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Chemical exchange saturation transfer (CEST) is one of the molecular magnetic
resonance imaging (MRI) techniques that indirectly measures low-concentration
metabolite or free protein signals that are difficult to detect by conventional MRI
techniques. We applied CEST to Alzheimer’s disease (AD) and analyzed both region
of interest (ROI) and pixel dimensions. Through the analysis of the ROl dimension, we
found that the content of glutamate in the brains of AD mice was higher than that of
normal mice of the same age. In the pixel-dimensional analysis, we obtained a map of
the distribution of glutamate in the mouse brain. According to the experimental data
of this study, we designed an algorithm framework based on data migration and used
Resnet neural network to classify the glutamate distribution images of AD mice, with an
accuracy rate of 75.6%. We evaluate the possibility of glutamate imaging as a biomarker
for AD detection for the first time, with important implications for the detection and
treatment of AD.

Keywords: CEST, Alzheimer’s disease, MRI, glutamate, Resnet, SVM

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease with insidious onset and progressive
development. Its clinical features include memory impairment, aphasia, and executive dysfunction,
among others. Currently, although pathological biopsy is widely used in practice, there is still
no gold standard detection method for dementia in AD. The typical pathological features are
senile plaques formed by the deposition of B-amyloid (amyloid-B, AB) and neurofibrillary tangles
composed of hyperphosphorylated tau protein and a large number of neuronal apoptosis (Barage
and Sonawane, 2015; Jayedi et al., 2019). In clinical practice, diagnosis also includes exclusion
methods and related clinical neuropsychological scale methods (Arvanitakis et al., 2019). There
is no effective cure for AD in clinical practice currently. Therefore, finding biomarkers that can be
used to objectively assess AD progression and disease staging is of great clinical significance.
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Magnetic resonance imaging (MRI), as a non-radiation, multi-
parameter imaging method, is widely used in the study of
neurological diseases. Chemical exchange saturation transfer
(CEST) appears as a novel MRI contrast mechanism, which
has been widely used in studies of cerebral ischemia (Wang
et al., 2015), glioma (Zaiss et al, 2015, 2017), tissue pH
quantification (Robert et al., 2011) and nuclear Overhauser
effect (NOE) Value (Zhang et al, 2015). Traditional MRI
obtains tissue imaging by detecting the distribution of hydrogen
proton content, but it cannot detect the signal of a specified
macromolecule. The CEST technology uses a pre-saturation pulse
with a specific Gaussian distribution to fully pre-saturate the
hydrogen protons of a specific substance in the tissue. The
saturated hydrogen protons in the macromolecules chemically
exchange with the hydrogen protons in the free water, resulting
in a decrease in the signal of the latter, and the reduced
signal amount difference can indirectly reflect the content
distribution of specific macromolecular substances. CEST can
calculate the asymmetric magnetization transfer ratio asymmetry
(MTRasym) through the asymmetric analysis formula, which can
quantitatively analyze the concentration of the test substance and
the progression of related diseases (Jones et al., 2013).

Chemical exchange saturation transfer technology has been
successfully applied in research in the medical field due to its
non-invasive and quantitative detection characteristics (Harris
Robert et al., 2018). In 2014, Li et al. (2015) at Beijing Hospital
first applied amide proton transfer (APT) imaging to a study
of Parkinson’s patients and found that the CEST signal of
endogenous amide protons is helpful for the diagnosis of
Parkinson’s. In further research, APT showed the potential to
be superior to DTI in terms of PD progression grading. These
studies show the great potential of CEST technology in the field
of medicine. This article aims to study the application of CEST
in AD mouse models, focusing on exploring the differences in
AD mouse models at different development stages. In addition,
to weaken the influence of environmental factors such as the
uneven magnetic field, the CEST image is corrected by the water
saturation offset reference (WASSR) to obtain a more accurate
mouse model brain image.

As one of the basic tasks of computer vision, image
classification is widely used in the field of medical image
processing. The mouse brain glutamate distribution images
obtained in this experiment can also be used as the source
data for image classification for classification tasks. Support
Vector Machine (SVM) is a binary classification model based
on statistical learning theory, which is widely used for its
solid theoretical foundation and many excellent characteristics.
Cortes and Vapnik (1995) proposed a human body recognition
algorithm based on the histogram of gradients (HOG) combined
with SVM to achieve high accuracy classification. Traditional
image classification algorithms need to manually design and
extract features. They perform well in simple classification tasks,
but they are not always satisfactory in complex classification
tasks. With the advent of the era of intelligent information, deep
learning came into being. The convolutional neural network is
a neural network model that has been widely used in recent
years. In terms of image classification, more and more excellent

TABLE 1 | Number of mice used.

