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Abstract: Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have
essential functions in cell communication processes in the central nervous system (CNS). Neurons,
astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are
important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and
gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the
pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides,
they have important roles in mediating neuroprotection by internal or external molecules. However,
regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review,
we provide an overview of the known mechanisms that regulate the expression of the most abundant
Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders,
and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated
by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and
stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer’s, Parkinson’s,
and Huntington’s diseases, and neuroprotection are analyzed with the aim of shedding light in the
possibility of using Cx regulators as potential therapeutic molecules.

Keywords: connexins; gap junctions; microglia; astrocytes; neurons; neuroprotection; neurodegenerative
diseases; epigenetics

1. Introduction

Cellular communication, through dynamic and often bi-directional interactions between glial
and neuronal cells, is fundamental for the development and normal function of the central nervous
system (CNS) [1]. In this regard, intercellular communication is vital not only to detect changes from
the extracellular matrix, but also from soluble mediators present in the microenvironment and other
neighboring cells to maintain homeostasis. In the CNS, intercellular communication can occur through
synaptic transmission, paracrine signaling, and electrical coupling [1]. Gap junctions (GJs) are complex
structures constituted by homomeric or heteromeric hexamer of connexin (Cx) hemichannels (HCs)
located in the apposed plasma membranes of two adjacent cells [2]. Cxs are characterized by having
nine domains, four alpha-helical transmembrane domains, two extracellular loops, and a unique
intracellular loop, cytoplasmatic carbonyl and amine terminals [3].

In the CNS, GJs allow the intercellular transport of small molecules by passive diffusion. These
molecules are typically Ca2+, Na+, and K+ ions, metabolic molecules, such as glucose, adenosine
triphosphate (ATP), and cyclic adenosine monophosphate (cAMP), neurotransmitters like glutamate,
and gliotransmitters [4,5]. In mammals, the different cell types present in the brain express over ten
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different Cx proteins, which make it an organ with diverse and complex intercellular communication.
For instance, in trigeminal ganglia neurons, mRNA of Cx26, Cx36, Cx40, and Cx43 were detected [6].
However, in neurons, protein expression was mainly limited to Cx26, Cx36, and Cx40 with barely
detected levels of Cx43 [6]. In addition, during the neuron life cycle, the presence and protein expression
level of these Cxs varies [7]. For instance, in mouse, a dramatic reduction in Cx36 protein levels
is observed from the embryonic neurogenesis to the post-natal maturation [7]. Similarly, mRNA
and protein of Cx26, Cx30, and Cx43 have been detected in astrocytes; however, their expression is
heterogeneous throughout the CNS [8,9]. For example, protein levels of all three Cxs are abundant
in subcortical regions, while in the cerebral cortex, Cx30 and Cx26 protein levels are moderate and
low, respectively [10]. Furthermore, Cx30 is not detectable in astrocytes from the white matter [11].
These results suggest functional differences in GJ based on different functional requirements among
CNS regions. On the other hand, different mRNA and protein levels of Cx32, Cx36, and Cx43 have
been found in microglia depending on its state, resting or activated, and the effector that triggers this
state shift such as tissue damage or a pathological state [8,9]. For instance, microglia in the resting
state highly expresses Cx32 and Cx36 mRNA and protein [12,13], and Cx43 mRNA or protein is rarely
detected [14–16]. Conversely, in activated microglia, it has been observed the overexpression of Cx32,
Cx36, or Cx43 proteins [17–20].

Despite the relevance that all Cxs have for intercellular communication in the brain, recent studies
have unveiled important roles for Cx30, Cx36, and Cx43 in cell homeostasis, neurodegeneration, and
neuroprotection. Cx30, which is one of the main Cxs present in astrocytes, has a fundamental role
in astrocyte-astrocyte communication, nutrients transport, and K+ buffering [21]. In animal models,
specifically in mice, Cx30 is involved in cognition and behavior [22]. For instance, knocking out Cx30
modifies the response of mice to novel environments and impairs the recognition of novel objects [23].
Additionally, it has been shown that Cx30 modulates glutamate transport in the hippocampus,
highlighting the importance of this Cx in regulating the excitatory synaptic transmission [24]. On the
other hand, Cx36 is thought to play an essential role in neuronal development because its expression
reaches a maximum when extensive inter-neuronal coupling takes place [25]. Indeed, Cx36 is the
primary Cx in neurons, and its knockout (KO) leads to almost a complete loss of neuronal GJ coupling
in the mature CNS, which primary role is the modulation of synchronized oscillatory activity in the
CNS [26–28]. Furthermore, Cx36 KO revealed that electrical coupling has an important role in learning
and memory [29], in high-frequency and γ-oscillation in the hippocampus [28,30], and synchronized
activity in the inferior olivary nucleus, inferior olive, and cerebellum [31–33]. In contrast to Cx30 and
Cx36, which are restricted to astrocytes and neurons, respectively, Cx43 protein is mainly present in
astrocytes and active microglia [34,35], making this the most important Cx for the GJ coupling between
astrocytes and HCs present in the microglia. Furthermore, Cx43 is also present in the endothelial wall
of blood vessels; however, Cx43 protein levels are low in healthy blood vessels [36]. Figure 1 shows a
schematic representation of the distribution of Cx30, Cx36, and Cx43 in different cells of the CNS.

On the other hand, compiling evidence suggests that deregulation of these Cxs correlates with
neurodegenerative diseases. For example, in rat and mouse models of Parkinson’s disease (PD),
astrocytes in the striatum showed an increased level of Cx30 [37,38]. Moreover, while neuronal survival
is reduced in damaged neuronal networks due to excessive coupling, in Cx36 KO animals, neuronal
death is reduced [39]. Conversely, in in vitro assays, the acute application of amyloid-β25–35 (Aβ25–35)
increases the activity of Cx36 along with pannexin 1 channels leading to potential neuronal death [40].
Additionally, changes in protein and mRNA levels of Cx43 have been correlated with Alzheimer´s
disease (AD) in human post-mortem brain tissue, where reactive astrocytes are overexpressing this Cx
co-localize with ~80% of amyloid plaques.

Given the relevance of Cx30, Cx36, and Cx43 in the CNS, we provide an overview of the regulatory
mechanisms involved in the expression of these Cxs and their role in brain cancer, CNS disorders, and
neuroprotection. In particular, we focus on recent advances in understanding the mechanisms that
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explain the role of selected Cxs in CNS disorders and neuroprotection, which can shed light on the
development of novel therapeutic opportunities.

Figure 1. Schematic representation of the distribution of Cxs in the CNS. Cx30 and Cx43 are mainly
present in astrocytes; while Cx36 is mainly expressed in neurons.

2. Connexins: Gene Structure and Transcriptional Regulation via Epigenetic Mechanisms

Among the different Cxs, there are differences in their gene structure that might underlie
cell-type-specific expression patterns. Understanding then the molecular basis of the transcription
control of Cxs is a crucial point to figure out the clinical effects of their dysregulation. Although
several studies have unveiled the control that different transcription factors exert on Cxs expression
(review in [41,42]), gene transcription control via epigenetic machinery has gained attention in clinical
contexts. For instance, in cancer and neurodegenerative diseases, altered gene expression patterns
of essential genes, such as oncogenes and tumor suppressor genes, have been correlated with the
aberrant regulation of the epigenetic machinery and thus of the different epigenetic traits [43,44]. Then,
understanding how aberrant changes in the epigenetic machinery affect Cxs transcription and their
role in the onset of relevant diseases is of interest. We provide here an overview of the relevant traits
associated with the gene structure and the epigenetic control of transcription of selected Cxs, namely
Cx30, Cx36, and Cx43, in brain cells.

2.1. Gene Structure

The general gene structure of Cxs is considered to be constituted by a 5´untranslated region (5´-UTR)
on exon 1 separated from the Cx coding region and subsequent 3´-UTR [42,45]. However, accumulating
evidence has shown that this simple gene structure presents several variations. For instance, several
Cxs present alternative splicing forms, implying that different 5´-UTRs can be spliced in a consecutive
or alternate manner. It has also been detected the presence of introns in the coding region of several
Cxs [42,45].

