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Abstract Haemolytic uraemic syndrome (HUS) can be
classified according to the aetiology of the different
disorders from which it is composed. The most prevalent
form is that induced by shigatoxin producing Escherichia
coli (STEC) and, in some tropical regions, by Shigella
dysenteriae type 1. STEC cause a zoonosis, are widely
distributed in nature, enter the food chain in different ways,
and show regional differences. Not all STEC are human
pathogens. Enterohaemorrhagic E. coli usually cause
attachment and effacing lesions in the intestine. This is
not essential, but production of a shigatoxin (Stx) is.
Because Stx are encoded by a bacteriophage, this property
is transferable to naïve strains. Laboratory methods have
improved by identifying STEC either via the toxin or its
bacteriophage. Shigella dysenteriae type 1 produces shiga-
toxin, identical to Stx-1, but also has entero-invasive
properties that enterohaemorrhagic Escherichia coli
(EHEC) do not. Shigella patients risk bacteremia and
benefit from early antibiotic treatment, unlike those with
EHEC.
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Introduction

Until a little over 20 years ago paediatricians were rarely able
to identify the cause of haemolytic uraemic syndrome
(HUS). Today, it is expected that the aetiology will be found
in the majority of cases. A philosophical assumption is that
each patient who meets the criteria of HUS (microangiopathic
haemolytic anaemia, thrombocytopenia and renal impair-
ment) has a distinctive disorder that is clinically recognisable.
Recognition depends initially on the clinical presentation,
backed up by investigations to identify environmental causes
and, where necessary, inherited risk factors. Our understand-
ing of pathogenesis lags behind that of causation. Neverthe-
less, there is reason to be optimistic that a modern view of the
epidemiology of HUS will translate into specific treatment for
specific diagnostic sub-groups in the near future.

A recently published classification of HUS based on
aetiology [1] is outlined in Table 1. Two levels of diagnosis
are employed. In the first, the aetiology is well established.
In the second, historical descriptions and associations are
used as causation remains uncertain. Increasingly, patients
who would have been classified only in level 2 are becoming
better investigated, sometimes retrospectively, and can be
reallocated to a sub-group in level 1.

The level 1 categories are distinct but not exclusive, so it
is possible for a child to have more than one classification.
This is an important point, and fits well with the concept
that, often, a disease process is brought about by a
combination of factors, for example a mixture of inherited
risks and environmental triggers. Clinicians need to be alert
to this possibility and should fully investigate any case that
falls outside the locally prevalent, typical, infection-induced
pattern of disease.

This review deals specifically with the aetiology of the
most prevalent form of HUS, that induced by enter-
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ohaemorrhagic Escherichia coli (EHEC), other coliforms
that produce shiga toxins, and Shigella dysenteriae type 1.
These appear as level 1, group i. (a) in the above
classification. EHEC accounts for approximately 90% of
all HUS in childhood.

Infection with shigatoxin-producing coliforms

In the early 1980s it was accepted that children who had
had diarrhoea shortly before the diagnosis of HUS differed
in having a relatively better outcome than those without
diarrhoea [2], and the term D + HUS was subsequently
adopted to describe this group. Following the seminal paper
by Karmali et al. [3], it was quickly established that
D + HUS was attributable to infection with shiga toxin-
producing Escherichia coli (STEC) [4–9]. The terms shiga
toxin (Stx) and verocytotoxin are equivalent. The excretion of
STEC in stools can be brief, and laboratory tests for STEC
infection are complex and not universally available (see
below), so that the high rate of confirmation of STEC in
research reports may not be mirrored in routine clinical
practice. Nevertheless, in economically developed countries,

the clinical features and outcome of D + HUS are broadly
similar, whether or not STEC is confirmed. This suggests
that, in general, cases of D + HUS have a common aetiology.

Bacteriology

Escherichia coli that are capable of inducing bloody
diarrhoea with or without HUS in humans are referred to
as enterohaemorrhagic E. coli (EHEC). These organisms
have various virulence factors, but the principal requirement
is the ability to excrete a shiga toxin (Stx) to which humans
have receptors. Shiga toxins are species restricted. Not all
Stx are toxic to humans (see below), thus, not all STEC are
necessarily EHEC [10]. EHEC have not acquired entero-
invasive properties, and patients almost never develop
septicaemia. Occasionally, STEC responsible for HUS have
been recovered from the urine of patients who have not
presented with gastrointestinal symptoms [11]. Whether or
not these organisms have particular abilities to colonise the
urinary tract has not been investigated, and septicaemia in
this circumstance is described. Clearly, it is important that the
urine from patients with HUS is cultured, and, if E. coli are
found, are investigated for toxigenic properties.

