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Background. In the absence of proper guidelines and algorithms, available rapid diagnostic tests (RDTs) for common acute un-
differentiated febrile illnesses are often used inappropriately.

Methods. Using prevalence data of 5 common febrile illnesses from India and Cambodia, and performance characteristics (sen-
sitivity and specificity) of relevant pathogen-specific RDTs, we used a mathematical model to predict the probability of correct iden-
tification of each disease when diagnostic testing occurs either simultaneously or sequentially in various algorithms. We developed 
a web-based application of the model so as to visualize and compare output diagnostic algorithms when different disease prevalence 
and test performance characteristics are introduced.

Results. Diagnostic algorithms with appropriate sequential testing predicted correct identification of etiology in 74% and 89% 
of patients in India and Cambodia, respectively, compared with 46% and 49% with simultaneous testing. The optimally performing 
sequential diagnostic algorithms differed in India and Cambodia due to varying disease prevalence.

Conclusions. Simultaneous testing is not appropriate for the diagnosis of acute undifferentiated febrile illnesses with presently 
available tests, which should deter the unsupervised use of multiplex diagnostic tests. The implementation of adaptive algorithms 
can predict better diagnosis and add value to the available RDTs. The web application of the model can serve as a tool to identify the 
optimal diagnostic algorithm in different epidemiological settings, while taking into account the local epidemiological variables and 
accuracy of available tests.
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The diagnosis of acute undifferentiated febrile illnesses (AUFIs)—
commonly caused by a diversity of organisms such as Plasmodium 
species, dengue virus, Salmonella enterica serovar Typhi, 
Salmonella enterica serovar Paratyphi A, Orientia tsutsugamushi, 
Rickettsia typhi, Leptospira species, chikungunya virus, yellow fever 
virus, Burkholderia pseudomallei, Brucella species, and self-limiting 
viral infections—is an immense challenge in low-resource settings 
in Asia and Africa [1–4]. These organisms, although clinically “un-
differentiated,” are unique in terms of their clinical course and need 
proper identification for appropriate treatment.

The introduction of quality malaria rapid diagnostic tests 
(RDTs) at the point of care (POC) has improved the diagnosis 
and management of malaria dramatically [5]. However, a large 
fraction of AUFIs, even in malaria-endemic areas, is attributable 
to nonmalarial infections [6]. The World Health Organization 

currently recommends the use of malaria RDTs in the diag-
nosis of fever and if negative, assessment for other causes is re-
commended, albeit not further specified. Often, in cases where 
patients present with a fever, they are treated empirically with 
antimalarial drugs in malaria-endemic regions and with anti-
biotics in nonmalaria-endemic regions, or often with both [7].

Developments in rapid test platforms in the past few decades 
have produced commercially available RDTs for some of the 
causes of nonmalarial febrile illnesses [8]; however, these tests 
are limited by suboptimal accuracies [9–11]. Currently, multi-
plex POC tests that can measure multiple antigens/antibodies 
for different diseases simultaneously from a single sample are 
being explored [12]. The current commercially available RDTs, 
despite their suboptimal accuracies, can contribute to improved 
patient care when used appropriately relying on clinical algo-
rithms and protocols [13]. With the increasing availability and 
ongoing developments of singular and multiplex RDTs, proto-
cols to guide their proper utilization are needed.

The aim of this study was to develop a mathematical model 
framework and apply it to 2 different epidemiological settings, 
India and Cambodia, countries with similar common disease eti-
ologies for AUFIs but with different prevalence of diseases [14, 
15]. We tested the diagnostic prediction of available RDTs when 
applied simultaneously vs sequentially in various algorithms in 
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both settings to explore the optimal diagnostic approach with 
currently available RDTs. We also developed a web application 
of the model that can serve as a tool to identify the optimal diag-
nostic algorithm in different epidemiological settings, taking into 
account the local epidemiology and accuracy of available tests.

MATERIALS AND METHODS

Definitions
Simultaneous Testing
Simultaneous testing is defined as tests being applied all at the 
same time (Figure 1). This is applicable to multiplexed rapid 
diagnostic testing or testing in off-site reference laboratories 
where multiple tests are subjected to a sample.

