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Background. Delivery of full doses of adjuvant chemotherapy on schedule is key to optimal breast cancer outcomes. Neutropenia is a
serious complication of chemotherapy and a common barrier to this goal, leading to dose reductions or delays in treatment. While
past research has observed correlations between complete blood count data and neutropenic events, a reliable method of classifying
breast cancer patients into low- and high-risk groups remains elusive. Patients and Methods. Thirty-five patients receiving adjuvant
chemotherapy for early-stage breast cancer under the care of a single oncologist are examined in this study. FOS-3NN stratifies
patient risk based on complete blood count data after the first cycle of treatment. All classifications are independent of breast
cancer subtype and clinical markers, with risk level determined by the kinetics of patient blood count response to the first cycle
of treatment. Results. In an independent test set of patients unseen by FOS-3NN, 19 out of 21 patients were correctly classified
(Fisher’s exact test probability P < 0.00023 [2 tailed], Matthews’ correlation coefficient +0.83). Conclusions. We have developed a
model that accurately predicts neutropenic events in a population treated with adjuvant chemotherapy in the first cycle of a 6-cycle
treatment.

1. Introduction

Maintenance of dose intensity in adjuvant (curative) chemo-
therapy is associated with improved outcome in early-stage
breast cancer [1, 2]. Myelosuppression is the main dose-
limiting factor of cytotoxic chemotherapy and a barrier
to maintenance of dose intensity. Retrospective data from
a very mature study of adjuvant chemotherapy for early-
stage breast cancer suggested that patients receiving less than
65% of the intended dose did not benefit from adjuvant
chemotherapy, highlighting the importance of dose intensity
maintenance throughout treatment [3]. Neutropenia is the
most common type of myelosuppression and often prompts
dose reductions or delays. Use of hematopoietic growth
factors can reduce the incidence, severity, and duration of
established neutropenia. However, these agents can cause
bone pain, fever and require administration by subcutaneous
injection over several consecutive days. They are also costly,
and not all chemotherapy regimens carry the same risk of

neutropenia, thus not warranting their use for all patients
preemptively [4]. However, Chang does note that there
would be a marked benefit in being able to identify high-
risk patients prior to beginning chemotherapy in order to
rationally dispense growth factor support and avoid the
occurrence of both dose reduction and delay [5]. Given the
cost of these agents, there is also an economic argument to
enhanced patient selection that would enable more rational
resource allocation [6].

Many papers cite the need for a tool to identify high-risk
patients among those undergoing adjuvant chemotherapy
for early-stage breast cancer [5–7]. Several authors have
demonstrated correlations between risk groups and blood
count data, in various malignancies for specific regimens,
but none are able to produce a broad and robust predictor
that transcends tumour subtype and treatment regimen to
distinguish high risk patients from low risk patients in breast
cancer [8–21]. This paper presents a nonlinear model to
predict which patients will be at high-risk for a neutropenic
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event based on information available in the first cycle of
a 6-cycle adjuvant chemotherapy regimen for early-stage
breast cancer. The model has shown high accuracy (>90%
overall) over independent test sets and was derived using fast
orthogonal search (FOS) [22].

FOS was first described as a robust and efficient method
for approximating time series data and nonlinear systems of
unknown structure. FOS constructs a concise model of the
form

y(n) =
M∑

m=0

ampm(n) + e(n), (1)

where y(n) is the time series data or the system output to
be approximated, the pm(n) are the model terms selected
from a set of candidates, and e(n) is the model error. In
the present study, y(n) equals 1 for each patient n in our
training set subsequently suffering a neutropenic event and
equals −1 otherwise, and the candidates are the first-cycle
blood counts and all possible second-order crossproducts
thereof. The selected pm(n) are the critical terms that
will be used subsequently to predict neutropenia for new
patients. Since FOS exploits the implicit computation of
orthogonalized basis functions of the search terms, without
actually computing the orthogonalized functions themselves,
FOS is an extremely rapid method to model systems. For each
iteration, FOS selects the basis function that maximizes the
reduction in mean-squared error and adds it to the model.
Iterations cease when the addition of model terms no longer
reduces the MSE significantly, and then the coefficients
am are calculated. FOS has proven to be highly effective
at selecting predictive model terms and recently has been
applied in uses as varied as indoor WiFi positioning [23] and
predicting heat-related emergency room visits [24]. Coupled
with a 3-nearest neighbour classifier based on the FOS-
selected blood markers, FOS-3NN is able to identify patients
at high and low risk for neutropenia early in the course of a
chemotherapy regimen.