EHEC usually possess additional virulence factors, such as
the ability to attach to the luminal surface of host enterocytes
and to cause effacement of the microvilli [12]. This property
is characteristic of enteropathogenic E. coli (EPEC) and
explains their ability to cause watery diarrhoea through loss
of absorptive surface. The attaching and effacing lesion is a
two-step process. The first is the ability of the E. coli to
express the adhesin intimin on the bacterial surface. The
second step is to inject intimin receptor into the host cell
through a microtubular structure known as a type 3 secretion
system. The intimin receptor in the host becomes orientated
in the host cell membrane, permitting the E. coli to adhere.

Many of the proteins essential to filamentous type 3
secretion are known, and the genes that encode them occur in
a pathogenicity locus for enterocyte effacement (LEE) [12].
These include eaeA the gene for intimin and tir the gene for
the translocated intimin receptor. EHEC seem to locate
preferentially to the epithelium immediately associated with
Payer’s patches, the clinical significance of which is
unknown [13]. Attachment induces various signalling events
in the enterocyte and cytoskeletal rearrangements, whereby
the microvilli are lost and replaced by a pedestal on which the
coliform is attached. There are subtle differences in signalling
pathways between EHEC and EPEC [14]. It seems likely that
attachment and effacement is an added virulence factor for
EHEC and allows delivery of Stx in very close proximity to
host enterocytes. Transcytosis of toxin across the intestinal
epithelium has been demonstrated in vitro [15]. However,
attachment is not an absolute requirement for EHEC, and
organisms that lack this ability occasionally cause HUS.

Table 1 An aetiological classification of HUS (see [1]). HELLP
haemolysis, elevated liver enzymes, low platelets

Category Characteristics

Level 1: aetiology advanced
1.i Infection induced

(a) Shiga and shiga-like toxin-producing bacteria;
enterohaemorrhagic Escherichia coli, Shigella
dysenteriae type 1, Citrobacter freundii
(b) Streptococcus pneumoniae, neuraminidase and
T-antigen exposure

1.ii Disorders of complement regulation
(a) Genetic disorders of complement regulation
(b) Acquired disorders of complement regulation, e.g.
anti-factor H antibody

1.iii von Willebrand proteinase, ADAMTS13, deficiency
(a) Genetic disorders of ADAMTS13
(b) Acquired ADAMTS13 deficiency; autoimmune,
drug induced

1.iv Defective cobalamin metabolism
1.v Quinine induced
Level 2: aetiology unknown
2.i Human immunodeficiency virus (HIV)
2.ii Malignancy, cancer chemotherapy and ionising radiation
2.iii Calcineurin inhibitors and transplantation
2.iv Pregnancy, HELLP syndrome and oral contraceptive pill
2.v Systemic lupus erythematosus and antiphospholipid

antibody syndrome
2 vi Glomerulopathy
2.vii Familial, not included in part 1
2.viii Unclassified
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Many EHEC also secrete calcium-dependent alpha
haemolysin or possess the gene responsible for it, ehxA
[16, 17]. Alpha haemolysin is a pore-forming toxin that
induces lysis of non-human red cells and is toxic to human
brain microvascular cells in vitro [18]. The association
suggests that this is a virulence factor in human infection
but it is not essential and its exact pathological role in
haemorrhagic colitis and HUS is not known.

The E. coli serotypes that are associated with HUS vary in
different parts of the world. In North America and North
West Europe the dominant serotype is O157:H7, but other
serotypes occur, either sporadically or as causes of outbreaks
of enterocolitis and HUS [5, 9, 19–21]. In Southern Europe a
high proportion of HUS is associated with O26 [9], and, in
Australia, human infection with O157 is rare, even though
Australian cattle are known to harbour it, and O111 is the
dominant causative strain [22]. Several O-serotypes of
EHEC are also well known as the same O-serotypes of
enteropathic serotypes, for example O26, O55, O111, further
illustrating the importance of the combined virulence factors
of attachment and effacement. There is a steady reportage of
novel serotypes, sometimes clearly traced back to animal or
environmental sources (examples [23, 24])

Toxicology

Shiga toxins have a common structure of a single A subunit
linked to five B subunits (see below) [24]. Whereas the
gene for shiga toxin is encoded in the chromosome of S.
dysenteriae-1, genes for Stx1 and Stx2 are encoded by
temperate bacteriophages. Bacteriophages are viruses that
infect bacteria. While lytic phages are direct pathogens of
the bacterial host, temperate phages can integrate with the
host genome, so that the property conferred by the phage
can be transmitted to subsequent generations of the
bacterium. Temperate bacteriophages may be dormant for
much of the life cycle of the host (prophage) but can
become activated and induce lysis. A bacterium bearing a
temperate phage is referred to as a lysogen.