Under this perspective, Cx30, Cx36, and Cx43 have variations in their gene organization compared
to this simple model. We focus here in the observed gene organization of these Cxs obtained from
human brain cDNA. Cx30 is encoded by the Gap Junction Protein Beta 6 (GJB6) gene present in
chromosome 13q12, which has been reported to have six different exons. Exons 1 to 5 are non-coding
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exons located upstream of the coding exon 6. However, the cDNA from the human brain only
displays two non-coding exons, 3 and 5, and the coding exon 6. Some of the Cx30 exons can be
alternatively spliced, leading to high variability in the 5´non-coding region of the Cx30 transcripts [46].
Besides, tissue-specific splicing has been suggested since the non-coding exon 3 is present only in
nervous system cells [46]. Cx36 is encoded by the Gap Junction Protein Delta 2 (GJD2) gene present in
chromosome 15q14, which is interrupted by a 1.05-kb intron, which is located 71 bp after the translation
initiation site. This intron separates the amino-terminal region domain from the first transmembrane
region [47]. Cx43 is encoded by the Gap Junction Protein Alpha 1 (GJA1) gene present in chromosome
6q22-q23, which is composed of two exons with an intervening intron of 11 kb. The first exon contains
most of the 5´-UTR while the second exon contains 16 bp of the 5´-UTR, followed by 1149 bp of the
coding sequence, and about 1732 bp of 3´-UTR. In addition, there is a GJA1 pseudogene located within
chromosome 5 at 5q21-5q22 [48] (Figure 2).

Figure 2. Schematic representation of the genomic structure of (A) GJB6 (Cx30) on chromosome 13; in
the human brain it has been found that GJB6 has only the non-coding exons 3 and 5 and the coding exon
6. (B) GJD2 (Cx36) on chromosome 15, and (C) GJA1 (Cx43) on chromosome 6. Each box represents an
exon, and solid red boxes represent the coding regions.

2.2. Transcription Regulation via Epigenetic Mechanisms

Epigenetic machinery, together with specific transcription factors, controls Cxs expression, making
it possible to find Cxs distinctively expressed in different mammal cells [49]. However, there are
many cell types that lack GJ, such as mature sperm, erythrocytes, differentiated skeletal muscle cells,
among others [49]. Cxs are also found in various cell types like Cx43, which is one of the major
GJ in astrocytes; meanwhile, Cx36 found mainly in neurons. The major epigenetic mechanisms
involved in the regulation of Cx expression are DNA methylation (meCpGs), histone post-translational
modifications (PTMs), and posttranscriptional gene silencing by microRNAs (miRNAs). Collectively,
they create epigenetic landmarks that dictate the compactness of chromatin and transcriptional
state of cells. Based on that, chromatin can be divided into an active (eu-chromatin/transcription
“on”) and inactive (hetero-chromatin/transcription “off”) chromatin [50]. The presence of selected
epigenetic modifications at least partially drives the formation of eu- and hetero-chromatin. DNA
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hypermethylation of gene promoters has been typically linked to transcription silencing. This DNA
methylation is dynamically control by DNA methyltransferases (DNMTs) and DNA demethylases
enzymes (like the ten-eleven translocation methylcytosine dioxygenase 1 (TET1)) [51]. Among the
different histone PTMs, acetylation of histones can lead to decompaction of chromatin [52] and is
abundant at transcriptional starting sites of actively transcribed genes [53–55]. Histone acetylation
is regulated by the activity of lysine acetyltransferases (KATs) and histone deacetylases (HDACs),
which acetylates and deacetylates lysine residues in histones, respectively [56,57]. Histone methylation
is another important PTMs. The main amino acid residue methylated in histones is lysine, which
can be mono-, di- or tri-methylated. Contrary to lysine acetylation, the lysine methylation level
confers different regulation properties in a residue-specific manner. For instance, the presence of
tri-methylated lysine 4 of histone H3 (H3K4me3) in the gene promoter region is associated with
transcriptional activation, while active enhancers are enriched with mono-methylated H3K4 [58].
This histone methylation is modulated by histone lysine methyltransferases (KMTs) and histone
demethylases (HDMs) [59]. The other epigenetic control can be exerted via miRNAs that are short
single-stranded non-coding RNAs of ~22-nucleotides. These miRNAs regulate the gene expression at
a post-transcriptional level of a specific mRNA by a Watson–Crick base pairing between the miRNA
“seed region” and mRNA sequences. Once the miRNA is bound to an argonaute protein family
member (AGO), it serves as a guide for the core silencing complex, known as miRNA-induced silencing
complex (miRISC), to bind complementary sequences typically found in the 3’-UTR of mRNAs,
reducing protein expression levels via mRNA degradation, translational inhibition, or transient mRNA
sequestration [60,61] (Figure 3).

Figure 3. Regulatory epigenetic processes on Cx expression. Histone acetylation, DNA and histone
methylation, and microRNAs (miRNA) are presented as the main studied epigenetic controls over Cxs
gene regulation. Gene expression is correlated with histone acetylation, low DNA methylation in the
promoter region, while gene repression correlates with high DNA methylation in the promoter region
and low histone acetylation levels. Histone methylation control on gene expression is residue-specific
and also depends on the grade of methylation of the residue. Lysine can be mono-, di- or tri-methylated.
KATs: lysine acetyltransferases; HDACs: histone deacetylases; TET1: Tet-Eleven Translocation 1
enzyme, main DNA demethylases in mammals; DNMTs: DNA methyltransferases; HDMs: histone
demethylases; KMTs: lysine methyltransferases.
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Dysregulation of epigenetic machinery has been typically associated with the development of
cancer and neurodegenerative diseases. There is compiling evidence about the DNA methylation-driven
suppression of Cx expression in various human carcinomas, as well as the overexpression of Cxs in
cancer cells treated with DNMT inhibitors (DNMTi) that results in the enhancement of GJ activity,
though this effect is connexin-specific and cell type-dependent (reviewed in [42,62]). To the best of our
knowledge, only one study using neuronal cells from mouse has evaluated the effect of DNMTi on the
expression of the Cxs of interest. In this report, the neuronal cell line SN56 and pituitary cell line AtT20
from mouse were used to study the effect of DNMTi 5-azacytidine on the expression of Cx36, which is
a target gene of REST (RE-1 silencing transcription factor) [63]. The results showed no effect on the
expression of Cx36, suggesting that the regulation of the Cx36 gene can occur via other epigenetic
marks like histone PTMs, as discussed later. A recent work, in the neuropsychiatric field, attempted to
correlate changes in DNA methylation levels of the Cx43 gene intron region with major depression
disorders (MDD) [64]. This study, based on previous findings where levels of Cx43 and Cx30 in
the prefrontal cortex of subjects with depression that committed suicide were low [65], did not find
differences in DNA methylation levels between controls and MDD subjects, suggesting no association
between Cx43 gene methylation and the studied depression phenotype. In contrast, hypermethylated
CpGs in the promoter region of the Cx30 gene were found in high-grade glioblastomas (grade III and
IV) rather than in low-grade glioblastomas (grade I and II) [66]. Interestingly, this hyper-methylated
region corresponds to the recognition sites for Sp1 and Ap2 transcription factors [66] and correlates with
a progressive downregulation of Cx30 mRNA with the glioblastoma grade. Similarly, downregulation
in Cx43 mRNA was observed irrespectively of the methylation level found in the intron region of the
Cx43 gene for the different glioblastoma grades [66].

Evaluation of the effect of histone PTMs and their related epigenetic machinery on Cx expression
has not been widely explored, the effect of HDAC inhibitors (HDACi), such as trichostatin A (TSA),
sodium butyrate, and 4-phenylbutyrate, on Cx gene expression being the most studied. HDACi have
been evaluated primarily in cancer cells, leading to a global histone hyper-acetylation, enhancing
Cx expression and gap junctional intercellular communication (GJIC) [62]. Interestingly, it has been
found that cell-specific determinants are essential for the HDACi to alter the Cx gene transcription,
along with the presence of active or repressive epigenetic marks. For instance, TSA enhanced Cx36
expression in pancreatic cells, which express REST, a transcription repressor of neuronal genes present
in non-neuronal cells [63]. However, TSA did not trigger the expression of Cx36 in either of the mouse
cell lines SN56 and AtT20. This cell type-specific regulation of target genes was further explained by
the presence of the repressive mark H3K9me2 in the neuron-restrictive silencer element (NRSE) site of
Cx36 in AtT20 cells [63].