Sequential Testing
In sequential testing, tests are applied in a sequential manner 
until one provides a positive result (Figure 1). This is done with 
single RDTs performed at the POC. In a case where a multiplex 
RDT is to be used, reading the result in sequence corresponds 
to sequential testing.

Correct Diagnosis
Correct diagnosis (CD) is defined as correctly identifying the 
etiology for the disease and excluding the ambiguous multiple 
positive results. CD corresponds to the true positives in sequen-
tial testing and includes a single true-positive result, indicating a 
clear-cut correct identification of etiology and ignoring inconclu-
sive multiple positive results occurring in simultaneous testing.

In routine clinical practice, it is not possible to differentiate 
true-positive from false-positive results by reading the test 
panel with multiple positive results. In the absence of further 
laboratory tests and clinical expertise to ascertain the etiology 
of a disease in a resource-poor setting, empirical treatment 

decisions are made leaning towards the most prevalent etiology. 
CD that offers a clear-cut correct identification of etiology with 
a single positive test result is a pertinent measure of useful di-
agnostic testing, especially where pathogen identification relies 
solely on test results.

Correct Diagnosis Score
The CD score is defined as the total number of correctly diag-
nosed patients out of the total population tested.

Correct diagnosis score =
Correct diagnosis

Population tested
.

Optimal Algorithm
Optimal algorithm is defined as the sequential testing in a par-
ticular order that gives the highest correct diagnosis score.

Data

Prevalence data for common AUFIs were derived from the 
preliminary report of an ongoing febrile illness surveillance 
recruiting 27  586 patients in India [14] and a prospective 
study recruiting 1193 patients in Cambodia [15]. The RDT 
performance characteristic data were derived from the latest 
Cochrane reviews on malaria and typhoid RDTs [10, 16] and 
from other relevant sources for dengue, scrub typhus, and lep-
tospirosis [9, 11, 17] (Table 1).

Model Assumptions

 1. At the time of testing, each individual was infected with only 
1 disease.

 2. The likelihood that individuals test positive for any disease 
depended on test characteristics and disease status and not 
any other individual covariate.

Figure 1. Results of simultaneous vs sequential testing.
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 3. Only patients with diseases specified in Table 1 were sub-
jected to testing. Patients with other prevalent infections in 
the study setting were not tested.

Model

A stochastic model using Monte Carlo simulation in R statis-
tical software version 3.5.0 [18] was applied to examine the ac-
curacy of combinations of diagnostic tests in predicting the true 
cause of fever given the diagnostic performance and disease 
prevalence for a particular setting. The model accounts for 5 
diseases for which commercial RDTs with previously described 
sensitivity and specificity are available.

Each simulated patient was assigned a disease by comparing 
disease prevalence with random number drawn from uniform 
probability function. This provided the pretest diagnosis or the 
disease assigned to a patient before being subjected to any test. 
The true-positive, false-positive, true-negative, and false-negative 
diagnoses for each patient were predicted by comparing test ac-
curacies with the random numbers from the uniform probability 
function. The code to run the simulation and generate outputs is 
provided in the Supplementary Materials.

We applied the model for the application of tests simultane-
ously and sequentially in all possible algorithms.
The number of possible algorithms in sequential testing is 
5! = 120
Simultaneous testing = 1

Model Output

We predicted the correct diagnosis scores for the simultaneous 
testing approach, and each algorithm under the sequential 
testing approach. We further predicted the proportion of pa-
tients correctly diagnosed for each disease as well as the predic-
tive values for each test. The mathematical interaction between 
disease prevalence and diagnostic test accuracies in predicting 
the correct diagnosis and predictive values is provided in the 
Supplementary Materials.

Web-based Application

We applied the same methods to develop a web-based applica-
tion using R [18] and the web application framework R package 

“shiny” [19]. The web application runs 10  000 simulations of 
each algorithm and outputs the predicted correct diagnoses and 
positive predictive values (PPVs) for each of those algorithms, 
highlighting the test sequence for the optimally performing 
ones (https://moru.shinyapps.io/diagnostic-algorithm-app/).