2. Materials and Methods

2.1. Patients. This study was approved by the institutional
ethics board. Patient data used to train and test the models
in this retrospective study were drawn from a single clinical
oncology practice belonging to one of the authors (Y.
Madarnas) at the Cancer Centre of Southeastern Ontario
(CCSEO). The files of all women who initiated adjuvant
chemotherapy for early-stage breast cancer between January
1, 2001 and December 31, 2003 were examined by two
of the authors (Y. Madarns, E. A. Shirdel). Follow-up
period for this study began at day 1 of chemotherapy
treatment and ended on the last day of the last cycle. We
included only six-cycle adjuvant chemotherapy regimens
(CEF—cyclophosphamide/epirubicin/fluorouracil; CAF—
cyclophosphamide/adriamycin/fluorouracil; CMF—cyclo-
phosphamide/methotrexate/fluorouracil). Treatments were
assigned through a rule-based system as per the standard of
care at the time. This cohort was further restricted to women
receiving their entire course of treatment at the CCSEO,

since some patients completed their treatment at a satellite
clinic. This selection process yielded a cohort of 35 patients
from a single clinical practice over a 36-month period,
all managed in a homogenous fashion and treated with a
regimen of equal duration. No preemptive growth factor
support was used during the entire time. Growth factors
were used only as secondary prophylaxis once a neutropenic
complication had occurred. Patient characteristics shown
in Tables 1(a) and 1(b) show the breakdown of patient
treatment characteristics.

2.2. Data Collection and Processing. The data collected
included, but were not limited to, a baseline count taken
on day 0 or prior to the commencement of treatment, day
7, and day 28 of the first cycle of treatment. Blood count
data were collected similarly for subsequent treatment cycles
including those that were delayed for any reason, such as
reasons grounded in clinician decisions based on avoidance
of neutropenia and related complications. Reasons for delays,
as well as timing and details of events occurring during
treatment, were recorded.

The required information was abstracted from the com-
plete blood count data for each patient obtained from blood
tests on days that the patient was in the clinic. Biomarkers
examined included absolute neutrophil count (ANC), white
blood cell count (WBC), hemoglobin levels (HGB), and
platelet levels (PLT) which are listed in Table 2. To equally
weight different blood markers, values were normalized to
fall within a range of 0.02 to 13.5.

In this study, it was crucial that all patients have the same
data points available for analysis. Hence, any patient missing
counts on vital days of treatment was excluded from the
study. Fortunately, from the original 36-patient dataset, only
one patient had incomplete recorded data and was excluded
from this study.

2.3. Outcome Events. The primary goal of this research
was to identify reliable predictors of neutropenia that are
available to physicians during the onset of chemotherapy. To
accomplish this, we built a nonlinear model based on CBC
data available in the first cycle of a six-cycle chemotherapy
regimen. Using the first-cycle data, the model was trained to
classify patients into two risk groups: patients at high risk
for developing a neutropenic event over the course of the
treatment and patients at low risk. Patients were retrospec-
tively classified into these groups based on knowledge of their
treatment outcomes. Endpoints of interest and risk group
assignation are similar to those used by Chang [5] and are
presented in Table 3. Should a patient have characteristics
falling into both the low- and high-risk categories, the patient
is classified at the higher-risk level.

3. Statistical Analysis

3.1. Model Identification: Fast Orthogonal Search. FOS-3NN
combines fast orthogonal search (FOS) [22] with a 3-nearest
neighbor classifier [25]. In the first stage of the model, FOS
is used to identify input terms relevant to clinical outcome
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Table 1: (a) shows characteristics of the patient population. (b) shows treatment characteristics.

(a)

Group Median age at first chemotherapy treatment

Training set 46.79

Testing set 44.8

Validation set 56.19

Entire population 46.34

Group BMI at first chemotherapy treatment

Training set 24.29

Testing set 25.7

Validation set 25.86

Entire population 25.71

(b)

Training set Testing set Validation set
Entire patient

population

N = 14 N = 14 N = 7

Radiation

Concurrent 9 (64.3%) 0 (0%) 0 (0%) 9 (25.7%)

Chemotherapy

CEF 0 (0%) 12 (85.7%) 2 (28.6%) 14 (40%)

CAF 0 (0%) 1 (7.1%) 5 (71.4%) 6 (17.1%)

CMF 14 (100%) 1 (7.1%) 0 (0%) 15 (42.9%)

Risk

High 7 (50%) 7 (50%) 4 (57.1%) 18 (51.4%)

low 7 (50%) 7 (50%) 3 (42.9%) 17 (48.6%)
∗

Note that percentages may not add to 100% due to rounding.

