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Abstract: Background: The traditional Lund-Mackay score (TLMs) is unable to subgrade the volume
of inflammatory disease. We aimed to propose an effective modification and calculated the volume-
based modified LM score (VMLMs), which should correlate more strongly with clinical symptoms
than the TLMs. Methods: Semi-supervised learning with pseudo-labels used for self-training was
adopted to train our convolutional neural networks, with the algorithm including a combination
of MobileNet, SENet, and ResNet. A total of 175 CT sets, with 50 participants that would undergo
sinus surgery, were recruited. The Sinonasal Outcomes Test-22 (SNOT-22) was used to assess disease-
specific symptoms before and after surgery. A 3D-projected view was created and VMLMs were
calculated for further comparison. Results: Our methods showed a significant improvement both
in sinus classification and segmentation as compared to state-of-the-art networks, with an average
Dice coefficient of 91.57%, an MioU of 89.43%, and a pixel accuracy of 99.75%. The sinus volume
exhibited sex dimorphism. There was a significant positive correlation between volume and height,
but a trend toward a negative correlation between maxillary sinus and age. Subjects who underwent
surgery had significantly greater TLMs (14.9 vs. 7.38) and VMLMs (11.65 vs. 4.34) than those who did
not. ROC-AUC analyses showed that the VMLMs had excellent discrimination at classifying a high
probability of postoperative improvement with SNOT-22 reduction. Conclusions: Our method is
suitable for obtaining detailed information, excellent sinus boundary prediction, and differentiating
the target from its surrounding structure. These findings demonstrate the promise of CT-based
volumetric analysis of sinus mucosal inflammation.

Keywords: three-dimensional CT; Lund-Mackay score; artificial intelligence; semi-supervised deep
learning; MobileNet; SENet; ResNet

1. Introduction

One of the most widely used computed tomography (CT)-based scoring systems for
chronic rhinosinusitis (CRS) is the Lund-Mackay system (LMs) [1]. With scores ranging
from 0–24, it provides a simple technique with semi-quantitative analysis. This system
has been lauded for its low inter-observer variability that makes for quick, competent
use by those without formal radiology training [2]. Despite its popularity and ease of
use, the LMs lags behind in sensitivity to change and does not correlate strongly with
patient symptoms nor with quality of life [3,4], likely due to its inability to distinguish
varying degrees of partial opacification. Various modifications have been made to further
stratify the grade levels [5], so as to achieve finer resolutions, but this has led to a lower
inter-observer agreement and decreased its facility for applicability.
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Since the main drawback of the traditional LMs (TLMs) is its inability to “subgrade”
the volume of inflammatory disease, recent studies have focused on creating an objective
scoring system by utilizing software-based tools and three-dimensional (3D) measurement
of sinus inflammation using volumetric approaches [6]. Convolutional neural networks
(CNN)—one of the primary data processing models used in deep learning, a subfield
of artificial intelligence—have emerged as powerful tools for automatic medical image
analysis. Even though these modern scoring methods show promising results, all of
them are tailored to classic CNN architectures and are often only examined on small-scale
computer vision datasets. Meanwhile, existing segmentation methods rely on manual or
semiautomatic segmentation of the sinus cavities [7]. To train deep neural networks, large
amounts of labeled data are usually necessary. In the medical field, however, labeled data
is scarce, as manual annotation is time consuming and tedious. At the same time, when
training models use a limited amount of labeled data, there is no guarantee that these
models will generalize well on unseen data that is distributed slightly differently.

Semi-supervised learning may provide a means to leverage both a limited amount
of labeled data and arbitrary amounts of unlabeled data to train deep networks [8]. At
present, the networks commonly used in medical image segmentation include full CNN
(FCN), PSPNet, and DeepLab-V3+. However, research on the use of semantic segmentation
networks to segment the paranasal sinuses is still rare [9]. This paper proposes a semi-
supervised and automatic segmentation algorithm by combining MobileNet, the squeeze-
and-excitation networks (SENet), and ResNet. The first goal of this study was to validate
the result by comparing our processing with state-of-the-art approaches. The secondary
objective was to apply our algorithm to assess sinus inflammation by calculating the
mucosa-to-sinus volume ratio and the modified LM score through 3D CT analysis. We
hypothesize that the computerized, volume-based, modified LM score (VMLMs) would
correlate more strongly with clinical symptoms than the visual, subjective TLMs, which
could affect clinical decision making and guide medical or surgical treatment.