RESULTS

We ran 100 trials of 10 000 simulations in simultaneous testing 
and in each sequential testing algorithm, outputting the pre-
dicted correct diagnoses and predictive values for each.

Simultaneous Testing Versus the Optimal Sequential Testing Algorithm

Applying all the tests simultaneously in the entire population re-
sulted in predicted correct diagnoses of only 46% and 49% in the 
populations of India and Cambodia, respectively. However, the op-
timal algorithm when the tests were applied sequentially produced 
a correct diagnosis of 74% and 89%, respectively. The proportion 
of each disease correctly identified increased substantially using se-
quential testing in both settings, except for typhoid fever, which re-
mained low. The highest increase was observed for dengue in India 
where the proportion of correctly diagnosed patients increased 
from 45% to 84%, and malaria in Cambodia where an increase was 
observed from 50% to 95% (Table 2).

Using a simultaneous testing paradigm, the PPVs predicted 
by models ranged from 89% for dengue to 28% for typhoid in 
India, while in Cambodia the range was between 99% for ma-
laria and 2% for typhoid. The highest negative predictive value 
(NPV) was for typhoid fever in both scenarios (98% and 100% 
for India and Cambodia, respectively) while applying all tests 
simultaneously. Sequential testing in the optimal algorithm 
largely improved the PPVs for many of the tests, the highest 
increase being observed for leptospirosis and typhoid tests in 
both the scenarios. Applying the tests sequentially decreased 
the NPVs of the tests, the highest decline predicted for the lep-
tospirosis test.

Optimal Algorithm and Correct Diagnosis

The 120 possible algorithms and the predicted correct diag-
noses are shown in Figure 2.

Table 1. Model Inputs: Acute Febrile Illness Disease Prevalence in India and Cambodia and Sensitivities and Specificities of Rapid Diagnostic Tests

Disease

Disease Prevalence, % RDTs

India [14] Cambodia [15] RDT Name, Analyte Sensitivity, % (95% CI) Specificity, % (95% CI)

Malaria 3 31.8a NA, HRP-2 by itself or with aldolase/pLDH (average estimate) [16] 95 (93.5–96.2) 95.2 (93.4–99.4)

Dengue 7 3.5 SD Bioline Dengue duo RDT, dengue virus NS1 + IgM [17] 84.2 (75.5–92.9)b 94.4 (88.8–100)b

Scrub typhus 4 2.1 Scrub typhus PanBio ICT, Orientia tsutsugamushi IgM [9] 72.8 (57.8–83.8) 96.8 (91.7–99.7)

Typhoid fever 1 0.1 Test-It Typhoid kit, IgM against Salmonella Typhi LPS 09 [10] 69 (59–78) 90 (78–93)

Leptospirosis 4 3.7 Leptospira Test-It, Leptospira IgM [11] 71 (41.9–91.6) 64.6 (59.8–69.3)

Abbreviations: CI, confidence interval; HRP-2, histidine-rich protein 2; IgM, immunoglobulin M; LPS, lipopolysaccharide; NA, not applicable; NS1, nonstructural protein 1; pLDH, 
plasmodium lactate dehydrogenase; RDT, rapid diagnostic test.
aPathogen prevalence = 45.5%; fraction attributable to disease among positive tests = 70%; adjusted disease prevalence = 45.5 × 0.7 = 31.8.

https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz665#supplementary-data
https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciz665#supplementary-data
https://moru.shinyapps.io/diagnostic-algorithm-app/


Rapid Tests in Febrile Illness Diagnosis • cid 2020:70 (1 June) • 2265

The optimal algorithm for the application of these tests in 
India has the tests in the order of dengue, scrub typhus, ma-
laria, leptospirosis, typhoid, with a correct diagnosis score of 
0.74. The worst-performing algorithm has the tests in the order 
of typhoid, leptospirosis, malaria, scrub typhus, dengue, with 
an associated correct diagnosis score of 0.51. In Cambodia, the 
optimal algorithm has the tests in the order of malaria, dengue, 
scrub typhus, leptospirosis, typhoid, with a correct diagnosis 
score of 0.89. The worst performing algorithm has the tests in 
the order of typhoid, leptospirosis, scrub typhus, dengue, ma-
laria, with a correct diagnosis score of 0.51.