Table 2: First-order candidate model terms.

Potential model terms

Height, weight, BMI, age, WBC0, HGB0, PLT0, ANC0, WBC7,
HGB7, PLT7, ANC7, WBC28, HGB28, PLT28, ANC28

(high versus low risk). This stage narrows down a set of
90 first- and second-order cross-product terms, based on
blood counts, to select the 11 terms that have the strongest
predictive power. FOS is a nonlinear modeling technique
that views the problem at hand as a “black-box” scenario
and converts input blood count terms into prediction class
variables. The known first-order inputs to the system under
study here were the blood counts during the first cycle of
treatment. In training, patients at high risk were assigned an
outcome value of +1, and patients at low risk were assigned
an outcome value of −1. The strength of FOS when used in
this manner is to determine, from the given candidate set of
blood markers, those terms that are most highly predictive of
the output values of the system under study, thus identifying
key early predictors of neutropenia. These predictors are a
significant contribution of this paper; their effectiveness is
demonstrated here with a 3NN classifier, but they can also be
used with other classifiers. The FOS-3NN pipeline is shown
in Figure 1.

Table 3: Patient classification scheme.

Characteristics of high-risk patients
Characteristics of
low-risk patients

Any hospitalization No event

3 or more delays in treatment Delay beyond cycle 3

Any delay beyond 40 days

Delay after the first treatment

No treatment on day 7 in any of the first 3
cycles

Dose reduction in first 3 cycles

Table 4: Model terms as selected by FOS-3NN.

Optimal model terms

PLT28∗ANC28, ANC0∗ANC0, ANC0, ANC0∗ANC7,
ANC7∗HGB28, HGB7∗PLT7, HGB0∗ANC7, ANC0∗WBC28,
ANC7∗ANC28, ANC0∗ANC28, PLT7∗ANC7

Once FOS determined the optimal model terms for
classification across all patients in a training set, their values
were mapped as the coordinates of vectors for the training
set in an 11-dimensional nearest neighbor classifier. Optimal
model terms are shown in Table 4.
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Figure 1: Pipeline of FOS-3NN sequence.

The FOS model in this work was trained on 14 patients
undergoing chemotherapy. In all, 12 blood count values
were used per patient. The 12 terms along with their 78
second-order cross-products (including squares) formed the
candidate set from which the terms most indicative of
impending neutropenia were chosen.

3.2. Model Validation. It is important to note that the model
validation in this experiment was done on two different
sets of data, which are both completely independent of the
training dataset. The first testing set consisted of 14 patients
evenly split between high and low risk. Using the FOS-3NN
method, all of the 14 testing set patients were classified
based on their proximity to the training patients by majority
vote of the three nearest neighbours. A further independent
validation set of 7 patients was also tested. These seven
patients consisted of 4 high-risk patients and 3 low-risk
patients. This time, the 11-space nearest neighbor classifier
was filled with all of the first 28 patients, each situated at the
coordinates of their pertinent classifying terms as established
by FOS-3NN (Table 4). This last validation set was done to
examine if there seemed to be any advantage to filling the
NN classifier with more training points than the original 14
that were used with the first validation set. It also further
establishes the robustness of the model and its ability to
transcend training sets to make accurate classifications on
data never before encountered.

4. Results

The FOS-3NN classifier correctly classified 19 of the 21
patients in these two sets combined. None of the low-
risk and only 2 of the high-risk patients were misclassified.
Fisher’s exact test probability is P < 0.00019 (1 tailed) and
P < 0.00023 (2 tailed). Fisher’s exact test was conservatively

used due to the small sample sizes in this study and is
similar to the chi-square statistic for larger studies. The
corresponding Matthews’ correlation coefficient is phi =
+0.83. Matthews’ correlation coefficient is used for binary-
valued classifications and ranges from +1 for a perfect
prediction set to −1 for a completely incorrect prediction
set. As an added test, the model was rebuilt switching the
initial 14-patient testing and training sets but leaving the
independent 7 patients as part of the testing procedure.
Identifying the optimal classification terms on this new
training set resulted in 11 chosen terms, 3 of which were
also chosen the first time this model was built based on the
original training set. With these 11 chosen terms in the 3-
NN classifier, on the 21 patients reserved for testing 17 out of
21 were correctly classified. Four of the 10 low-risk patients
were misclassified and 0 out of the 11 high-risk patients were
misclassified resulting in Fisher’s exact test probability of P <
0.0039 (1 or 2 tailed) and Matthews’ correlation coefficient
of phi = +0.66. Recalling that all of these classifications were
made based on blood marker values available in the first 4
weeks of a 24-week chemotherapy regimen, we can see just
how clinically valuable this type of risk prediction can be.

