15 444
T2 72 21.30
T3 167 4941
T4 84 2485
M stage MO 319 94.38
M1 19 562
N stage NO 104 30.77
N1 95 28.11
N2 71 21.01
N3 68 20.12

axes between the expression value of SFs and PSI values
of prognosis-related AS events to construct the SE-AS
regulatory network according to the following condi-
tions: P value less than 0.001 and the absolute value of
Pearson’s correlation coefficient more than 0.6. Then,
we built the correlation plots via Cytoscape version
3.7.1. All R code and annotations have also been submit-
ted (Additional file 3).
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1186/512864-020-06997-x.
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