Alzheimer’s disease (AD) Wild Type (WT)
2 month 4 5
4 month 10 11
7 month 3 2
12 month 4 10

networks have also been proposed, such as the original Lecun
Network (LeNet), Alex Network (AlexNet), Visual Geometry
Group Network (VggNe; Karen and Zisserman, 2015) (VggNet),
Google’s diffusion network (Gomez et al, 2014) (Inception
Network, InceptionNet), and Residual Network (He et al., 2016)
(Residual Network, Resnet). The accuracy of image classification
by a convolutional neural network is continuously improving,
even exceeding the human level. This article verifies the potential
of glutamate as a biomarker for AD detection in the framework
of SVM and Resnet. Based on analyzing the MTRasym values,
we designed a data migration algorithm based on the age of the
month to provide a deep learning framework with raw data with
stronger classification capabilities.

MATERIALS AND METHODS

Experimental Design

All MRI experiments were performed in a 30-cm bore 9.4 T
magnet (Bruker BioSpec 94/30, Billerica, MA, United States).
MRI images were acquired using a 72 mm quadrature volume
resonator as a transmitter and a cryoprobe as a receiver. The
CEST experiments were performed with the 2D RARE sequence
with TR/TE = 1200 ms/4 ms and a RARE factor = 16. The
saturation pulse amplitude is 5 uT and the saturation offset
sweeps were from —5 to 5 ppm with 0.25 ppm increments. The
matrix size is 100 x 100 and the FOV is 16 mm x 16 mm.
The slice thickness is 2 mm. A water saturation shift referencing

Cortex

Corpus callosum
Hippocampus
Caudate

Subiculum

FIGURE 1 | Selected ROls in the mouse brain.
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caudate, subiculum. The specific positions are presented in
10000 Figure 1 in order from top to bottom.
9000 .
Data Analysis
o000 Calculation of Magnetization Transfer Ratio
7000 Asymmetry
6000 | In the CEST analysis process, one of the most important
L parameters commonly is the magnetic transfer ratio asymmetry
5000 (MTRasym), which can also be called CEST asymmetry (Meng
4000 etal,, 2021). It's expressed by the following formula:
3000 S(—Aw) — S(Aw)
MTRasym (Aw) = # (1)
2000 | So
1000 Where w is the analyzed offset frequency, S(—w) and S(w) refer
. to the signal strength on the positive and negative sides of the Z
SeiESoEatmaclinn spectrum, and SO is the unsaturated signal strength.
FIGURE 2 | Chemical exchange saturation transfer (CEST) data after WASSR BO Unevenness Correction
correction. To eliminate the influence of B0 field inhomogeneity, it is

(WASSR) method was applied to correct the By map (Kim
et al., 2009). The saturation pulse amplitude is 0.5 uT and
the saturation offset sweeps were from —1.5 to 1.5 ppm with
0.125 ppm increments for WASSR. The MTRasym and Amide-
CEST contrast map was calculated after By correction using
Matlab (MathWorks, MA, United States) (Dou et al., 2019).

We divided AD and WT mice by age, and the number of mice
in each group was recorded in Table 1.

Region of Interest Selection in the
Mouse Brain

We selected five representative areas of the mouse brain for key
analysis, which are the Cortex, corpus callosum, hippocampus,

necessary to perform shimming correction on CEST MRI. We
obtain the position of the center frequency through the WASSR
map and then offset the CEST data accordingly to obtain the
corrected CEST data (Debnath et al., 2020). Figure 2 shows the
deviation of CEST data after correcting by WASSR data for the
same mouse. Abscissa distance between the two lowest points is
the offset value of the center frequency.

Chemical Exchange Saturation Transfer
Analysis of Region of Interest

Dimensions

Based on the above method, we analyzed the experimental data in
two dimensions: region of interest (ROI)-based and pixel-based.
First, we analyze the regional mean value of the selected ROIs,
and obtain the MTRasym mean value map of 5 ROIs in the mouse
brain. The frequency ranges from —2,000 to + 2,000 Hz, where

A MTRasym@ROI4 B MTRasym@ROI4
0.06 T T T T 0.06 T T T T T
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FIGURE 3 | (A) MTRasym within 4 month group. (B) MTRasym within 12 month group. Comparisons between group AD and WT of 4 m (A) and 12 m (B).
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TABLE 2 | The glutamic acid content of each ROI at different months of age.