In creating predictive models for clinical applications
such as the prediction of neutropenia, it is critically impor-
tant to understand the enormous difference between a
clinically correlated variable and a model of predictive value.
Table 5 shows all first-order CBC values from which (along
with their cross-products) FOS selected the predictors. We
note that there are several highly significant variables capable
of distinguishing between the two risk groups by a student’s
t-test. Similarly, Table 6 shows the hazard ratios for all first-
order variables. According to these tables, there are several
first-order terms that should be useful as classifiers of risk,
including PLT0, WBC7, PLT7, ANC7, WBC28, HGB28, and
ANC28. Figure 2(a) plots both the training and testing set
data for WBC counts on day 28—a variable with a highly
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Table 5: t-test for first-order blood count variables based on stratification into high- and low-risk groups.

First order Training Testing

Day 0

White blood cell count 0.3532 White blood cell count 0.0050 ∗∗∗

Hemoglobin count 0.3090 Hemoglobin count 0.8936
Platelet count 0.4773 Platelet count 0.5421
Absolute neutrophil count 0.4542 Absolute neutrophil count 0.0057 ∗∗∗

Day 7

White blood cell count 0.0756 ∗∗∗ White blood cell count 0.0152 ∗∗∗

Hemoglobin count 0.0771 Hemoglobin count 0.5098
Platelet count 0.1962 Platelet count 0.8782
Absolute neutrophil count 0.0501 ∗∗∗ Absolute neutrophil count 0.0324 ∗∗∗

Day 28

White blood cell count 0.0010 ∗∗∗ White blood cell count 0.0001 ∗∗∗

Hemoglobin count 0.0050 ∗∗∗ Hemoglobin count 0.4487
Platelet count 0.3107 Platelet count 0.9300
Absolute neutrophil count 0.0030 ∗∗∗ Absolute neutrophil count 0.0035 ∗∗∗

∗∗∗
Indicates t-test significance.
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Figure 2: (a) Although t-tests show high significance in many first-order terms, the dotplots above underscore that a significant difference
in the WBC counts on day 28 between high- and low-risk groups—resulting in a highly significant P value—is not sufficient to partition the
risk groups. (b) Examining the entire cohort, it can be seen that slicing the populations by neither line A (10 patients misclassified), line B
(8 patients misclassified), nor line C (7 patients misclassified) will provide good results. Clearly, we need a more complex model to stratify
this population.

significant P value between the low- and high-risk groups.
Figure 2(b) plots the same variable attempting to partition
the combined training and testing sets. It becomes clear in
Figure 2(b) that although the 2 risk groups appear quite
different when stratified by WBC28 values, it still remains
difficult to classify the patients outright. Neither a partition
at line A (which misclassifies 10 low-risk patients), line B
(which misclassifies 2 high- and 6 low-risk patients), or line
C (which misclassifies 7 high-risk patients) does a good job
at dividing the risk groups. Hence, a classification based on
WBC28 alone—a clearly significant first-order term—will
provide poor prognostic value.

5. Discussion

FOS has been used elsewhere for feature selection, predict-
ing heat-related emergency department visits, where FOS

searched about 140,000 candidate terms to find within
minutes a concise 3-term model, each term a cross-product
of multiple predictors [24]. While the role of FOS in feature
selection has similarity to other feature selection methods
such as principal component analysis (PCA) and partial
least squares, there are important differences. For example,
FOS finds features that have physical meaning, whereas
PCA finds a few linear combinations (eigenvectors) of all
the candidates, and these linear combinations do not have
physical meaning. In a recent application to WiFi indoor
positioning, FOS was significantly faster, and also more
accurate, than PCA [23].