2. Materials and Methods
2.1. Clinical Metrics and CT Annotation

Just prior to CT imaging with 1 mm contiguous sections, patients were asked to
complete a validated survey, namely the Sinonasal Outcomes Test-22 (SNOT-22) [10], which
measures disease-specific quality of life; this survey was repeated 3 months later for patients
that underwent surgery for CRS. The present patient cohort included those that received a
sinus CT scan because of a suspected diagnosis of CRS. Some of the CT images (around
28%) were annotated for CNN training, and each sinus was manually outlined and labeled
by the same board-certified rhinologist. All outlines were independently reviewed for
accuracy by three trained observers (two otolaryngologists and one radiologist). The other
CT images were reserved for validation and testing.

2.2. Semi-Supervised Learning

Pseudo labels are artificial labels generated by semi-supervised learning that use
the labeled data to train the CNN first. By minimizing the entropy for the unlabeled
data, the overlap of the class probability distribution was reduced, and we chose the
class with the maximum predicted probability every weight updated as the pseudo labels.
Pseudo labels were used as if they were true labels and to further train the model with
a larger dataset. However, predictions on the unlabeled data were not always correct,
and we had to filter them based on a confidence threshold. Meanwhile, by exploiting the
unlabeled data, we also modeled the per-sample loss distribution with a mixture model to
dynamically divide the training data into a labeled set with clean samples and an unlabeled
set with noisy samples and trained the model on both the labeled and unlabeled data in a
semi-supervised manner. After iterating this process, this training method demonstrated
substantial improvements over state-of-the-art methods.
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2.3. Improved Semantic Segmentation Model

The job of the convolution layer was split into two subtasks: first, there was a depth-
wise convolution layer that filtered the input, followed by a 1 × 1 (or pointwise) convolution
layer that combined these filtered values to create new features. Together, the depthwise
and pointwise convolutions formed a “depthwise separable” convolution block, to replace
the traditional convolutional layers, and that is the main idea behind MobileNet.

To strengthen the representational power of the CNN by enhancing the quality of
spatial encodings throughout its feature hierarchy, we used SENet to adaptively recalibrate
channel-wise feature responses by explicitly modeling interdependencies between channels.
SENet can learn to use global information to selectively emphasize informative features
and suppress less useful ones. The activation function used in SENet was changed from
ReLU to Mish, which can prevent activations from becoming too big [11]. The final output
of the block was obtained by rescaling the original output with the activation function, and
the excitation operator referred to channel-wise multiplication between them.

Finally, we used ResNet (skip connection via addition) to backpropagate through
the identity function, just by vector addition [12]. The gradient was simply multiplied by
one and its value was maintained in the earlier layers. ResNet stacked the skip residual
blocks together to solve the problem of the gradient vanishing during training in very deep
neural networks.

2.4. D Volumetric Image Analysis

After each slice of the sinus was segmented, the total volume, volume of air, and
volume of disease were calculated. The segmented slices were reconstructed into three-
dimensional (3D) solids. The VMLMs were calculated by multiplying the mucosa-to-sinus
volume ratio by 2 to match the range of values of the TLMs, and the results were summed
to obtain the total VMLMs for each sinus. To obtain the TLMs, the coronal planes of the 2D
CT slices were also segmented by our AI-automated method.

3. Statistical Analysis

Data were presented as the mean ± standard deviation. Student’s t-test, one-way
ANOVA, and linear regression were used for statistical analysis. Differences were assumed
significant at p < 0.05.

4. Ethical Considerations

The research protocol (NO: C202105070) was reviewed and approved by the Institu-
tional Review Board.