The factors that induce lysis and regulate toxin produc-
tion are not completely known. Coliforms do not appear to
have a dedicated secretion system for toxin, but there is
evidence that both toxin and phages are released during the
phage lytic cycle Exposure of STEC to certain antibiotics
appears to increase toxin release in vitro [25]. There has
been concern that antibiotics use in the diarrhoeal phase of
the illness might promote HUS by amplifying toxin
production, but a meta-analysis, admittedly under-powered,
did not confirm this [26]. EHEC can release Stx bacter-
iophages for uptake by other similar bacterial species,
including commensal organisms, not always E. coli. Given
that this may confer a new pathogenetic property, Stx
phages are also referred to as converting phages. A clinical

example that illustrates this phenomenon is that HUS has
been caused by Stx2-producing Citrobacter freundii [27],
an organism not normally associated with Stx. Moreover,
an E. coli may have more than one phage and produce more
than one toxin. A useful current review of the biology of
Stx bacteriophages is provided by Allison [28].

There are two branches of the shiga toxin family. Stx1 is
identical to shiga toxin, the product of Shigella dysenteriae
type 1. Stx2 is approximately 60% homologous to Stx1,
with different subtypes denoted by a suffix. For all shiga
toxins the B subunit recognises and binds to a eukaryotic
cell glycolipid that is expressed differently in different
species. In humans this is globotriaosylceramide, Gb3, and
it is expressed on renal tubular and vascular cells in kidney,
brain and intestine, and in Paneth cells in the intestine, but
not on intestinal epithelium [29, 30]. The receptor expres-
sion in some cells, notably glomerular endothelial cells in
culture, is up-regulated by pro-inflammatory cytokines,
suggesting that inflammatory events amplify toxicity [31].
Toxicity is dependent on recognition, binding and internal-
isation of the toxin, followed by cleavage and cytoplasmic
release of the A subunit. The released A subunit is an N-
glycosidase that cleaves ribosomal RNA, effectively block-
ing transcription (protein synthesis). Stx cytotoxicity in
vitro differs in different cell types [32] and in different
stages in the cell cycle. It may result in cell death in certain
cell lines, but sub-lethal intoxication causes stress responses
in the cell and pro-inflammatory signalling events [33]. In
vascular endothelial cells this includes procoagulant effects
that may be important in the pathogenesis of HUS [34].

Within a same EHEC serotype, O157 for example, one
can recognise different Stx phage types that have geograph-
ical and temporal associations. EHEC responsible for HUS
express Stx2 more often than Stx1 [5, 8, 35–37]. As sub-
divisions of the Stx2 family become better defined, further
associations are revealed, sometimes with surprises. Stx2c is
positively associated with HUS disease, but Stx2d Stx2e and
Stx2f. are not. Recently, a variant of Stx2d, Stx2d(activatable),
has been associated with HUS [38]. This toxin is modified
by enzymes in intestinal mucus to increase its virulence.
Moreover, EHEC-producing Stx2d(activatable) seem not to
require the added virulence properties of attachment and
effacement. Stx2e is responsible for “oedema disease” of
pigs and recognises Gb4 expressed in that species. Stx2f has
been associated with birds.

A small proportion of O157 strains recovered from
patients with diarrhoea and HUS do not possess Stx genes
and yet, in other regards, have a closely matched genetic
similarity to known toxin- and disease-producing O157
strains [39]. In some of these cases alternative Stx-
producing organisms have not been found, and stools,
examined by bioassay, have not contained toxin [39]. A
likely explanation is that these organisms have lost the Stx
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gene during the course of the infection, rather than the idea
that Stx-negative organisms can induce HUS [40].