Age 2 month 4 month 7 month 12 month
Type AD wT AD wT AD wT AD WT
RO 0.02162 0.01768 0.02195 0.01419 0.0817 0.0254 0.03232 0.0273
ROI2 0.02178 0.01368 0.02016 0.01266 0.0313 0.02442 0.03044 0.02767
ROI3 0.02227 0.01704 0.02011 0.01573 0.03461 0.02376 0.0313 0.0286
ROI4 0.02478 0.01326 0.02013 0.01517 0.03805 0.03434 0.03171 0.02545
ROI5 0.01743 0.01042 0.01511 0.01511 0.03186 0.02833 0.02998 0.01972
Bold values indicate mean glutamate content of AD mice and WT mice was equal in ROI5 in 4-month-old mice.
1,200 Hz represents the content of glutamic acid (Zhou et al.,

p . .. . & ( MTRasym@ROI5
2018). The mice were divided into four groups of 2, 4, 7, and 0.06 x w ‘ ‘
12 month according to their age, including different numbers of
AD mouse models and wide-type (WT) mice as controls. 0.05 - 1

Comparisons Between Groups Alzheimer’s Disease
and Wide-Type

We grouped the mice by AD and WT, and calculated MTRasym
for each mouse: processed the CEST data into a smooth By
curve by Lorentzen Fitting, corrected the center frequency with
the WASSR data, and then obtained the MTRasym image by
calculating the asymmetry of the Z spectrum. For each ROI,
we calculated the mean value of MTRasym of mice in different
month groups. Some of the results of ROI 4 are presented in
Figure 3 below as an example.

It can be observed from the figure that the By data shows a big
difference after the calculation of MTRasym. Among them, the
overall values of AD mice in different month groups are mostly
higher than those in the WT group, and the place of 1,200 Hz
that reflects the glutamate content also meets this rule. We take
the value at 1,200 Hz and organize it into Table 2 as follows:

Through the quantitative analysis of glutamate content, we
know that, except for the two groups of equal values of ROI5 in
the 4 month group, all other values meet the higher trend of the
AD group. From the overall data in the table, the level of AD mice
in the 2 and 4 month groups was maintained above 0.02, and the
level in the WT group was between 0.01 and 0.02; the levels of AD
mice in the 7 and 12 month groups were maintained above 0.03,
and the level in the WT group was maintained at 0.02 ~ 0.03.

Comparisons of Different Month-of-Age Groups
Starting from the AD group of mice, we grouped all AD mouse
models by month, shown in Figure 4. Observation from the
MTRasym chart shows that the values at 3 ppm in the 2 and
4 month groups are lower than the values of 7 and 12 month to
varying degrees. But the difference between the 2 month group
and the 4 month group is not big, and the same is true between
the 7 and 12 month groups.

Starting from the WT group of mice, all WT mouse models are
grouped by months of age, and the same pattern can be found by
observing the MTRasym diagram: that is, the glutamate content
of mice of older age (7 month, 12 month) is higher than that of
younger age (2 month, 4 month) mice, and the difference inside
the older age groups and the younger age groups is not obvious.

——12m \

0.5 1 1.5 2 25 3 3.5 4 4.5 5
saturation offset / ppm

FIGURE 4 | Comparisons between different month age groups of ROI 5.

In summary, we can conclude: as the months of age increase,
the glutamate content will gradually increase and the span
between 4 and 7 month is more obvious. This rule can rule out the
influence of AD symptoms. Therefore, we cannot detect whether
there is AD disease by the fixed value of glutamate content
alone, but should also be combined with the months of age to
evaluate. This finding also brings challenges to the classification
experiments later in this article.

Chemical Exchange Saturation Transfer
Image of Alzheimer’s Disease Mouse in

Pixel Dimension

The above analysis is based on 5 ROIs manually selected. Given
the trend that the content of glutamate in the mouse brain
gradually increases with the development of AD, we believe
that glutamate has the potential to be used as a biomarker for
AD detection. In further research, we propose to improve the
accuracy of the analysis, extending the analysis from the mean
value of ROI to the analysis based on the pixel dimension: treat
each pixel as a separate ROI and perform the same Magnetization
transfer ratio asymmetry calculation on each ROI to obtain
the glutamate distribution map of the whole mouse brain.
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Representative images taken from 12 month group of mice are
presented in Figure 5 below.