On the other hand, how histone methylation affects the expression of Cxs in brain tissues has
not been extensively studied. To the best of our knowledge, only one study has reported how
altered chromatin states associated with H3K9me3 enrichment causes the downregulation of Cx30
in astrocytes from cortical and subcortical brain regions of depressive patients [67]. Like DNA
methylation and histone PTMs, miRNAs have shown to regulate Cx expression. Despite that more
than 200 miRNAs [68,69] in mammalian neurons and astrocytes have been identified, there are only
a few reports relating miRNA to Cx expression in neurons and astrocytes, and these are mainly in
brain cancer. In the peripheral nervous system, when chronic constriction injury of the sciatic nerve
causes neuropathic pain, the overexpression of Cx43 and downregulation of miRNA-1 has been found,
suggesting that in neuropathic pain, there is a regulation in the expression of Cx43 by miRNA-1 [70].
In brain tumors, specifically in gliomagenesis, it was found that miRNA-221/222 acts as an oncogenic
miRNA by targeting Cx43, reducing its expression, and promoting glioma growth [71]. Furthermore,
a low Cx43 expression has been correlated with a poor prognosis in glioma patients [72]. Interestingly,
no studies associating miRNAs and expression of Cx30 and Cx36 have been reported. Nevertheless,
other reports have evaluated changes in the expression of Cxs induced by miRNAs in other tissues,
mainly muscle and heart, reviewed elsewhere [42,62].
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3. Life-Cycle Modulation of Connexins by Post-Translational Modifications

Post-translational modifications (PTMs) generally occur to control the activity of different
proteins [73]. In the case of Cxs, PTMs are involved in the modulation of their life-cycle, including
synthesis and degradation, trafficking, protein–protein interactions, and GJ channel gating [41].
Cxs have intracellular domains with relatively unstructured nature, making this a perfect scenario
for conformational changes induced by PTMs. Most Cxs have several consensus sites that can be
phosphorylated, acetylated, S-nitrosylated, ubiquitinated, and SUMOylated, among others. Despite
that the latest PTMs were discovered almost three decades ago, such as the ubiquitin-mediated
degradation system dated from the early 1980s, and related to SUMO, dated from the late 1990s [74,75],
studies reporting the role of different PTMs on different Cxs remain scarce. We highlight here some of
the most critical aspects related to PTMs of Cx30, Cx36, and Cx43, focusing on the PTMs present on
Cx43, which is one of the most studied Cx. The reader is then referred to recent and comprehensive
reviews on Cx PTMs [76–80].

The C-terminus (CT) of Cx43 is fundamental for the correct function of Cx43 GJs, being
subject to extensive PTMs such as phosphorylation, acetylation, s-nitrosylation, ubiquitination,
and SUMOylation [81]. Among the different PTMs, phosphorylation is the best known. Cx43 CT is
mainly phosphorylated on serine residues, although tyrosine and threonine can also be phosphorylated.
For instance, it has been reported that phosphorylation of Ser279 and Ser282 by the mitogen-activated
protein kinase (MAPK) promotes the endocytosis of Cx43 GJs [82]. Conversely, the phosphorylation of
Ser373 has been proposed to be an upstream gatekeeper of a cascade of PTMs involved in GJ endocytosis.
Due to that, this phosphorylation prevents protein kinase C (PKC) or MAPK to phosphorylate Ser368
or Ser255, which are involved in the loss of GJIC and Cx43 ubiquitination and endocytosis [83]. On the
other hand, GJ assembly has been associated with the phosphorylation induced by casein kinase 1
(CK1) on Ser325, Ser328, and Ser330 [84]. During mitosis, Ser255 and Ser262 are phosphorylated by the
cyclin-dependent kinase 1 (CDK1), which correlates with the downregulation of GJIC and increased
endocytosis of Cx43 during the cell cycle [85,86]. Similarly, to serine phosphorylation, tyrosine
phosphorylation has been correlated with the inhibition of GJ channels. For example, phosphorylation
of Tyr247 and Tyr265 by the tyrosine kinase 2 (TyK2) leads to an overall increase of intracellular levels
of Cx43 with decrease levels of Cx43 in the cell membrane [87]. In addition, it has been observed that
TyK2 also indirectly participates in the phosphorylation of Ser279 and Ser282 by MAPK and Ser368
by PKC [87]. Phosphorylation of Cx43 at different sites controls the interactions with other proteins,
GJ assembly, and turnover. There is then a large number of dynamic processes that are regulated by
kinase-mediated signaling pathways. Figure 4 shows the main phosphorylation sites that can be present
in Cx43 CT. Phosphorylation of Cx36, which is the major GJ component of electrical and mixed synapses
in the CNS, can occur via calcium/calmodulin-dependent kinase II (CaMKII), which plays an important
role in the activity-dependent plasticity of electrical synapses [88,89]. Two-putative CaMKII-binding
sequences of Cx36, located at the cytoplasmic loop and CT of Cx36, have been reported [88]. It has been
suggested that Cx36 follows a similar way of phosphorylation of glutamate receptors by CaMKII, where
CaMKII binds to the NR2B subunit of NMDA receptors [88]. Further studies on Cx36 phosphorylation
have been conducted on its homologous in fish, Cx35, where its phosphorylation state changes with
conditions that change coupling. For instance, in retinal neurons, phosphorylation-dependent changes
in coupling are driven by light adaptation or circadian rhythms [90,91]. Phosphorylation of the
homologous Cx36 causes uncoupling and was found to be carried out in Ser-110 in the intracellular loop
and Ser-276 in the CT by the protein kinase A (PKA) and the cGMP-dependent kinase (PKG) [92,93].
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Figure 4. Schematic representation of Cx43 embedded in a cell membrane. Main PTMs present in
Cx43 CT are listed. E1 and E2 are external loops, CL is the cytoplasmic loop, and M1 to M4 are the
transmembrane domains.

Another PTM is S-nitrosylation, in which nitric oxide (NO) binds to a reactive cysteine thiol to
produce an S-nitrosothiol [94]. S-nitrosylation of Cx43 CT, which constitutively occurs on Cys-271 at
GJ formed between endothelial cells and vascular smooth muscle cells [95], has been associated with a
high cell permeability due to opening of Cx43 HCs. The suggested regulatory mechanism of Cx43 HCs
permeability involves their dephosphorylation or modifications in cell oxidative environments due to
the presence of reactive oxygen species (ROS), including NO [96]. Indeed, in cortical astrocytes with
induced metabolic inhibition, it was observed an increment in cell permeability, which correlated with
Cx43 S-nitrosylation along with Cx43 dephosphorylation [97]. On the other hand, Cx S-nitrosylation
has been proposed to indirectly regulate Cx acetylation based on the relevance of NO to regulate
histone deacetylases (HDACs) [98]. In contrast, the presence of oxidative stress has been associated
with increased acetylase activity [99]. Putative lysine Nε-acetylation of Cx43 occurs on Lys-9 in the
N-terminus and Lys234 and Lys264 in the CT [100]. In cardiomyocytes, it has been shown that Cx43
acetylation controls its subcellular localization [100]. A recent study showed in vivo that proper
acetylation of Cx43 in the developing cerebral cortex requires of the Elongator complex [101], which is
critical for controlling cortical neuron migration [102]. Cx43 thus interacts with the Elongator subunits,
Elp1 and Elp3 [101], where the last subunit contains an acetyltransferase domain in its enzymatic
core [103]. In addition, this acetylation in Cx43 is removed by HDAC6 [101].