5. Results

This study included 175 CT datasets, obtained from 111 men and 64 women, with
a mean age of 49 (between 21 and 80) years. Fifty labeled sets were randomly split
into training and validation sets according to a ratio of 8:2. Twenty percent (n = 25)
of the 125 unlabeled sets were used for self-training, and actual testing was performed
on the other 100 sets (100/125, 80%). Automatic sinus segmentation in the test cohort
required about 0.082 s of computation time per scan and 9.73 s per set. The accuracy
of sinus classification, as judged by 3 specialists, was 94.55 ± 4.15% (Table 1). Slightly
inferior accuracies were noted for the anterior and posterior ethmoid sinuses (88.5~92.5%),
while a high discrimination ability was proved for the other sinuses (>95%). Our method
achieved better segmentation results, whose average Dice coefficient was 91.57 ± 2.17%,
MIoU was 89.43 ± 3.56%, and pixel accuracy was 99.75 ± 2.84% (Table 2). As for the
comparison with state-of-the-art methods, PSPnet had the least fine detailed information
and worst sinus boundary prediction. U-net was poor in distinguishing the target from
its surrounding structure, misjudging part of the ethmoid sinus as the maxillary sinus.
Compared with the U-Net, our architecture increased the Dice efficiency and MIoU by
1.89% and 1.60%, respectively. Finally, Deeplab-V3+ showed inadequate accuracy in sinus
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boundary interpretation, and the output was blurry, especially for the maxillary and
sphenoid sinuses. Our algorithm effectively reduced region misjudgment and improved
the segmentation accuracy compared with U-Net, PSPnet, and Deeplab-V3+ (Figure 1).

Table 1. Analysis agreement for our automatic segmentation result among three observers.

Maxillary AE PE Frontal Sphenoid

Left 98% 88.5% 92.5% 95% 98.5%

Right 98.5% 88.5% 91% 96% 99.%

Table 2. Segmentation accuracy of sinus between three observers and automatic segmentation methods.

Methods PA Dice MIoU

UNet 99.56% 89.68% 87.83%
PSPNet 99.31% 87.52% 85.78%

DeepLab-V3 99.55% 89.64% 87.69%
Ours 99.75% 91.57% 89.43%
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Figure 1. Segmentation results from comparison between our proposed method and other state-of-the-
art networks. U-net misjudged part of the ethmoid sinus as the maxillary sinus. PSPnet had the least
fine detailed information. Deeplab-V3+ showed inadequate accuracy in sinus boundary interpretation.

The average volume of the sinus cavities based on automatic segmentation (Figure 2)
and the difference in volume according to sex are summarized in Table 3. Total sinus
volumes ranged between 15.47 and 122.76 mL (mean = 44.9 mL). Correlations between
single sinus volumes and age, sex, height, and weight differed. Each sinus volume in
men was larger than the corresponding sinus volume in women, and men are typically
taller and heavier than women. A significant positive correlation between each sinus
volume and body height was found. This relationship remained true after multiple linear
regression, controlling for age, sex, and weight (Figure 3A). As for sex dimorphism, the
relationship could be proved only in the frontal sinus after multiple linear regression analy-
sis, controlling for age and height. There were no correlations between sinus volume and
body weight, except for the volumes of the anterior and posterior ethmoid sinuses, which
showed a positive correlation with weight (Figure 3B). Significant correlations between
sinus volumes and BMI were not found (Figure 3C). A trend toward a negative relationship
between maxillary sinus volumes and age could be proved (p = 0.053) (Figure 3D). As for
the other sinuses, no significant correlations with age were found. When comparing the
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left and right side, volumes of the maxillary and anterior and posterior ethmoid sinuses
showed no significant differences, but an obvious asymmetry was found in the frontal
and sphenoid sinuses (p < 0.05), as displayed in Table 4. Although the significance of this
observation is not clear, the ability to calculate sinus volume automatically may be useful
in future research.
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Table 3. Mean values of the metrical characteristics and volume dispersion by sex, and results of the
comparison between groups.

Overall Male Female p-Value Male/Female

Age 47.88 ± 15.81 46.19 ± 16.35 51.16 ± 14.31 0.074 0.90
BH 167.07 ± 8.93 171.06 ± 7.64 159.33 ± 5.54 <0.01 1.07
BW 66.70 ± 12.58 71.16 ± 11.1 58.06 ± 10.71 <0.01 1.23
BMI 23.81 ± 3.63 24.30 ± 3.35 22.87 ± 3.98 0.024 1.06

Max-L 14.26 ± 6.12 15.39 ± 6.27 11.88 ± 5.06 <0.01 1.39
Max-R 14.39 ± 6.26 15.50 ± 6.45 12.04 ± 5.17 0.02 1.38
AE-L 1.49 ± 0.67 1.60 ± 0.72 1.28 ± 0.52 <0.01 1.25
AE-R 1.49 ± 0.56 1.57 ± 0.57 1.34 ± 0.50 <0.01 1.17
PE-L 1.35 ± 0.58 1.47 ± 0.57 1.13 ± 0.54 <0.01 1.30
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Sph-L 3.32 ± 2.00 3.64 ± 2.04 2.70 ± 1.77 <0.01 1.35
Sph-R 3.43 ± 2.35 3.81 ± 2.47 2.70 ± 1.90 <0.01 1.41