With the increase of months of age, the Glu images of mice
in the AD group and the control group showed a certain degree
of an upward trend. At the same time, comparing the AD
group mice with the WT group mice of the same month old,
it can be found that the glutamate content of the AD group is
slightly higher than that of the WT group, which is consistent
with the conclusion we obtained in the analysis based on ROI,
namely AD disease comes with varying degrees of increase in
glutamate content.

Application of Machine Learning in
Glutamate Distribution Images

The purpose of this article is to explore the potential of glutamate
as a biomarker for AD detection. Therefore, for unknown MRI
data, how to detect the presence of AD has become a critical
question. We present the MTRasym data in the form of images,
and the color of the pixel points represents the glutamate content
of the location. We consider applying machine learning domain
knowledge to the research of this article, that is, to detect whether
amouse with an unknown MRI image suffers from AD symptoms
through image two classification.

Support Vector Machine Pattern Classification

Support vector machines is a supervised machine learning model
that maps the feature vector of an instance to some points in
the space (Niu et al., 2021). The purpose of SVM is to draw a
line to “best” distinguish these two types of points, so that if
there are new points in the future, this line can also make a
good classification. SVM is suitable for small and medium-sized
data samples, to solve non-linear, high-dimensional classification
problems. SVM was first proposed by Vladimir N. Vapnik and
Alexey Ya. Chervonenkis in 1963. The current version (soft
margin) was proposed by Corinna Cortes and Vapnik in 1993
and published in 1995 (Diaz-Gonzélez et al., 2021). Before the
advent of deep learning (2012), SVM was considered the most

Weight layer

F(x) ReLU

Y

Weight layer

F(x)+x

H(x)

FIGURE 6 | Residual block.

successful and best performing algorithm in machine learning in
the past ten years.

Principle of the Experiment

The key of SVM to achieve two classifications is to find the
optimal decision boundary, which should be as far away from the
data point as possible (Maldonado et al., 2021). That is to say,
in the sample space W, we need to find the hyperplane of the
optimal solution to maximize the distance M from any point x in
the space to the hyperplane. Set M as the objective function, then

)

FIGURE 5 | (A) (WT-12 month) (B) (AD—12 month). AD group (right) and WT group (left) glutamate distribution image.
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FIGURE 7 | (A) Before data migration. (B) After data migration. Comparison of a sample in the 2 month-WT group before and after data migration.

Algorithm: Image generation of glutamate in mouse brain under data offset

Input: CEST.mat, WASSR.mat, ROIAnalyze.mat

Output: Glutamic acid distribution image in mouse brain, GluMTRasym.mat;

Read in ROIAnalyze data

For wassr, cest in dataset:

of 10000)

End

For GIuMTRasym in youngGroup :
Read in GluMTRasym data

Draw ROI1—5,

End

Calculate the mean values of the AD group and WT group of the low—age group({2m.4m) and
the high—age group(7m.12m) respectively and save them in avg.mat

Calculate the difference between the advanced and young mice in the group AD and WT
(AD_avg, WT_avg. AD_ROI1=5, WT_ROI1—5)

Read in wassr data for SNR threshold filtering

Each effective value, automatically draw a single pixel ROl and save it in a mask file
Use wassr to estimate the BO unevenness map and record it as BOmap.mat

Read in cest data and correct it through BOmap

Calculate the value of MTRasym for each ROl (a single pixel is regarded as an ROl ,a total

Take out the value of 1200Hz in each ROl and assign it to GluMTRasym

Take out the effective value and add AD_avg
add AD_ROI1—=5, WT_ROI1—b offset processing respectively
QOutput image of glutamate distribution in mouse whole brain

FIGURE 8 | Algorithm about data offset for glutamate image.

For any sample that is linearly separable, the available formula is:

wixi+b> 41, yi=+I1
-1

(3)
wixi+b<—-1, v

The optimal classifier can be obtained by Lagrangian multiplier
method:

f(x) = sgn((w*,x) +b) (4)

When the linear classification hyperplane of the training data
cannot be obtained, the input vector (sample) can be mapped
to the high-dimensional feature space by selecting a non-linear
function (Mojdeh et al., 2021), and the optimal classification

hyperplane can be established in the high-dimensional feature
space (Sonobe et al., 2019; Yeboah et al., 2020).