Table 3 shows the average CD scores with 95% confidence 
intervals of algorithms based on the initial test in the algo-
rithm, highlighting the importance of performing tests in 
the appropriate order for in a particular setting. The average 
CD score for algorithms starting with dengue was 0.68 in 
India compared with 0.65, 0.65, 0.60, and 0.53 for algorithms 
starting with malaria, scrub typhus, typhoid, and leptospi-
rosis, respectively. Similarly, in the Cambodian setting, al-
gorithms starting with malaria predicted a correct diagnosis 
score of 0.87 compared with 0.69, 0.69, 0.65, and 0.56 for algo-
rithms starting with dengue, scrub typhus, typhoid, and lepto-
spirosis, respectively.

Simplifying Algorithms

Algorithms with fewer tests were also explored, and the CD 
scores were predicted and compared with simultaneous testing 
(Table 4).

The model predicted the dengue test as the optimal single test 
to introduce first in the specified Indian setting, as it alone cor-
rectly diagnosed 31% of the patients. Similarly, malaria testing 
alone could correctly diagnose 73% of patients in the selected 
Cambodian setting. If 2 tests were to be applied, dengue followed 
by the scrub typhus test would predict the maximum correct di-
agnosis in 45% of patients in India, and malaria followed by the 
dengue test would predict a maximum correct diagnosis in 80% 
of patients in Cambodia, compared with 44% and 76% when 
these tests were applied simultaneously in India and Cambodia, 
respectively. The tests applied in the order of dengue, scrub ty-
phus, and leptospirosis would predict the optimal diagnosis for 
any 3 tests in India, and correctly diagnose 59% of patients com-
pared to 42% with tests applied simultaneously. Similarly, the tests 
applied in the order of malaria, dengue, and leptospirosis would 
diagnose 86% of patients correctly in Cambodia (compared to 
55% with simultaneous testing). When 4 tests are available, the 
optimal algorithm in India would be dengue, scrub typhus, ma-
laria, and leptospirosis and would correctly diagnose 72% of pa-
tients compared to 54% with simultaneous testing. Similarly, the 
algorithm with the order malaria, scrub typhus, dengue, and lep-
tospirosis would correctly diagnose 89% of patients in Cambodia 
(compared to 69% with simultaneous testing).

DISCUSSION

To enable better fever management in resource-limited settings, 
this work aims to identify suitable, geographically appropriate 
testing algorithms that can be implemented with the currently 
available diagnostic tests. The work intends to encourage health 
authorities and guide future research to institute diagnostic 
testing algorithms. Both simultaneous testing and sequential 
testing algorithms were explored to identify the most effective 
diagnostic approach to ensure that the clinical decisions made 
and resources allocated will be the most appropriate for im-
proved patient care.

Simultaneous testing of either multiple single RDTs or in the 
form of a multiplex panel wrongly diagnosed a large number 
of patients in our model due to the suboptimal specificities of 
the tests. This type of testing, albeit common, results in ambi-
guity in interpretation of results and clinical decision making 
when a patient is positively diagnosed for >1 disease [20]. This 
may be appropriate for hospital settings where clinical exper-
tise and diagnostic facilities are available for further differen-
tiation of etiologies. However, at the primary healthcare level 
in a resource-poor setting, healthcare delivery largely depends 
on minimally trained healthcare workers who lack adequate 
clinical expertise to draw the responsible conclusions from the 

Table 2. Output Metrics Comparing Simultaneous Testing and Optimal 
Sequential Testing Algorithm