Zoonosis

STEC cause a zoonosis in which haemorrhagic colitis and
HUS are the most severe expression in humans. Animals,
particularly ruminants such as the cow, may be colonised
by organisms that are clearly pathogenic in humans without
expressing disease themselves. In cows the carriage of
O157 varies according to age and feeding practices. These
organisms locate to mucosal lymphoid tissue in the rectum
of the cow [41]. While contamination of meat and milk
products has been a major concern for food hygiene, driven
by well-publicised outbreaks involving undercooked
ground beef, this is probably not the most common route
for human exposure. STEC shed on to pastureland survive
over a wide range of temperatures and pHs and resist
composting. Because they persist in soil, they can readily
contaminate surface water. Salads and vegetables may,
therefore, become contaminated, as well as domestic water
supplies. However, in small children, an important risk
appears to be direct contact with animals, for example from
visits to farms [42]. Unsurprisingly, in industrialised
countries, there is a seasonal pattern to the incidence of
HUS, being greater in summer than in winter. This
probably reflects increased exposure to countryside, ani-
mals and fresh uncooked foods. Bathing in contaminated
water is an additional risk [24].

Humans acquire antibodies to Stx2 during childhood and
teenage years, so that approximately half of adults have
antibodies detectable by western blotting [36]. Stx anti-
bodies wane in old age. Family studies have found
antibodies in close contacts of children with haemorrhagic
colitis and HUS, particularly their carers. Some of these
will have had minor gastrointestinal symptoms, and others
may be asymptomatic, which suggests that sub-clinical
infection might be quite common [43]. A high proportion
of abattoir workers have been shown to excrete STEC,
although not necessarily EHEC [44]. This raises the
possibility that contact with STEC that produce Stx2 but
lack the necessary additional virulence factors needed for a
human pathogen might be immunogenic. Experimentally,
anti-Stx antibodies are protective in several models of
EHEC infection, and it is a reasonable hypothesis that
adults are, to some extent, protected by acquiring anti-Stx2,
and that the high incidence of HUS in pre-school children
reflects immunological naivety.

Incidence

The greatest incidence of EHEC-induced HUS in Europe
and North America is in children aged 1–5 years, although

it can occur after that age, whereas, in Argentina, the age
of onset is lower, between 6 months and 4 years. The
onset of HUS much before 6 months of age would raise
concern that EHEC was unlikely to be the only cause. The
incidence also differs between regions, generally being
higher in cooler temperate regions. For example, the
incidence in Scotland (3.4 per 105 children <5 years of
age) is greater than in England (1.54 per 105 children
<5 years of age) [45]. The incidence in England and France
is similar and greater than in Italy [9]. While the diagnosis of
EHEC infection has increased over time, perhaps reflecting
better laboratory techniques, the number of children present-
ing with HUS has remained stable over the past 20 years in
economically developed states, and the mortality has
reduced. However, fluctuations in incidence may occur, with
local epidemics sometimes linked to a common source of
infection. In such outbreaks it has been estimated that one in
ten exposed to the infection develops symptoms of colicky
abdominal pain and diarrhoea, and 15% of children with
diarrhoea or bloody diarrhoea will develop HUS. Outbreaks
may be biphasic, a second wave occurring 2 weeks later
from person-to-person transmission. The time from exposure
to onset of diarrhoea is usually less than a week, mostly 3–
4 days, and the mean interval between onset of diarrhoea and
disclosure of HUS is 4 days, range 1–10 days.

Laboratory investigation

In regions where O157 is the predominate EHEC it has
been common and economic practice to culture stools on
sorbitol MacConkey agar enriched with tellurite. The latter
promotes the growth of O157. Because this serotype is
usually unable to ferment sorbitol, colonies can be
inspected, picked, and then tested specifically for O157
by agglutination or enzyme immunoassay (EIA). This
approach will miss other serotypes of EHEC and any
O157 that is capable of fermenting sorbitol. It will also
identify Stx-negative strains of O157.

Given that Stx production is an essential feature of EHEC,
and central to the epidemiology, it is logical to investigate
directly for this property rather than rely on identifying
O-serotypes that may or may not be toxin producers [46].
Historically, toxin identification was laborious and expen-
sive. Stools were filtered to obtain free toxin that was tested
on verocell cultures, confirmation being sought by neutral-
isation of the toxin with specific antibodies.

Sensitive immunoassays to detect toxin, such as BioStar,
are now commercially available and can be applied directly
to stool samples or cultures [47]. The sensitivity and
specificity of this rapid diagnostic test suggest that it will
become the screening test of choice. Polymerase chain
reaction and DNA hybridization can also be used to
amplify and detect Stx genes. This in itself does not
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identify the organism, but colonies with these properties
can be further identified for serotype and other markers.