Experimental Results

There are a total of 48 data sets in this experiment, including 20
images of AD mice and 28 images of mice in the WT group. We
divide 30% of the data as the test set and 70% of the data as the
training set. The accuracy of the test set is 66%. It can be seen from
the experimental results that the MRI images of the mouse brain
in the AD and WT groups have a certain classification accuracy,
but due to the small number of data sets and the limitations
of the SVM algorithm itself, the classification accuracy needs
to be improved. Therefore, we consider using deep learning for
classification below.
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TABLE 3 | Confusion matrix.

Actual value Predictive value

Positive class Negative class

Positive class TP FN
Negative class FP TN

Deep Learning Applications

Deep learning is to construct a deep artificial neural network
by simulating the neural network system of the human brain,
analyzing and interpreting the input data, and extracting the
low-level features of the data into high-level features to achieve
classification. Deep Convolutional Neural Network (DCNN), as
one of the typical deep learning applications, has an important
position in the field of image classification (Qian et al., 2020).
Compared with traditional image classification algorithms that
manually extract features, convolutional neural networks use
convolution operations to feature input images. Extraction can
effectively learn feature expression from a large number of
samples, and the generalization ability of the model is stronger.

Model Selection

Deep convolutional neural networks continue making
breakthroughs in image classification tasks, and the increase in
network depth improves its feature extraction capabilities (Kim
et al., 2018). However, as the depth of the network increases,
the problem of gradient disappearance becomes more and more
serious, and the optimization of the network becomes more and
more difficult. Resnet’s proposal realizes the improvement of
the performance of image classification tasks while deepening
the network (Wang et al., 2019). ResNet is composed of stacked
residual blocks, and the residual block structure is shown in
Figure 6.

In addition to the weight layer, the residual block also
connects the input x directly to the output through a cross-
layer connection. F(x) is the residual mapping, H(x) is the
original mapping, and the residual network makes the stacked
weight layers fit the residual mapping F(x) instead of the
original mapping H(x), then F(x) = H(x)-x, and learning residual
mapping is simpler than learning original mapping. In addition,
the cross-layer connection allows the characteristics of different
layers to be transferred to each other, which alleviates the problem
of gradient disappearance to a certain extent.

Algorithm Design Based on Data Migration

This article is based on the Resnet-18 training model to test the
difference between the MTRasym images of the AD mouse model
and the WT group. In common deep learning tasks, big data is the
prerequisite for research, but in many research examples, the data
itself is expensive to collect or even impossible to collect (Park
et al., 2020). A large number of samples can rarely be collected.
In the experiments in this article, each mouse data obtained from
genetic modification to breeding to the target age requires a long
span of preparation. Therefore, for the study of mouse CEST
images on deep learning, we cannot get thousands of data in the
neural network for sufficient training, so we need to solve the
specific problems of the deep learning task in the case of such a

small sample. The so-called small sample learning is to use much
smaller data samples than required for deep learning to achieve
the effect of close or even surpassing big data deep learning (Li
etal,, 2003). In other words, the methods to achieve small sample
learning are mainly: let the model have prior knowledge of related
tasks and make the learning effect generated by each data better.

After the network structure is determined, we need to find
a solution for the small sample problem in the experiment of
this article. Regarding providing prior knowledge to the model,
we choose the method of transfer learning, which is to train a
basic network through a large-scale public data set, and then
fine-tune it on the target data set. Previous experiments have
proved that ResNetl8 pre-trained by ImageNet can be used
as the basic network for various visual tasks. As long as the
data learned is not very different from the type contained in
ImageNet, this method can be guaranteed to be effective. This
is also the basis for small sample learning. Experiments have
proved that the basic network based on ImageNet pre-training
effectively improves the accuracy of the experiment in this paper.
The addition of migration learning in the ablation experiment
increases the accuracy by 12%.

About increasing the learning effect produced by each CEST
data, our first thought is to increase the size of the data
set through image augmentation methods such as translation,
rotation, and cropping. In addition, from the analysis of the
average value of the ROI dimension above, the increase in
months of age will also lead to an increase in glutamate
content. From the analysis results, the glutamate content of AD
mice in the young group represented by 2 and 4 month is
maintained at around 0.022, and the WT group is maintained
at about 0.015; Correspondingly, the glutamate content of the
old group is represented by 7 and 12 month is around 0.032
and 0.023.