Output Metrics

Simultaneous  
Testing

Optimal Sequential 
Testing

India Cambodia India Cambodia

Correct diagnosis scores 0.46 0.49 0.74 0.89

Proportion of malaria 
cases correctly  
diagnosed

0.50 0.50 0.86 0.95

Proportion of dengue 
cases correctly  
diagnosed

0.45 0.45 0.84 0.78

Proportion of scrub typhus 
cases correctly  
diagnosed

0.38 0.38 0.69 0.69

Proportion of typhoid 
cases correctly diag-
nosed

0.38 0.38 0.38 0.38

Proportion of leptospirosis 
cases correctly  
diagnosed

0.55 0.55 0.61 0.61

PPV malaria test 0.79 0.99 0.89 0.99

PPV dengue test 0.89 0.57 0.89 0.89

PPV scrub typhus test 0.86 0.55 0.91 0.84

PPV typhoid test 0.28 0.02 0.62 0.13

PPV leptospirosis test 0.35 0.17 0.70 0.72

NPV malaria test 0.99 0.85 0.98 0.85

NPV dengue test 0.91 0.98 0.91 0.91

NPV scrub typhus test 0.93 0.99 0.89 0.94

NPV typhoid test 0.98 1 0.92 0.99

NPV leptospirosis test 0.89 0.96 0.66 0.64

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.
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multiple positive results that may be seen on the testing panel 
[13]. Simultaneous testing for 5 common AUFIs, with the pres-
ently available RDTs in our model, correctly predicted the di-
agnosis of only roughly half of all patients in both settings, 
meaning that half of the patients are sent away without appro-
priate diagnosis and care, despite their extensive expenses on 
diagnostic testing. As a second approach, sequential testing in 
a rational order was found to increase the correct identification 

of the diseases and potentially decrease expenses. The sequen-
tial testing with multiple RDTs performed from the same blood 
sample circumvents the need for increase in labor and admin-
istrative complexities with multiple tests subjected to a patient. 
Also, reading the results in an appropriate algorithm rather 
than simultaneously of multiple RDT testing when performed 
together or with combined multiplex RDT testing correlates the 
optimal sequential testing and predicts better diagnosis.

Figure 2. Algorithms with tests in different orders, for India (A) and Cambodia (B). Each column represents 1 of the 120 algorithms of 5 tests. The algorithms are arranged 
from left to right in decreasing correct diagnosis score. The stacked bars in each column represent the 5 tests that are performed in a sequential order, with the first test at 
the bottom of the column and the fifth test at the very top. The length of each bar represents the contribution of each test to total correct diagnosis score.
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Diagnostic tests in clinical practice are often arbitrarily ap-
plied in the order of presumed prevalence without considering 
test accuracy. The Widal test for typhoid is an example of a test 
that is widely available and often is the first test used in the di-
agnosis of AUFIs despite its limited accuracy [21]. However, the 
diagnostic outcome of an algorithm is very sensitive to the ac-
curacies of component diagnostic tests. Correct identification 
of a component disease in an algorithm depends on the prev-
alence of the disease in the specific setting, and the diagnostic 
sensitivity and specificity of all prior tests in the algorithm. Our 
algorithmic approach to optimize the cumulative correct iden-
tification of the project AUFIs—taking into account the preva-
lence of all component diseases and their respective diagnostic 
test characteristics—predicted better diagnosis.

The large spatial heterogeneity in the etiologies of AUFIs 
[3], the effect of seasonality on their epidemiology [22], and 

nonuniform access to different RDTs limit the generalizability 
and global adoption of any algorithm. White et al compared the 
region-specific treatment algorithms with national empirical 
treatment protocols for AUFIs in the Lao People’s Democratic 
Republic and reported that a spatially explicit treatment algo-
rithm based on local epidemiology significantly improves treat-
ment outcomes [23]. The epidemiological data on AUFIs at the 
national and local levels are emerging across the world [2, 14, 
24, 25]. The web application allows users to select their scenario 
using the best available epidemiological evidence and run an 
informal sensitivity analysis varying scenario parameters in 
choosing an optimally performing algorithms tailored to their 
setting. The order of tests in the top-performing algorithms may 
not have a huge effect on the correct identification of AUFIs, 
opening up an opportunity to deploy the same algorithm in 
different settings with similar causes of AUFIs. Ultimately, 
the decision to choose a particular algorithm among the top-
performing ones to be made locally can be subjective taking 
into disease severity and availability to treatment as well as cost 
and availability of RDTs.