Test applied: Student’s t-test. R: right side, L: left side, Max: maxillary sinus, AE: anterior ethmoid sinus, PE:
posterior ethmoid sinus, Fro: frontal sinus, Sph: sphenoid sinus.
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Figure 3. (A). A significant positive correlation was found between sinus volume and body height
(p < 0.001). The volume had no significant correlations with BMI (B) (p = 0.067) and weight, except
for the ethmoid sinus (C) (p = 0.005). (D) A trend toward negative relation between maxillary sinus
volume and age (p = 0.053).

Table 4. Sidal difference (left/right) subdivided between genders (one-way ANOVA). Max: maxillary
sinus, AE/PE: anterior/posterior ethmoid sinus, Fro: frontal, Sph: sphenoid sinus.

Left/Right Overall Male Female

Max 101.69 ± 19.76 102.24 ± 21.13 100.51 ± 16.95
AE 99.46 ± 18.83 101.48 ± 18.62 95.53 ± 18.81
PE 107.69 ± 21.76 107.01 ± 22.39 109.03 ± 20.31
Fro 188.68 ± 61.06 180.19 ± 59.92 206.01 ± 63.06
Sph 114.43 ± 69.47 113.70 ± 71.00 115.86 ± 67.11

A 3D view projected directly from the volume data (volume rendering) was created
and the opacification ratio was calculated for each sinus to obtain the VMLMs (Figure 4).
The average VMLMs in the test cohort was 7.12, with an overall range of 1.98 to 24.
Among 175 cases, 50 participants with established CRS underwent endoscopic sinus surgery.
Subjects that underwent surgery had a significantly greater TLMs (14.9 vs. 7.38; p < 0.001)
and VMLMs (11.65 vs. 4.34; p < 0.001) than those that did not (Table 5). Receiver operating
characteristic (ROC) analysis showed that the cut-points for surgical intervention of TLMs
and VMLMs were 10.5 and 7.75, respectively (Figure 5A,B). The median overall SNOT-22
scores before and 3 months after surgery were 42.38 (range 18–65) and 30.46 (range 15–45),
respectively. A significant improvement in SNOT-22 was defined as a 25% reduction
after surgery. ROC-AUC analyses were used to assess the discriminatory capability of
the TLMs and VMLMs for SNOT-22 (Figure 5C,D). The AUC of the VMLMs was 0.801,
which suggests that it had excellent discrimination in classifying a high probability for
postoperative improvement, while the AUC of the TLM was 0.789, which shows acceptable



Tomography 2022, 8 724

discrimination. This indicates that our processing and the VMLMs were not only accurate
but also had a higher correlation with symptom improvement.
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Table 5. Opacification scores based on the TLMs and VMLMs stratified by surgical intervention.
TLMs: traditional Lund-Mackay score; VMLMs: volume-based modified Lund-Mackay score. Max:
maxillary sinus, AE/PE: anterior/posterior ethmoid sinus, Fro: frontal sinus, Sph: sphenoid sinus;
OMC: ostiomeatal complex.

Surgery (+) Surgery (−)

TLMs VMLMs TLMs VMLMs

Total 14.9 ± 3.66 11.65 ± 4.23 7.38 ± 2.36 4.34 ± 1.73

Left Right Left Right Left Right Left Right
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6. Discussion

