Draft Genome Sequence of Potassium-Dependent Alkaliphilic *Bacillus* sp. Strain TS-2, Isolated from a Jumping Spider

Shun Fujinami,^a Kiyoko Takeda,^b Takefumi Onodera,^c Katsuya Satoh,^d Motohiko Sano,^e Issay Narumi,^{e,f} Masahiro Ito^{a,e,f}

Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan^a; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan^b; Cooperative Research Center of Life Sciences, Kobe Gakuin University, Kobe, Hyogo, Japan^c; Ion Beam Mutagenesis Research Group, Medical and Biotechnological Application Unit, Quantum Beam Science Center, Japan Atomic Energy Agency, Takasaki, Gunma, Japan^d; Graduate School of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan^e; Faculty of Life Sciences, Toyo University, Itakura-machi, Gunma, Japan^f

The potassium-dependent alkaliphilic *Bacillus* sp. strain TS-2 was isolated from the mashed extract of a jumping spider, and its draft genome sequence was obtained. Comparative genomic analysis with a previously sequenced sodium-dependent alkaliphilic *Bacillus* species may reveal potassium-dependent alkaline adaptation mechanisms.

Received 25 April 2014 Accepted 1 May 2014 Published 22 May 2014

Citation Fujinami S, Takeda K, Onodera T, Satoh K, Sano M, Narumi I, Ito M. 2014. Draft genome sequence of potassium-dependent alkaliphilic *Bacillus* sp. strain TS-2, isolated from a jumping spider. Genome Announc. 2(3):e00458-14. doi:10.1128/genomeA.00458-14.

Copyright © 2014 Fujinami et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Masahiro Ito, masahiro.ito@toyo.jp.

The typical alkaliphilic *Bacillus* species (e.g., *Bacillus pseudofirmus* OF4 and *Bacillus halodurans* C-125) have a sodium-dependent alkaline adaptation mechanism and show sodium-dependent growth and motility (1, 2). However, some potassium-requiring alkaliphiles have also been reported (3, 4), suggesting the existence of a potassium-dependent alkaline adaptation mechanism. Thus, we have isolated some potassium-dependent alkaliphiles and reported one of their draft genome sequences (5). Here, we report the draft genome sequence of another potassium-dependent alkaliphile, *Bacillus* sp. strain TS-2. This bacterium was isolated from the mashed extract of a jumping spider and appeared to be most closely related to *Bacillus pseudalcaliphilus*, based on 16S rRNA gene sequence identity.

The draft genome sequence of *Bacillus* sp. strain TS-2 was 4,360,646 bp in total length, comprised 58 large contigs (>500 bp), and was obtained using the Roche GS Junior and assembled by GS *de novo* assembler v. 2.7. Automatic annotation was performed using the Microbial Genome Annotation Pipeline (6), which predicted a total of 4,085 protein-coding genes. The names of products of the predicted protein-coding genes were revised manually. tRNA detection was performed using the ARAGORN software (7), which predicted a total of 73 tRNAs.

Typical alkaliphilic *Bacillus* species have an *atpE* gene that encodes an F_1F_0 -H⁺-ATPase *c* subunit, and the amino acid residue that is critical for H⁺ selectivity under alkaline pH conditions has already been identified (8). The annotation of the draft genome sequence shows that *Bacillus* sp. strain TS-2 has an *atpE* gene. The multiple sequence alignment of the ATPase *c* subunit suggested that the *atpE* gene of this bacterium encodes an H⁺-ATPase *c* subunit that is proposed to function under alkaline pH conditions.

Typical alkaliphilic *Bacillus* species also have a *motPS* gene that encodes an Na⁺-dependent flagellar motor stator protein, and the amino acid residue that is critical for coupling ion selectivity has been identified (2, 4). In the draft genome sequence of *Bacillus* sp. strain TS-2, a *motPS* gene was annotated. The multiple sequence

alignment of flagellar motor stator proteins suggested that the *motPS* gene of this bacterium encodes an Na⁺-dependent flagellar motor stator protein. It would be interesting to analyze the function of this protein in the future.

In the draft genome sequence of *Bacillus* sp. strain TS-2, two sets of *mrp* genes, which encode multisubunit secondary cation/ proton antiporter-3 family proteins, were annotated. The Mrp complex acts as an Na⁺/H⁺ antiporter in typical alkaliphilic *Bacillus* species and plays a critical role in the sodium-dependent alkaline adaptation mechanism (1, 2). In draft genome sequence analysis of sodium-independent alkaliphilic *Microbacterium* sp. strain TS-1, three sets of *mrp* genes were reported (5). Therefore, multiple sets of *mrp* genes might also support the use of various cations as a coupling ion of H⁺ influx for alkaline adaptation.

Future genome analysis of other sodium-independent alkaliphiles may reveal common features of novel alkaline adaptation mechanisms.

Nucleotide sequence accession numbers. The draft genome sequence of *Bacillus* sp. strain TS-2 was deposited at DDBJ/EMBL/ Genbank under the accession number BAWL00000000. The version described in this paper is the first version, BAWL01000000.

ACKNOWLEDGMENTS

We are grateful to Arthur A. Guffanti for critical reading of the manuscript. We thank Yuka Takahashi for technical assistance.

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (24117005) of the Ministry of Education, Culture, Sports, Science and Technology of Japan (to M.I.).

REFERENCES

- Krulwich TA, Ito M, Guffanti AA. 2001. The Na(+)-dependence of alkaliphily in *Bacillus*. Biochim. Biophys. Acta 1505:158–168. http:// dx.doi.org/10.1016/S0005-2728(00)00285-1.
- Fujinami S, Terahara N, Krulwich TA, Ito M. 2009. Motility and chemotaxis in alkaliphilic *Bacillus* species. Future Microbiol. 4:1137–1149. http://dx.doi.org/10.2217/fmb.09.76.
- Aono R, Horikoshi K. 1992. Chemical composition of cell walls of alkalophilic strains of *Bacillus*. J. Gen. Microbiol. 129:1083–1087.

- 4. Terahara N, Sano M, Ito M. 2012. A *Bacillus* flagellar motor that can use both Na⁺ and K⁺ as a coupling ion is converted by a single mutation to use only Na⁺. PLoS One 7:e46248. http://dx.doi.org/10.1371/journal.pone.0046248.
- Fujinami S, Takeda K, Onodera T, Satoh K, Sano M, Narumi I, Ito M. 2013. Draft genome sequence of sodium-independent alkaliphilic *Microbacterium* sp. strain TS-1. Genome Announc. 1(6):e01043-13. http:// dx.doi.org/10.1128/genomeA.01043-13.
- 6. Sugawara H, Ohyama A, Mori H, Kurokawa K. 2009. Microbial genome

annotation pipeline (MiGAP) for diverse users, abstr S-001:1–2. 20th Int. Conf. Genome Informatics, Kanagawa, Japan.

- Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32:11–16. http://dx.doi.org/10.1093/nar/gkh152.
- 8. Liu J, Fujisawa M, Hicks DB, Krulwich TA. 2009. Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase *c* subunit from an alkaliphilic bacillus. J. Biol. Chem. **284**:8714–8725. http://dx.doi.org/10.1074/jbc.M808738200.