Ubiquitination and SUMOylation are PTMs that can also be present in Cx. Transfer of the
ubiquitin protein to a specific lysine residue on target proteins for degradation by an ATP-dependent
process occurs via the ubiquitin–proteasome pathway that comprises E1 ubiquitin-activating enzymes,
E2 ubiquitin-conjugating enzymes, and E3 ubiquitin ligases [104]. Similarly, lysine residues can be
post-translationally modified by the small ubiquitin-like modifier (SUMO) family of proteins that are
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involved in multiple cellular processes like transcription, translation, cellular transport, cell growth, and
programmed death [105]. In rodent brains, E3 ubiquitin ligases LNX1 and LNX2 localize at neuronal
GJ formed by Cx36 [106]. Similarly, in the neuroblastoma cell line N2A transfected with a fluorescently
labeled Cx36, both LNX1 and LNX2 interact with the Cx36 CT [106]. A significant reduction in neuronal
Cx36 GJ was observed as a response to Cx36 ubiquitination. It was also suggested that this PTM has an
important role in controlling the plasticity of electrical synapses formed by Cx36-containing neuronal
GJs [106]. Similar to Cx36, Cx43 can be ubiquitinated, although the ubiquitination sites on Cx43
remain elusive [77]. Cx43 CT has ten lysine residues that can be potentially ubiquitinated. Different
numbers of ubiquitin moieties can be conjugated to Cx43. This depends on several factors, such as
cellular localization of Cx43 and cell type [81]. For instance, it has been found in epithelial liver cells,
specifically in the rat cell line IAR20, that Cx43 can be modified with one up to four ubiquitinations at
basal conditions [77].

Meanwhile, it has been detected two ubiquitination sites in exogenously expressed Cx43 from C6
rat glioma cells, which are similar to the ubiquitination pattern observed in mouse astrocytes [107].
It has been proposed that ubiquitinated Cx43 can recruit different ubiquitin-binding proteins, leading
to its degradation via either autophagosomal pathway by interacting with proteins Eps 15 and p62,
or endolysosomal pathway by interacting with Tsg101 [77]. Furthermore, inflammatory conditions
activate the c-jun N-terminal kinase (JNK)-dependent ubiquitin-proteasome system in spinal astrocytes,
leading to reduce levels of Cx43, where astrocytic GJ expression and function is disrupted [108]. On
the other hand, Cx43 can be post-translationally modified by the small ubiquitin-like modifier (SUMO)
family of proteins. In Cx43, membrane-proximal lysines, located in the intracellular loop and CT at
positions 144 and 237, act as SUMO conjugation sites [100]. Opposed to Cx43 ubiquitinated, Cx43
SUMOylated helps to stabilize Cx43 at the plasma membrane [109]. Then, a crosstalk between Cx43
ubiquitination and SUMOylation to control Cx43 GJ endocytosis and degradation has been suggested.

4. Connexins in Diseases of the Nervous System

4.1. Role of Connexins in Glioblastoma

Glial cells fulfill a fundamental role in neuronal homeostasis maintenance and synaptic process
development. This is especially true for astrocytes, where expression of Cx30, Cx36, Cx43, and Cx46
regulates synaptic neurotransmission, neuronal plasticity, liberation and uptake of neurotransmitters,
inter-cellular communication, and cellular differentiation and growth [24,110,111]. However, changes
in Cx expression and activity, which are thought to be modulated by pro-inflammatory cytokines,
have been detected during illness-related processes [112,113]. This could have significant implications
during cancer progression and treatment as both processes increase pro-inflammatory factors [114,115],
which may explain cancer-related changes on Cx expression levels, cell localization, and PTMs like
phosphorylation [116].

Gliomas are the most common type of brain cancer and have been histologically divided
into four types: diffuse astrocytoma, oligoastrocytoma, oligodendroglioma, and glioblastoma [117].
Glioblastomas (GBMs) are considered the most aggressive, hardest to treat, and with the poorest
prognosis. GBMs are characterized by a high degree of cellular heterogeneity and self-renewing
tumorigenic stem cells that contribute to tumor propagation [118–120], therapeutic resistance [121,122],
and low levels of Cxs [71,123–126]. Acquisition of a GBM malign phenotype may be favored by the
reduction in Cx expression, which in turn has been hypothesized to have a regulating role in GBM
development [116]. It is then possible that the restoration of normal levels of Cxs has antitumor
effects [111,127]. However, it has been reported that hetero-cellular GJIC between glioma cells and their
surrounding environment enhances their progression by protecting tumor cells through the distribution
of therapy-related degradation [128,129], suggesting that GJ downregulation or Cx targeting could
contribute to GBM treatment [130,131].
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Several factors have an impact on the activity of Cxs during neoplastic disease in glial cells
such as Cx subtype, aging, glioma subtype, cancer stem cells, differentiation, phosphorylation state,
localization, and tumor malignancy. Tumors can be affected by Cxs in different ways according to
their isotype and tumor type [127]. For example, Cx30 is present in mature astrocytes, older than
12 weeks, but absent in rat gliosarcoma 9L and rat glioma C6 cells. However, restoring Cx30 levels in
these glioma cells has anti-tumoral properties [111,132]. In contrast, it has been found that Cx30 can
protect gliomas from radiation therapy, causing an inverse correlation between the patient’s prognosis
and the expression level of this Cx [132]. Although little is known about Cx36, recent studies have
reported its expression in rat brain microglia [133] and human astrocytic brain tumors (Grade II, Grade
III, and Grade IV) [134]. In astrocytic tumors, Cx36 increases its levels inside tumor cells but decreases
its expression in the environment depending on the tumor grade [134], which makes Cx36 a useful
biomarker for tumor diagnosis and prediction of neoplasm progression. However, whether Cx36
increases as a compensatory or pathological mechanism is unclear [135]. Hereof, more studies are
needed to elucidate the conditions and mechanisms that regulate Cx36 expression in astrocytic tumors
because not all glioma cells express Cx36, like the glioma cells F98 [131]

Although Cx30, Cx36, and Cx43 are the Cxs with more information available for GBM, they
also have a high number of contradictory findings reported [136]. On one side, some studies have
related the absence of Cx43 with tumor grade increase, associating this Cx with neoplastic tumor
processes. However, other studies suggest that the absence of Cx43 does not necessarily lead to tumor
formation [137,138]. Similarly, some studies reported that the increase in Cx43 levels could inhibit
tumor capacity of self-renewal, invasiveness, and/or tumorigenicity [126]. Nonetheless, other studies
have suggested that Cx43 can increase the migration of some tumors based on the cell type, despite
blocking their proliferation [138]. It is hypothesized that the reason behind all these contradictions is
the inadequate number of samples on Cx43 studies, which reduce their accuracy, given the high cell
heterogeneity present in GBM [139].

As mentioned before, GBM is a highly heterogeneous disease, so new classifications have been
created due to the different behaviors observed for this pathology [117,140,141]. It has been considered
that the amount of Cx43 decreases according to the progression of the tumor [116,139]. However, it is
necessary to specify the cell line or GBM classification. For example, Cx43 is expressed in 9L cells but
is less abundant in C6 cells [111]. Likewise, it is essential to consider the sample size; for example, in a
study with 85 samples (37 grade IV, 18 grade III, 24 grade II, and 6 grades II to III), it was found that
Cx43 was expressed in more than 60% of glioblastomas [139], evidencing the large heterogeneity of
the disease. Another factor that affects Cx expression is aging. For instance, changes in the type and
mRNA levels of Cxs have been observed between mouse embryos and neonates [142]. During brain
development, in mouse E9.5 and E10.5 embryos, Cx26, Cx29, Cx30, Cx30.3, Cx32, Cx36, Cx46, and
Cx47 are expressed. However, in addition to the previous Cxs, mRNA of Cx37, Cx43, Cx45, and Cx59
are also found in mouse neonatal brains but Cx30.3 mRNA is not further detected [142]. Moreover, the
expression level and distribution of these Cxs in neonatal brains vary. For example, Cx29 is highly
expressed in myelinating glia and acoustic nerve, Cx43 is found in meninges and astrocytes, while
Cx47 is found in distinct cells in the brain and cranial nerves [142]. It has also been found that Cx30
is not expressed in astrocyte culture until several weeks [137]. Studies of Cxs in cell culture models
require then a strict control of animal age and culture time.