In our study, all but one of the selected terms involved
nonobvious cross-product combinations of certain blood
count measures. Although the effectiveness of these terms in
predicting neutropenia was demonstrated by using them in
a three-nearest neighbour (3-NN) classifier, they could also
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Figure 3: (a)–(c) show a 2D representation of the chronological improvement of the partitioning of data through the addition of model
terms. This improvement can be measured by the distance between the means as indicated below the graphs.

be incorporated into many other classifiers such as weighted
voting [26], support vector machines [27], and IBM SPLASH
[28].

Figures 3(a)–3(c) show a 2D representation of the effect
of adding more terms to the FOS model. Not only does the
intergroup distance increase with additional model terms,
the partitioning line (not pictured) between the two groups
grows more complex and nonlinear in nature. Since many
datasets and relationships are nonlinear in nature, FOS-3NN
is an appropriate model due to its adaptability to provide
a better descriptor of the differences between the groups
at hand. Figure 4 compares the Kaplan-Meier curves for
the actual high- and low-risk groups and the predicted risk
groups in terms of patient survival to the first event during
treatment over the testing set [29].

In the present work, FOS has been used for feature
selection. Table 4 listing the 11 “optimal” terms found by
FOS is important because these terms have been shown here
to be good predictors of neutropenia when tested on an
independent set and appear to have clinical value. These

terms in particular should be tested in the future on larger
novel sets. If alternatively we had used cross-validation or
leave-one-out testing, then one set of features would not
have been shown to be effective on an independent test
set. Instead, 35 different concise sets of features would have
been found, each set tested on only one held-out case, while
our present approach has demonstrated the effectiveness
of the same set of features over an independent set. One
contribution of our paper is this set of 11 features, 10 of
which are cross-product terms that probably would not be
obvious to clinicians, and these 11 terms can now be used in
a 3NN classifier or in other classifiers by other investigators
without needing any knowledge of FOS. We do not claim that
3NN is essential to be used with these FOS-found features,
but very good accuracy was obtained with 3NN.

Clearly, there is much information to be harnessed and
interpreted from the early kinetics of blood markers in
chemotherapy regimens. FOS-3NN exploits powerful char-
acteristics of 2 classification schemes. Fast orthogonal search
allows efficient examination of the 90-member candidate set
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Figure 4: The testing set survival curves for the actual patient population (a) and the predicted classes (b).

Table 6: Hazard ratios and P values for first-order variables.

Variable Hazard ratio (range) P value

Height 1.65334 (0.547–4.996) 0.37

Weight 0.53505 (0.143–2) 0.35

BMI 4.29314 (0.143–129.226) 0.4

Age 1.02712 (0.944–1.118) 0.54

WBC0 2.42659 (0.486–12.114) 0.28

HGB0 3.57073 (0.138–92.662) 0.44

PLT0 0.18231 (0.0508–0.654) 0.009

ANC0 0.38745 (0.0713–2.105) 0.27

WBC7 0.58236 (0.0892–3.802) 0.57

HGB7 0.00197 (0.00000174–2.226) 0.082

PLT7 5.62738 (1.41–22.451) 0.014

ANC7 0.63501 (0.0652–6.184) 0.7

WBC28 0.03496 (0.00367–0.333) 0.0035

HGB28 3.82722 (0.0379–386.047) 0.57

PLT28 2.90312 (1.15–7.334) 0.024

ANC28 10.86188 (0.779–151.382) 0.076

and the selection of relevant model terms. The strength of
the 3-nearest neighbour classifier lies in the high correlation
between the group classes and their member locations in the
selected feature space. Even one poor choice of coordinate
in an 11-vector training point could destroy the virtue of
the other characteristics since the NN classifier employs a
distance metric, which can be greatly influenced by just one
uncorrelated feature. This could drastically skew the output
of the cascaded 3-NN classifier and significantly degrade
the accuracy of the technique. Further studies with larger
datasets are needed to replicate this work on a separate and
larger dataset to confirm the innate value of CBC count data
in neutropenic prediction.

6. Conclusions

Here, we lay the groundwork for a tool that might be applied
in the future to prospectively identify patients at high risk for
neutropenia. Many authors have observed that incorporating
a model such as the one that this paper presents into clinical
practice would allow the early identification of high-risk
patients to target for preventative interventions and would
provide a cost-effective way to distribute expensive resources.
There is little doubt that many nonlinear models will surface
in future biological signaling prediction work. This paper
gives us a glimpse of the clinical utility of a nonlinear model
able to determine risk status for neutropenia based on early
blood count data.
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