Genetic profiling of EHEC is valuable in research and in
identifying emerging pathogenic strains. Another estab-
lished technique is lytic phage typing. This, for example,
was used to show the emergence of a new strain of O157 in
the United Kingdom in the 1990s [45]

Infection with Shigella dysenteriae type 1

HUS is a well-recognised complication of Shigella dysenteriae
type 1 infection. Many of the features of the syndrome
resemble EHEC-induced HUS. The age range is wider, the
median age of presentation being approximately 3 years, and
the median time from the onset of diarrhoea to the
presentation of HUS is 7 days, compared to 4 for most
EHEC infections [48].

Shigella dysenteriae can be entero-invasive, while
EHEC typically are not. Therefore, unlike EHEC infec-
tion, early and appropriate antibiotic treatment is indicat-
ed and appears to reduce the incidence of HUS [49].
Shiga toxin is implicated in the pathogenesis. In some
laboratory models of HUS a combination of a ribotoxin
and lipopolysaccharide is more likely to induce glomerular
thrombosis than is toxin alone [50, 51]. Children with
Shigella dysenteriae-induced HUS are exposed to bacterial
lipopolysaccharide because of the entero-invasive nature
of the organism, and this added stimulus is likely to be
pathogenic [52]. The neutrophilia at onset is typically
greater than that with EHEC but gives a similar
prediction for the development and severity of HUS
[53, 54]. In some patients disseminated intravascular
coagulation leads to consumption of coagulation factors, a
very rare event in EHEC-induced HUS. It is customary to
exclude disseminated intravascular coagulation with con-
sumption of coagulation factors, such as that seen in sepsis
and multi-organ failure, from within the term HUS.
However, Shigella dysenteriae and invasive Streptococcus
pneumoniae infections that cause HUS elude that restric-
tion. It is likely that coagulation tests in the micro-
angiopathic haemolytic anaemia of Shigella-induced (and
pneumococcus-induced) HUS at least begins with normal
or activated coagulation.

There is the general impression that HUS complicating
Shigella dysenteriae is more severe, but the condition
mostly occurs in developing countries in tropical regions,
where children may have co-morbidities and poor access to
health care. Catastrophic dehydration, hyponatraemia and
central nervous system complications may, in part, reflect
this. In epidemics in sub-Saharan Africa mortality rates of
17% and 43% are described [48, 55], whereas, in an

outbreak in France, all five affected children recovered with
normal renal function [56].

Questions

(Answers appear after the reference list)

1. Which of the following are necessary for Escherichia
coli to cause HUS?
a. Intimin and translocated intimin receptor
b. Shigatoxin
c. Entero-invasive properties
d. Minimum infective oral dose >109 organisms
e. Specific O-serotype (e.g. O157)

2. Which of the following scenarios suggest a cause
other than EHEC infection?
a. Two months old, with HUS preceded by diarrhoea
b. A 13-year-old girl with HUS who had bloody

diarrhoea a week ago while on a camping holiday
c. Infant with HUS complicating pneumonia and

empyema
d. A 2 year old with D + HUS whose stools

exhibited repeatedly negative findings for E. coli
O157, (sorbitol MacConkey culture and O157
antibody agglutination test)

e. A teenager awaiting cadaveric transplantation after a
single episode of D + HUS. His brother died of HUS
10 years ago aged 8 years.

3. Which of the following is true?
a. Shigatoxin2 (Stx2) is encoded in the chromosome

of Shigella dysenteriae type 1
b. Shigatoxin1 (Stx1) is more often associated with

HUS than is Stx2
c. Shigatoxins do not elicit an antibody response in

humans
d. All Stx-producing E. coli are pathogenic in humans
e. Stx access mammalian cells through specific

receptors, Gb3 in humans
4. In investigation of an outbreak of D + HUS, which of

the following tests provides the best chance of identi-
fying a new strain of enterohaemorrhagic E. coli?
a. Selective culture of stool sample on sorbitol Mac-

Conkey agar
b. Immuno-magnetic bead separation of stool sample
c. Blood culture (aerobic)
d. Polymerase chain reaction (PCR) amplification

and DNA hybridization of Stx phages
e. Paired serological examination for O-serotypes

5. Which of the following are false?
a. Enterohaemorrhagic E. coli may colonise the

urinary tract
b. Stx2e is associated with porcine not human toxicity
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c. Antibiotics are contraindicated in Shigella dysen-
teriae-induced HUS

d. Antibodies against Stx2 are likely to protect
against HUS

e. Shigella dysenteriae type 1 is entero-invasive
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