Furthermore, different correlations between Cx expression and glioma subtype have been
reported. For instance, a negative correlation was found between GBM patient survival and Cx46
expression [127], while in the proneural molecular subtype, this negative correlation is related to Cx43
expression [125]. In the proneural subtype, this effect is caused because the platelet-derived growth
factor (PDGF) signaling inhibits GJs, generating selective pressure on the type of Cx expressed [125].
Cancer stem cells (CSCs) represent a severe problem in public health due to their drug resistance,
invasiveness, tumorigenicity, ability to self-renewal, induction of cell cycle arrest, and differentiation
into heterogeneous lineages of cancer cells [121,143,144]. Recent studies have found that there is a
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difference in the expression of Cxs present in CSCs and non-CSCs, so it is crucial to keep in mind
that the disease per se is not the only variable to be considered when studying Cxs in glial cells [127].
For example, although CSCs express low levels of Cx43 [124,126], they also express high levels of
Cx46 [127], which is a CSC protector. Another factor affecting Cx expression is cell differentiation. For
example, during this process, there is an increase in Cx43 and a decrease in Cx46 expression [127].
Though the regulation between Cx46 and Cx43 has been reported [145], according to recent studies,
this is not direct [127]. It has been suggested then, for the treatment of CSCs, not only to increase Cx43
via transfection or with mimetic peptides [146] but also to perform a direct block of Cx46 to increase
the treatment efficiency in CSCs.

Phosphorylation of Cxs, mainly reported for Cx43, is a fundamental regulation process
during disease progression. Many growth factors, oncogenes, and tumor-promoting chemicals
can phosphorylate Cxs, which has been associated with autophagy degradation [77,147], inhibiting
GJICs [148]. Aberrant cellular localization of Cxs plays an important role in glioma cell growth.
For example, the nuclear localization of Cx30 has been associated with reduced glioma cell growth
due to limited GJIC [149]. Suggesting a possible role of Cxs in the regulation of gene expression [149].
On the other hand, Cx translocation to mitochondria has been observed as a response to cellular stress,
like for Cx43 [132]. However, translocation of Cx30 to mitochondria favors ATP production, DNA
repair, and cell survival, protecting glioma cells from radiotherapy [132]. Furthermore, functional
changes in Cx43 have been observed depending on the cell type, malignant or non-malignant tumors,
as well as with tumor grade. For instance, in high-grade glioma, there is a decrease in intercellular
communication [150,151]. This may be because although RNA is still produced for the synthesis of
Cx43, it does not necessarily end up with the formation of functional GJICs.

Although there is extensive evidence that correlates alterations in the epigenome with cancer
establishment, progression, and acquisition of characteristic hallmarks, epigenetic changes associated
with Cx expression in brain cancer is mainly limited to the post-transcription regulation exerted by
miRNAs (see Section 2.2). This undoubtedly shows the need for studies that provide experimental
evidence of the epigenetic mechanism involved in the regulation of Cxs expression associated with
brain cancer.

4.2. Connexins in Neurodegeneration

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
and Huntington’s disease (HD), are characterized by reactive gliosis, which is associated with
phenotypic changes in astrocytes and microglia [152]. In this sense, astrocytes respond during
neurodegenerative processes by releasing different molecules such as neurotrophic, inflammatory
factors, and cytotoxins [152]. These responses have been associated with modifications in the expression
and function of Cxs [153]. Despite the acknowledgment of the role played by Cxs during the onset and
progression of neurodegenerative disorders, there is a gap in the knowledge of how the expression of
Cxs is perturbed. We provide here the most relevant findings associated with the aberrant expression
of Cx30, Cx36, and Cx43 in AD, PD, and HD, which could encourage to study the regulation in the
expression of Cxs during the onset and progression of these disorders. The main findings related to
neurodegeneration associated with aberrant expression or function of Cx30, Cx36, and Cx43 in AD,
PD, and HD are summarized in Figure 5.

4.2.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is characterized by progressive and chronic learning and memory
loss and changes in mood and behavior [154]. Genetically, AD is divided into familial and sporadic
forms. The familial form is characterized by mutations in the amyloid precursor protein (APP) gene,
presenilin1 (PSEN1) gene, and presenilin 2 (PSEN2) gene. In the sporadic form, which results from a
combination of genetic and environmental factors, the inheritance of the apolipoprotein E ε4 (APOE4)
allele is considered a risk factor for developing AD [155,156]. Hallmarks of AD are neuritic plaques,
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neurofibrillary tangles, and neuronal loss. However, the prominent pathological feature of AD is the
formation of amyloid plaques, which are deposits of different sizes of small peptides called β-amyloid
(Aβ). These Aβ plaques are derived via sequential proteolytic cleavages of the Aβ precursor protein
(APP) by the action of β- and γ-secretases [154,157]. Among the different Aβ fragments, Aβ1-40 and
Aβ1-42 are thought to be critical elements in AD pathogenesis due to their neuropil and vascular
accumulation [158]. However, several synthetic Aβ fragments have been used in in vitro neurotoxicity
studies. Among these fragments, peptide Aβ25-35 has been widely used, which is the shortest fragment
of Aβ found in vivo and is considered the biologically active region of Aβ1-42 [159]. Although Aβ
plaques are considered crucial in AD pathogenesis and pathophysiology, they do not reflect the clinical
progression of AD [158]. It has been hypothesized that the soluble Aβ oligomers (AβOs) are the most
toxic and pathogenic form of Aβ, characterized for being >50 kDa, reactive to the anti-amyloid oligomer
antibody A11, and unrelated to amyloid plaques [160]. Among the different toxic effects detected
in vitro and in vivo, AβOs bind to the cellular prior protein receptor [161], induce the production of
ROS [162] and disrupt memory function [160]. Notwithstanding the evidence of AβOs role in AD
pathophysiology, there is no consensus regarding the molecular form(s) of Aβ responsible for the
neurological decline in AD patients. The reader is referred then to recent and comprehensive reviews
on AβOs [158,160,163].

Recent studies have achieved breakthroughs in establishing communication between different
glial cell types and the onset and progression of AD via Cx expression and modulation [164,165].
In AD patients and murine animal models of AD, it has been demonstrated that GJ and Cx are mainly
overexpressed in astrocytes [164,166]. In post-mortem temporal cortex samples of AD patients, it
was observed a large amount of Cx43 in astrocytes that were positive for glial fibrillary acidic protein
(GFAP). These astrocytes also presented enlarge cell bodies and relatively short and thick processes
that are characteristic of reactive astrocytes. In addition, about 80% of these Cx43 patches co-localized
with Aβ plaques, suggesting a relationship between GJ intercellular interaction and diverse roles of
APP [166]. In agreement with these findings in AD patients, it was found in an AD mouse model that
Cx43 HCs were chronically activated in hippocampal astrocytes when Aβ plaques were present [165].
Furthermore, astrocytes that were in contact with plaques showed a prominent activation of HCs
and high Cx43 content [165]. Similarly, in an APP x PS1 transgenic mouse model, an increased
immunoreactivity of Cx43 and Cx30 in hippocampus cells that largely expressed the GFAP was
observed, which is characteristic of dysfunctional reactive astrocytes that are in contact with amyloid
deposits [167]. Moreover, KO of the Cx43 gene in APP x PS1 transgenic mouse reduced neuronal
damage by decreasing neuritic dystrophy and oxidative stress [165]. In addition, it was reported that
Cx43 promotes the survival of adult-born neurons in mouse hippocampus, while their survival is
restricted under Cx30 expression [168]. These shreds of evidence support the critical and complex role
that Cx43 HCs have in neuronal damage in cortex and hippocampus during AD progression.

Contrary to Cx43 and Cx30, which have been studied in murine AD models, the study of Cx36
in AD has been limited to in vitro assays [169]. Cultured neurons exposed to the acute application
of Aβ25-35 showed increased activity of Cx36 HCs. However, compared to the control, no significant
difference was observed in the levels of surface and total Cx36. It was then proposed that the increment
in HCs activity associated with Cx36 can be owed to an enhanced channel permeability result of PTMs
of the Cx [40]. Figure 5A summarizes the most relevant findings associated with the dysregulation of
Cxs in AD.