In recent years, deep learning has dominated medical image segmentation. The
spatial pyramid pooling (SPP) module (e.g., PSPNet) [13] or the encoder–decoder structure
(EDS) (e.g., U-Net) [14] are used in deep neural networks for semantic segmentation
tasks. Various semantic segmentation models based on a pretrained CNN were proposed
to extract the feature map and gather the contextual information of paranasal sinus CT
scans. Humphries et al. [9] once used DenseNets to achieve automated calculation of sinus
opacification. However, they only distinguished the entire sinuses from the nasal cavity
and did not make a separate segmentation for each sinus. In this study, we compared
our processing algorithm with other state-of-the-art approaches. We found that PSPNet
has the worst semantic prediction of the sinus contour and yields uncertain predictions
at the boundaries. To obtain multi-scale views of spatial contextual information, PSPNet
performs SPP at several grid scales. This is an effective method, but PSPNet puts equal
weights at every position and its final feature map size is 1/8 of the input image. The finely
detailed information may be lost in the pooling operation, which can hamper the final
performance of PSPNet. The compactness of the U-Net architecture has become the most
time-consuming process in current research. U-Net includes a contraction path and an
expanding path. It is basically an end-to-end FCN. U-Net puts emphasis on the calculation
of context information in higher-resolution feature maps and combines it further with an
up-sampled output. This computation results in a more precise output (as compared to
FCN), but since many layers take a significant amount of time to train, a relatively high
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GPU memory footprint is needed. Meanwhile, U-Net has a small and fixed receptive field.
Redundant features are extracted when the receptive field of the convolution kernel is too
small. Smaller targets are ignored when the receptive field of the convolution kernel is
too large. In our practice, we have observed that the edge detail of a smaller sinus is not
fine when the receptor field is large and the structure of the sinus is not obvious when the
receptor field is small. Therefore, it is very important to use a convolution kernel with
different receptive fields to process the image. DeepLab-v3+ combines the advantages
of the SPP module and the EDS. By introducing depthwise separable convolutions to
both atrous SPP and decoder modules, DeepLab-v3+ can reduce the degree of signal
down-sampling. However, DeepLab-v3+ begins with dimensionality reduction during
down-sampling and discards the feature concatenation during up-sampling. Instead of
using the skip connections that may help to retrieve detailed spatial information lost by
pooling operations, as U-Net does, DeepLab-v3+ employs bilinear interpolation to perform
up-sampling from small feature maps (1/4~1/8 of the input image). For biomedical image
segmentation that focuses on the contour of the lesion, doing that will result in loss of the
paranasal sinus shape details. The accuracy of the interpretation will be poor and the sinus
boundaries will be blurred (Figure 1).

Compared to the above approaches, our architecture was augmented to expand the
effective receptive field and calculate context information both in high-and low-resolution
feature maps. Similar to DeepLab-V3+, MobileNet, which was used in this study, employs
depthwise separable and pointwise convolutions for concatenation in up-sampled oper-
ators, which results in a faster and stronger network [15]. The dilated convolutions and
atrous SPP can expand the receptive field that helps to further integrate information around
the sinuses. To solve the problem of placing equal weights at every position by PSPNet,
SENet was introduced with global average pooling to learn the influence of weights on
each feature map, so as to further highlight the important information on it [16]. For
up-sampling, we performed bilinear interpolation from a small (low-resolution) feature
map and skipped connection by using ResNet, in order to propagate local information
from an encoder path to a decoder path and retrieve detailed spatial information lost by
pooling operations. The ResNet can avoid gradient degradation in the process of network
deepening [17]. The contours of the sinuses became clearer and more precise after we fused
different detailed features at different scales. It took approximately 0.082 s to segment a
CT slice, and the average time consumption for the entire set of CT scan segmentation
was 9.73 s, demonstrating that our algorithm was much more efficient than those used
in previous studies [9,18]. In addition, our architecture increased the Dice coefficient to
91.57% and MIoU to 89.43%. Compared with U-Net, these parameters increased by 1.89%
and 1.60%, respectively. When using our architecture, the doctor is not required to perform
any manual operation in the whole segmentation process, which implies that segmentation
is automatic and more efficient; this is very useful for finding the VMLMs, which gives the
3D volumetric blockage ratio.