Based on this result, AD mice aged 2 month and WT mice
aged 12 month did not differ much in the content of glutamate.
If the experiment simply mixes all the month-age data, it is
difficult to correctly classify this part of the data. Therefore,
this paper proposes a data offset algorithm based on the age
of the month: the calculation result of the glutamate content
in the ROI dimension is programmed to calculate the scale
that the data of the young group of mice should be offset,
and it is applied to the data of the 2 and 4 month group of
mice. The data from the 7 to 12 month groups were combined
to generate the final AD mouse GluCEST MRI dataset. Then,
different classification algorithms were used to perform binary
classification experiments of AD and WT. The before and after
effects of data offset are shown in Figure 7, and the algorithm
flow is shown in Figure 8.

RESULTS

In addition to the Resnet network introduced above, we
also used different lightweight networks to do comparative
experiments, showing that the results are slightly inferior to the
Resnet algorithm framework of this article, which proves the
effectiveness of this algorithm. In machine learning competitions
for image classification, F1-score is often used as an evaluation
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TABLE 4 | Results in machine learning.

Experimental method Accuracy/% Recall/% F1-score/% Precision/%
SVM Data enhancement 71.3 80.7 75.70934211 70.4
Mobilenet DE + Transfer learning 721 81.9 76.68818182 69.3
Densenet DE + Transfer learning 76.5 85.4 80.70537369 71.5
Resnet18 DE + Transfer learning 77.8 86.5 81.91965916 73.2
Resnet18 DE + Transfer learning + Data offset 79.6 87.1 83.18128374 75.6

Bold values indicate the model with the highest accuracy among all classification experiments.

metric. F1-score can unify the evaluation indicators, consider the
values of the correct rate and the recall rate, and make a more
scientific judgment on the classification results. Therefore, this
method is also used in this paper to calculate the final accuracy
rate. First, the confusion matrix (Table 3) is used to indicate
whether each category is predicted correctly or incorrectly. The
first letter in the predicted value of the confusion matrix indicates
the correctness of the judgment (True or False), and the second
letter indicates the sample prediction label (Positive or Negative),
and then use the values in the confusion matrix to calculate the
Accuracy, Precision, Recall, and the F1-score, the formula is as
follows.

TP + TN
Accuracy = (4.1)
TP + TN + FP 4+ FN
. TP
Precision = ———# (4.2)
TP + FP
TP
Recall = ——+# (4.3)
TP + FN
2 % (Precision * Recall)
F1 — score = (4.4)

Precision + Recall

The comparison results of various algorithm frameworks are
presented in Table 4. We use the traditional method SVM for
classification with an accuracy of 70.4%, and the performance of
the two lightweight neural networks Mobilenet and Densenet is
not much different from SVM. In contrast, Resnet achieved 73.2%
accuracy under the same conditions. After adding the above-
mentioned month-age-based data offset algorithm, an accuracy
rate of 75.6% was achieved. And the F1-socre of this scheme is
also the highest at 83.18%. The experimental results demonstrate
the validity of the framework established in this paper, and to
a certain extent demonstrate the possibility of glutamate as a
biomarker for AD disease detection.

The limitation of the classification accuracy in this experiment
mainly comes from the small number of samples, and a single
sample has a greater impact on the test results. In addition,
from the analysis of MTRasym data, it can be seen that the
content of glutamate increases with months of age. The 2 month
image of the AD group and the 12 month image of the WT
group may have little difference in the level of glutamate; even
if we analyze the ROI glutamate level, the mean shift is adjusted
by 2 month and the data of AD mice in the 7 month group,
but elevated glutamate levels have not been proven to be the
only definitive standard for monitoring AD symptoms in mice.
Therefore, it is still challenging to establish a unified model to

monitor AD in mice through machine learning. In the future,
we need to continue to collect and expand the data set of
cultured mouse samples, explore a better classification model
that combines the information of the months of the mouse,
and provide more information for the detection of glutamate as
a marker for AD.

CONCLUSION

In this study, we analyzed the CEST signal of AD mice in two
different dimensions through Z spectrum asymmetry, combined
with water saturation offset data to correct the image, and showed
the glutamate of the mice after AD changes level. We compared
a variety of neural network models, chose Resnet with better
effect, and designed a data migration algorithm adapted to the
characteristics of the data in this article. Due to the changing
nature of the glutamate content of the mouse brain based on
the age and the limitations of the current model, the accuracy
rate is currently as high as 76.5%. In the future, we will optimize
the machine learning model based on the analysis of the small
sample data and the characteristics of the data itself to improve
the accuracy of model classification.
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