4.2.2. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disease after AD [170,171].
PD is a complex, progressive, and neurodegenerative disease characterized by loss of dopaminergic
neurons (DNs) in the substantia nigra pars compacta (SNc), along with the formation of cytoplasmic
inclusions of α-synuclein (called Lewy bodies) [172]. PD is characterized by a widespread pathology
that can involve other brain regions and non-dopaminergic neurons [173]. Its principal motor symptoms
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caused by loss of DNs along with dopamine depletion are tremor, rigidity, bradykinesia/akinesia, and
postural instability, but the clinical picture includes other motor and non-motor symptoms (NMSs) [174].
It is known that most cases of PD have a multifactorial etiology as a result of the combination of
environmental and genetic factors. For example, exposure to toxic chemicals such as pesticides,
herbicides, and heavy metals [175–178] or head injuries can increase the risk of suffering PD [179].
In PD, it has been observed the accumulation of α-synuclein in astrocytes, which results in microglial
activation due to the release of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α),
interleukin-1β (IL-1β) and interferon-gamma (IFN-γ) [180]. In this sense, microglial activation has
been proposed to be beneficial in the early stage of the neurodegeneration process, where microglial
cells attempt to clear α-synuclein from the extracellular space as a result of cellular releases or apoptotic
neuron death [181]. However, long-term activation of microglia significantly increases the levels of
pro-inflammatory cytokines and ROS leading to a deterioration of the neurodegenerative process [181].

On the other hand, almost 20 genes related to PD have been identified. However, most of the
animal models carrying mutations in these genes have failed in the development of PD phenotypes,
those carrying mutations in the α-synuclein (SNCA) gene being the exception [182]. The dysfunction
of astrocyte and microglia makes the brain microenvironment poor for neuron survival, and it has
been proposed to be a more plausible mechanism for the gradual neurodegeneration observed in
PD patients [182]. Astrocyte dysfunction has been associated with the accumulation of α-synuclein,
which leads to a severe loss of DNs [183], increased expression of S100β that favors the activation of
receptors of inflammatory mediators such as TNF-α [183], and a reduced presence of positive astrocytes
for glutathione peroxidase that is related with the hyperoxidation phenomena [184]. Furthermore,
α-synuclein has been reported to enhance the opening of Cx43 HCs in cortical astrocytes, leading
to the increment of intracellular Ca2+ along with the activation of cytokines, cyclooxygenase 2, and
inducible nitric oxide synthase [185]. Figure 5B depicts some of the most relevant findings related to
the dysregulation of Cxs by α-synuclein.

To establish whether Cx-mediated HCs play a crucial role in this astrocyte dysfunction, animal
models in which PD have been chemically-induced are used. 6-Hydroxydopamine (6-OHDA),
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and rotenone are the most common neurotoxic
molecules used to induced degeneration of DNs [186]. The use of MPTP causes a pronounced
immediate, but transient increase in striatal Cx43 mRNA, which was paralleled to a sustained increase
in Cx43 immunoreactive puncta [187]. However, the increase in Cx43 immunopositive puncta was not
paralleled by alterations in the functional coupling of striatal glial cells [187]. Similarly, in an in vitro
and in vivo rotenone-induced model of PD, increased levels of Cx43 were observed along with and
increased GJIC, which was further verified in a rat PD model with the increment of phosphorylated
Cx43 that is required for GJIC. [188]. This enhancement in total and phosphorylated Cx43 was observed
in the striatal and hippocampal regions. These results suggest an enhancement of GJIC through the
induction of phosphorylated Cx43 as well as total Cx43 in astrocytes [188]. This upregulation in
Cx43 expression led to elevated HC activity, enhanced GJ coupling, and increased intracellular Ca2+

concentration, which contributed to neurotoxicity. Nevertheless, another study using rotenone showed
down-regulation in Cx43 expression and decreased GJ permeability in primary cultured astrocytes,
which reveals that the dysfunction of astrocytic GJ may be implicated in the PD pathology [189].
In contrast, pretreatment with the selective mitochondrial ATP-sensitive potassium (KATP) channel
openers Iptakalim (10 µM) or Diazoxide (100 µM) prevented rotenone-induced down-regulation of
Cx43 and the loss of GJ permeability [189]. These effects were abolished when 5-HT hydroxydecanoate,
a mitochondrial KATP channel blocker, was used [189]. These results suggest that opening mitochondrial
KATP channels in astrocytes may protect against rotenone-induced dysfunction of astrocytic Cx43.

On the other hand, a study in a 6-OHDA-induced rat model of PD showed that levels of Cx30, but
not of Cx43, were increased in the striatum; meanwhile, around vessels, the levels of Cx43 and Cx30
were largely increased, suggesting an increased metabolic coupling [37]. Then, it is suggested that
in induced parkinsonism, astrocytosis is massive and is not associated with an increased coupling
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between astrocytes, but might be associated with an increased metabolic coupling [37]. However, in
an acute PD mouse model generated by MPTP administration, Cx30 and Cx43 were upregulated in
the striatum [38]. In this study, it was assessed if Cx30 overexpression could influence the expression
of Cx43, finding no correlation between Cx30 overexpression with either the levels or distribution of
Cx43 upon MPTP treatment. In addition, in a Cx30 KO model, it was shown that MPTP treatment
accelerates the loss of DNs, reduces the up-regulation of the S100a10 gene, which is important for
cell migration and intracellular trafficking, and partially suppresses the GFAP and astrogliosis in the
striatum [38]. These results suggest that the neuroprotective function of astrocytes in the striatum is
diminished upon a deficiency of Cx30, for which enhancement of Cx30 functions is proposed as a
therapeutic strategy for PD patients. Contrary to previous observation for Cx30 in a 6-OHDA-induced
rat model of PD, it was observed reduced levels of Cx36 in the cerebral cortex and striatum when
compared to the control group [190]. However, the 6-OHDA effect was partially reversed by Baicalin,
suggesting a neuroprotective effect of this molecule.

Cx36 GJ channels have different regulatory properties compared to other Cx isoforms, such as
low unitary conductance and sensitivity to transjunctional voltage; perturbations associated with these
regulatory functions have also been explored in PD [191,192]. Changes in the discharge of the basal
ganglia, such as increased synchrony, burst discharges, and β-oscillations, have been recorded in PD
patients [193]. It was then hypothesized that GJs could be involved in the intrinsic mechanism of
synchronization due to a possible GJ remodeling and GJ coupling associated with dopamine levels,
in which GJ conductance is reduced when dopamine levels are increased [194]. Using putamen
and external and internal globus pallidus tissue from PD patients, it was found that Cx36 GJs were
numerous and high in conductance when compared to their counterparts in control subjects. In contrast,
no Cx36 was found in the human PD subthalamic nucleus. Therefore, it has been proposed that
Cx36 GJs act as a synchrony modulator in the basal ganglia [195]. On the other hand, attenuate
β-oscillations and improve forelimb function has been observed when unspecific GJ blockers were
used in hemiparkinsonian rats [196], suggesting a global contribution of GJ to β-oscillations.

Overall these observations show the different effects that induced-PD via chemical treatments
have over the expression and function of Cx30, Cx36, and Cx43. Then, this may be relevant during the
evaluation of candidate molecules to ameliorate cognitive and motor impairment in PD.

4.2.3. Huntington’s Disease

Huntington’s disease (HD) is a hereditary neurodegenerative disorder characterized by progressive
motor, behavioral, psychiatric, and cognitive decline, ending in death [197]. The inheritance pattern of
HD is autosomal dominant with the onset of symptoms usually occurring in the third or fourth decade of
life, in which patients present chorea, or involuntary movements, and/or behavioral changes [198]. HD
is caused by a dominantly inherited trinucleotide cytosine-adenine-guanine (CAG) repeat expansion in
the huntingtin (HTT) gene, resulting in a mutant HTT protein with an abnormally long polyglutamine
repeat [199]. Changes in mitochondrial morphology, fusion/fission imbalance, and oxidative DNA
damage have been related to the degeneration of striatal and cortical neurons [200,201]. Furthermore,
mutant HTT is associated with decreased respiratory function as well as with changes in mitochondrial
mobility and ultrastructure [202,203].