The 3D morphological knowledge of paranasal sinuses has a primordial clinical value.
It provides important information for the analysis of pathologies, planning of treatment
strategies [19], monitoring of disease progression, and even for individual identification
purposes [20]. For example, Wanzeler et al. determined the sex of subjects by analyzing
their paranasal sinus volumes, achieving a high accuracy of 100% for 200 CT scans [21].
Significant differences in the frontal and maxillary sinus volumes according to gender
were also reported [22]. In our study, we found that every sinus volume exhibited sexual
dimorphism and that men had significantly larger sinuses than women. Multiple linear
regression control and analysis showed that the true determinant of sinus volume was
body height, although both sex and body height showed significant influence on the
frontal sinus volume. As for weight, Ariji et al. [23]. found, in 115 CT scans, that the
maxillary sinus volume was correlated with body weight in adult males. However, in
our study, body weight had a significant impact only on the ethmoid sinus. Currently,
there is no established consensus on age-related changes in sinus volume in adults, and
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it is believed that sinuses are hardly modifiable during life. Emirzeoglu found a weak
negative correlation of maxillary sinus volume with age after the fourth decade [24].
Our study also reported a trend toward a reduction in maxillary sinus volume with age,
which might be related to skeletal size and physique. The number of teeth might affect
maxillary sinus volume in the elderly. As for the sidal difference (left/right), we found
that the sphenoid and frontal sinuses were significantly more asymmetrical than the other
sinuses. Indeed, recent clinical research studies have considered the existence of differences
among individual paranasal sinuses and shown particularly that the frontal and sphenoid
sinuses are anatomically extremely variable and unique to each individual [18,20]. Sizes,
shapes, and pneumatization types vary from one person to another, even between twins,
which could contribute to radiologic identification. This is extremely valuable for forensic
identification purposes [21].

One major contribution of this study is the demonstration of the potential utility of
volumetric assessment for the staging of sinus disease. Pallanch et al. [7] showed that volu-
metric quantification of sinus opacification on sequential CT outperformed TLMs when
evaluating radiologic improvement after therapy. Likness et al. [25] compared multiple
visual CT scoring systems with volumetric scoring based on manual CT segmentation
and found that volumetric analysis was more sensitive to therapeutic effect. Although
their results were promising, all of these efforts relied on manual or semiautomatic seg-
mentation of the sinus cavities, which can take anywhere from 20 min to several hours
to accomplish [26]. The current research, in which we identified the sinus boundary and
calculated the opacification ratio automatically, was committed to solving this problem.
VMLMs can be useful for providing a blueprint for treatment planning and for counseling
of patients regarding the need for surgery. Through retrospective analysis of our surgical
cases, we found that patients who had an average pre-operative TLMs of 14.9 or more
and who failed maximal medical management were supposedly submitted to surgery,
while those with TLMs less than 7.38 should undergo conservative treatment first. By
using VMLMs, the average scores for surgery and conservative treatment were 11.65 and
4.34, respectively. ROC analysis showed that the cut-points for surgical intervention of
TLMs and VMLMs were 10.5 and 7.75 respectively. This finding was similar to that of
previous research, such as Singh et al. [27], who proposed that surgical intervention should
only be considered in patients with a score of 6.55 or greater for good surgical outcomes.
The interval scale of TLMs is coarse and two equally sized intervals on a TLMs scale are
always interpreted as two equal disease severities. A complete 3D volumetric percentage
of disease measurement of all sinuses could yield a numerical score of disease status on a
continuous scale. Accordingly, VMLMs can interpret patients’ need for surgery more finely
and accurately than TLMs. Compared to TLMs, efficient analysis of VMLMs revealed a
better correlation between volumetric opacification scores and symptom improvement
assessed using SNOT-22. Consequently, our finding is in agreement with those of a few
studies in the medical literature [9,28] that suggest the inclusion of staging scores in routine
sinus CT dictation. To our knowledge, the dataset of 175 patients used in this study is the
largest cohort so far for a CRS study investigating volumetric image analysis. In the best
interest of CRS patients, we propose the adoption of 3D volumetric computerized analysis
of CT scans as the gold standard for measurement of disease extent.

Our study has some limitations. The dataset was obtained at a single institution, and
just one measure of patients’ symptoms, SNOT-22, was used. The number of cases was not
large and the improvement of patients’ symptoms was obtained by retrospective analysis
and thus has some inherent limitations. In considering differences between CT equipment
and imaging protocols, more studies should be carried out to test the reliability of our
model in accommodating CT from other sites. Future work should include the development
of customized software for user-specific applications, which will be incorporated into real-
time evaluation.
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7. Conclusions

The proposed approach achieves state-of-the-art performance on sinus segmentation.
Fully automatic volumetric quantification of sinus opacification on CT provides an objective
and reproducible method of measuring the extent of the disease in CRS and is very sensitive
to change induced by treatment intervention. A better association with SNOT-22 would
facilitate the selection of CRS patients who would benefit from surgery. Useful additional
information can be provided for researchers and clinicians by incorporating this objective
analysis into routine sinus CT evaluation.
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