Like in AD and PD, abnormal astrocyte function contributes to HD pathology. In cortical
and striatal astrocytes from HD patients and animal models, it has been found an accumulation of
mutant HTT protein, which disrupts astrocyte glutamate transporter expression [204,205]. During
early HD stages, several astrocyte dysfunctions have been revealed: (i) reduction of K+ buffering
mediated by decrease Kir4.1 channel expression in two mice models (R6/2 and Q175) for HD in
striatal astrocytes; and (ii) disrupted intracellular Ca2+ signaling and decreased extracellular uptake
of glutamate GLT1-mediated [206–208]. The increase in extracellular K+ levels, in turn, results in the
intensification of depolarization that may further underlie the hyperexcitability of striatal medium spine
neurons (MSNs) in the striatum [208]. In addition, astrocytes exhibited profound morphological deficits,
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including reduced volumes of peri-synaptic astrocytes processes, territory size, and altered proximity
of astrocyte processes to cortical and thalamic excitatory entrances, revealed by the neuron-astrocyte
proximity assay (NAPA) [205].

Different animal models have been developed for HD following genetic and non-genetic
strategies [209]. HD-induced models based on genetic strategies, such as transgenic and KO rodent
models, mimic in a better way the HD progression and pathology than non-genetic strategies that are
based on 3-nitropropionic acid or quinolinic acid treatments [209]. In this sense, the transgenic R6/2
mouse, which expresses exon 1 of the human HD gene with up to 157 CAG repeats as HD model, has
been used to study the role of Cxs in the visual system [210]. Given the abnormalities observed in the
visual system that affects the visuomotor cognition in HD patients [211], the role of Cx36, the main Cx
in retina, has been studied. In retinal degenerations, it was found that Cx36 was slightly decreased
in the external plexiform layer in the HD model compared to control subjects. Therefore, it has been
suggested that Cx36 is related to the degeneration of photoreceptor terminals [212].

Excitatory and inhibitory inputs in MSNs are affected by the interneuronal connectivity mediated
by Cx36 GJs since Cx36 KO in a rodent model induced a reduction in both excitatory and inhibitory
postsynaptic currents [213]. In this sense, the frequency of excitatory and inhibitory postsynaptic
currents in two transgenic murine models for HD, one containing the full human HD gene with
128 CAG repeats and the other one containing a chimeric mouse/human exon 1 containing 140 CAG
repeats inserted into the murine Hd gene [214], was studied. Then, MSNs from both HD animal models
showed a reduction in the frequency of excitatory and inhibitory postsynaptic currents compared with
those observed in MSNs from wild type animals [214]. Putting together these reports, it is likely to
then expect a reduction in Cx36 GJs that affect the synchrony in MSNs from HD animal models.

On the other hand, the distribution of different Cxs, such as Cx26, Cx43, and Cx50, in the caudate
nucleus (CN) and globus pallidus (GP) of the basal ganglia in healthy and HD human brains was
reported [215]. In this study, no significant difference was observed in the levels and distribution
of Cx43 GJs in GP from both healthy and HD brains. However, HD brains had increased levels of
Cx43 GJs in the CN than normal brains, and these were localized in patches. This correlates with the
increased level GFAP immunoreactivity in astrocytes in CN compared to healthy brains. This pattern
manifested reactive astrocytosis around degenerating neurons with increased expression of astrocytic
GJs. If small units are supposed to be functional, it could suggest an improved coupling status between
astrocytes, which could provide a higher capacity for spatial damping by astrocytes in an attempt to
maintain an adequate environment for neurons, helping to promote neural survival in HD [215].

Despite these observations that showed the aberrant expression of Cx36 and Cx43 in HD
animal models and human brains, there is little information that allows the understanding of the
pathophysiology of HD and the role of Cxs and astrocytes in maintaining homeostasis in the HD.
In addition, no one, to the best of our knowledge, has studied the Cx30 changes in HD. Figure 5C
shows the most relevant findings associated with the dysregulation of Cxs in HD.
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Figure 5. Schematic representation of main perturbations in the expression of Cx30, Cx36, and Cx43 in neurons, astrocytes, and microglia for (A) AD, (B) PD, and (C)
HD. Common features are observed across the different neurodegenerative disorders such as reactive astrocytes, active microglia, the release of pro-inflammatory
molecules (e.g., TNF-α and IL-1 β), loss of glutamate and K+ buffering capacity, and generation of ROS. Briefly, in AD (A) mutations in the APP gene leads to the
accumulation of Aβ plaques, which is associated with increased levels of Cx43 and chronical activation of Cx43 HCs. In PD (B), α-synuclein enhances the opening
of Cx43 HCs, leading to high intracellular Ca2+ levels along with the activation of cytokines. In HD (C), abnormally long polyglutamine in HTT protein causes
mitochondrial fragmentation, which has been mainly associated with increased Cx43 GJs.
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5. Connexins in Neuroprotection

Cxs are essential to maintain homeostasis of the CNS, and changes in their function and expression
have been linked to neuroprotective mechanisms in ischemia [216–218], traumatic brain injury
(TBI) [219], and glaucoma [220]. In these kinds of injuries, intrinsic mechanisms regulate primary cell
death, while cellular intercellular communication seems to play a significant role in secondary cell
death by regulating the pass of toxic molecules [221]. However, there is still controversy in the field
because it is not clear if indeed Cxs are neuroprotective or stimulate neurodegeneration, and whether
glia and neuron communication or a combination of both contributes to neuroprotection.

In ischemic strokes, neurons and astrocytes are rapidly depleted of energy and oxygen, a process
that ultimately leads to neuronal loss viability, irreversible tissue damage, and neurological deficits.
Cx43 is highly expressed in astrocytes, and it has been implicated in the formation of a functional
syncytium that buffers ions, proteins, and other molecules from the extracellular space [218]. Different
studies suggest that Cx43 responds to physical injuries or cytotoxic glutamate levels by enhancing
GJIC and glutamate uptake [218,222]. In agreement with the critical role of this Cx in homeostasis,
Cx43 KO mice show astrocytic impaired Ca2+ signaling and GJ uncoupling that induces neuronal cell
death and accumulation of K+ ions and glutamate in the extracellular space [223,224]. Consequently,
deficiencies in the glial syncytium function in the Cx43 KO mice may perhaps explain the observed
increase in the brain infarct volume after a middle cerebral artery occlusion (MCAO), suggesting a
neuroprotective role of GJIC and this Cx in ischemia [218]. Cx43 is not only expressed in astrocytes, but
it is also found in ependymal, leptomeningeal, and vasculature cells [216,217], suggesting that in Cx43
KO mice, loss of function of this protein in other cells than astrocytes could help to extend the infarct
zone and increase apoptosis during ischemia. However, studies using conditional KO mice that only
affect the expression of Cx43 in astrocytes found that a focal stroke also extends neuronal apoptosis and
infarct zone inflammation, linking the expression of this Cx in astrocytes to the resolution of ischemia
and neuroprotection.

Mechanistically, a decline in astrocytic GJIC can lead to a reduction in the propagation of a stroke
injury by regulating apoptosis and gliosis [216]. For instance, in ischemia, apoptosis is increased
by a blockage in blood supply that generates a massive release of glutamate and Ca2+ influx that is
followed by the production of ROS that further increases cytotoxicity. As a result, in the Cx43KO mouse
model, apoptotic signals such as caspase-3 and cytochrome C are not efficiently removed and remained
high for more extended periods, affecting cell viability. Remarkably, the Cx43 surface expression is
differentially altered at the core and penumbra. At the core, Cx43 is internalized, while at the penumbra,
its expression remains stable [217,225]. This suggests that at the core, the downregulation of Cx43
impairs the diffusion of apoptotic signals such as Ca2+, and ROS among others [226,227], whereas
at the penumbra facilitates the removal of cytotoxic molecules that may affect the ischemic lesion
volume [217].

The neuroprotective role of astrocytic GJIC and Cx43 has been controversial and challenged by
in vitro ischemia studies using gap-junctional blockers such as carbenoxolone (CBX), octanol, and
halothane that showed not only a decreased infarct volume but also a significant reduction in neuronal
cell death [226,228]. Although the causes of these differences have not been fully established, these
conflicting results can be explained by several factors such as

i. Blockers unspecificity. Besides blocking GJIC, CBX, octanol, and halothane have been shown
to interfere with excitatory synaptic transmission and voltage-gated Ca2+ channels activity [226],
phenomena that per se can further decrease cytotoxicity and cell death.

ii. Reduced spreading of stress signals. During ischemia, the accumulation of pathogenic factors can
be easily spread through GJs, which in turn can amplify the pathologic processes to areas beyond the
injury site, a process that can be blocked more efficiently by GJIC inhibitors that can affect a broad type
of Cxs [229].

iii. Differential and broad Cx expression in the CNS. Neurons different from astrocytes express
a plethora of Cxs such as Cx26, Cx32, and Cx36 that can be differently regulated during ischemia.
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The use of specific antisense probes against Cx32, Cx26, and Cx43 on in vitro ischemia paradigms
have shown that the silencing of Cx26 and Cx32 simultaneously, or of Cx43, significantly reduces cell
death [229]. This has been further corroborated in models of traumatic brain injury using organotypic
hippocampal slices, Cxs inhibitors, antisense Cxs oligodeoxynucleotides, or Cx43 KO decreased cell
death and alleviated synaptic function impairments [230]. Likewise, excitotoxic and ischemia retina
models have shown that knocking-out Cx36 increased cell survival under excitotoxic stimuli but did
not protect ischemic cells [221]. Similarly, hippocampal GABAergic neurons co-expressing alpha
α7-subunit nicotinic acetylcholine receptor and Cx36 are more resistant to oxygen-glucose deprivation
that pyramidal neurons [231]. Hence, Cx-mediated neuroprotection can be regulated by the differential
expression of Cxs in neurons and astrocytes, communication between glia and neurons, and type
of injury.

iv. Role of GJIC and Cx HCs. During ischemia, Cx HCs can open, and blockade of Cx43 HCs is
protective. The use of mimetic peptides that blocks Cx43 HCs revealed that Cx HCs opening after
ischemia contributes to the injury spread by the release of neurotoxic molecules, glutamate, and
ATP [228,232]. ATP released from astrocytes is an important regulator of microglial activation by
inducing the release of pro-inflammatory cytokines from these cells. These cytokines then act back on
astrocytes, reducing the levels of GJIC and increasing astrocytic HCs [232]. Therefore, it is possible that
in Cx43 KO, increased compensatory expression of other Cx HCs in astrocytes during ischemia can
exacerbate the release of cytotoxic and pro-apoptotic molecules. In contrast, in ALS, a significant rise
in Cx43 expression leads to enhanced GJIC coupling, increased HC activity, and elevated intracellular
Ca2+ levels. Interestingly, the blocking of both GJIC and Cx43 HCs protected motor neurons, suggesting
an essential role of Cx channels and HCs in the disease [233].

Despite the debate about the direct role of Cxs in neuroprotection, recent studies have found
that Cxs may be a downstream target of endogenous and exogenous neuroprotective molecules.
For instance, corticotropin-releasing hormone (CRH) is a regulator of MAPKs and protein kinase
A-cAMP response element-binding protein, which in turn has been shown to regulate the activity
of Cx43 [234,235]. In IMR32 cells, primary astrocytes, and organotypic hippocampal slice cultures,
CRH treatment up-regulates the expression of Cx43 and the number and size of gap junctions [236].
Also, CBX inhibits the CRH-neuroprotective effect against the toxic amyloid peptide 25–35 fragment or
H2O2 on neurons, suggesting that Cx43 expression in astrocytes is part of signaling pathways that
regulate neuronal viability by regulating cytoskeletal rearrangements, gene expression, or reducing
oxidative stress under stress conditions [236]. However, leptin, a neurotropic and anti-apoptotic
hormone secreted by adipocytes, regulates neuroprotection by decreasing the expression of Cx43 HCs
during MCAO or oxygen and glucose deprivation (OGD) by a mechanism that involves the activation
of ERK1/2 MAP kinases [237].

Exogenous neuroprotective molecules such as ginsenosides (a secondary metabolite isolated
from Panax ginseng) [238], tongxinluo (TXL, a multifunctional traditional Chinese medicine) [239],
and baclofen (GABAb receptor agonist, muscle relaxer and antispasmodic agent) [224], regulate
neuroprotection by controlling Cxs expression. In TBI, ginsenosides decreased the up-regulation
expression of Cx40 induced by the trauma throughout the activation of the MAPK pathway [238]. Also,
TXL significantly improved neurological deficit and reduced the infarction volume after an MCAO
by increasing the expression of Cx43 and reducing the activity of apoptotic pathways (calpain II/Bax/

caspase 3 pathway) [239]. In a hippocampal atrophy model induced by chronic cerebral hypoperfusion,
baclofen showed to decrease the expression of Cx43 and Cx36 in the membrane and mitochondria,
enhancing autophagy mechanisms that induce neuroprotection [240]. Cxs are complex proteins, which
have several phosphorylation sites in their CT that are important for junction assembly, activity, and
interaction with other proteins [241]. For instance, studies using Cx43 CT truncated mice (Cx43∆CT)
showed that this region is sufficient to regulate infarct volume, astrogliosis, inflammatory invasion,
and protection in cerebral ischemia [241]. Hence, it is likely that endogenous and exogenous molecules,
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which have neuroprotection activity through Cxs, work by regulating kinases that phosphorylate the
CT of Cxs.

On the other hand, despite that Cx30 is one of the main Cxs in astrocytes, its neuroprotective
properties in ischemic strokes is limited. To the best of our knowledge, only one study that evaluated
the effect of hydrogen treatment on transient global cerebral ischemia (TGCI) assessed the changes
in Cx30 [242]. In that study, hydrogen was used due to its anti-oxidative, anti-inflammatory, and
anti-apoptotic effects in a TGCI rat model. Compared to the naïve control group, non-treated TGCI
animals showed upregulated levels of Cx30 in the hippocampus, but in the cortex, no changes in
Cx30 levels were observed. After hydrogen treatment, Cx30 levels were reduced in the hippocampus.
This reduction in Cx30 GJs has been associated with a reduced injury induced by TGCI in rats [243],
suggesting that in TGCI, Cx30 GJs blockers may act as neuroprotective molecules.

Although several steps have been given in understanding the role of Cxs in neuroprotection, there
is still an ample space to fill regarding the signaling mechanisms that can lead to the differential action
of neuroprotective molecules working throughout GJIC or Cx HCs.

6. Conclusions

Cxs, especially Cx30, Cx36, and Cx43, play an important role in keeping cell homeostasis in
the CNS. Their deregulation has been related to different diseases, particularly to glioblastomas and
neurodegenerative diseases such as AD, PD, and HD. In addition, they have also shown to be important
in neuroprotection processes. Although there are still debates and contradictory findings of the up-
or down-regulation effect of Cxs on neuroprotection during the onset and progression of GBMs as
well as in neurodegenerative disorders, there are studies that have demonstrated that Cx GJs can be
blocked to mitigate the neurodegenerative process. In this sense, the search for new molecules that
can selectively target neuronal or glial Cxs is required to ameliorate their dysregulation during the
onset and progression of these diseases. Reactive glia is one of the primary characteristics observed
in both GBMs and neurodegenerative disorders. Focusing then on targeting Cx30 and Cx43 GJs in
glial cells is a therapeutic approach in neurodegeneration. The current state of the art demonstrates
that understanding the role Cxs and how changes in their expression emerge in neurons and astroglia
during the onset and progress of neurodegenerative diseases is crucial for the establishment of
alternative therapies.

However, to fully understand their role in all these scenarios, it is necessary to elucidate their
regulation at different stages. In this review, we present different molecular aspects related to the
epigenetic regulation of Cx expression, such as DNA methylation, histone PTMs, and miRNA, as well
as the main PTMs, which Cxs can have and affect their life cycle and protein interactome. Despite the
acknowledgment of the role played by Cxs during the onset and progression of neurodegenerative
disorders, there is a gap in the knowledge of how the epigenetic machinery behind Cx regulation is
perturbed in these diseases. We provide then the most relevant findings associated with the aberrant
expression of Cx30, Cx36, and Cx43 in AD, PD, and HD, which could encourage the study of the
epigenetic changes related to Cx regulation in these disorders. Thus, further exploration of how
epigenetic machinery affects Cx expression and channel activity and how Cxs are involved in signaling
pathways will be, in the upcoming years, a promising opportunity for the therapy of brain cancer,
neurodegenerative diseases, and neuroprotection.
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