Undoubtedly, RDTs can provide valuable diagnostic sup-
port in low-resource settings where, due to the limited clin-
ical expertise and healthcare infrastructure, patients are either 
not diagnosed at all or wrongly diagnosed based on empirical 
observation [26]. However, limited financial resources pre-
clude the deployment of all available RDTs as a mere solution. 
Moreover, this study suggests that all tests may not necessarily 
offer substantial benefit in improving the overall diagnosis of 

Table 4. Optimal and Worst Algorithms Using 1, 2, 3, and 4 of the 5 Tests With Corresponding Correct Diagnosis Score Using Currently Available Rapid 
Diagnostic Tests

No. of 
Tests

Optimal/Worst 
Algorithm

India Cambodia

Order of Tests

CD Score With 
Sequential 

Testing

CD Score When 
Tests Are Applied 
Simultaneously Order of Tests

CD Score 
With Sequen-

tial Testing

CD Score When 
Tests Are Applied 
Simultaneously

1 Optimal test 1. Dengue 0.31 0.31 1. Malaria 0.73 0.73

 Worst test 1. Typhoid 0.04 0.04 1. Typhoid 0.001 0.001

2 Optimal algo-
rithm 

1. Dengue 
2. Scrub typhus

0.45 0.45 1. Malaria 
2. Dengue

0.80 0.76

 Worst algorithm 1. Typhoid 
2. Leptospirosis

0.17 0.16 1. Typhoid 
2. Scrub typhus

0.03 0.03

3 Optimal algo-
rithm 

1.Dengue 
2.Scrub typhus 
3.Leptospirosis

0.59 0.42 1. Malaria 
2. Dengue 
3. Leptospirosis

0.86 0.55

 Worst algorithm 1.Typhoid 
2.Leptospirosis 
3.Malaria

0.26 0.24 1. Typhoid 
2. Leptospirosis 
3. Scrub typhus

0.08 0.08

4 Optimal algo-
rithm 

1.Dengue 
2.Scrub typhus 
3.Malaria 
4.Leptospirosis

0.72 0.54 1. Malaria 
2. Scrub typhus 
3. Dengue 
4. Leptospirosis

0.89 0.69

 Worst algorithm 1.Typhoid 
2.Leptospirosis 
3.Malaria 
4.Scrub typhus

0.34 0.31 1. Typhoid 
2. Leptospirosis 
3. Scrub typhus 
4. Dengue

0.12 0.11

Abbreviation: CD, correct diagnosis.

Table 3. Average Correct Diagnosis Based on the Initial Test in the 
Algorithm

Tests at First Posi-
tion in the Algorithm

India Cambodia

Mean CD Score  
(95% CI)

Mean CD 
Score (95% CI)

Malaria 0.65 (.62–.67) 0.87 (.86–.87)

Dengue 0.68 (.67–.70) 0.69 (.63–.74)

Scrub typhus 0.65 (.63–.68) 0.69 (.63–.75)

Typhoid 0.60 (.57–.62) 0.65 (.60–.70)

Leptospirosis 0.53 (.52–.54) 0.56 (.54–.57)

Abbreviations: CD, correct diagnosis; CI, confidence interval.
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the population, which is why a consideration of disease prev-
alence and test characteristics can inform cautious selection of 
the panel of tests required in a given setting for the most ef-
ficient use of scarce resources and the best possible treatment 
decisions.

Despite its utility, our model has several limitations. Most im-
portantly, the model does not take into account coinfections and 
may therefore not completely represent real-life situations, par-
ticularly in high-malaria transmission areas [27]. The epidemi-
ological data on coinfections of clinical significance is limited by 
the false positivity associated with tests deployed in the studies 
and asymptomatic carriers in the population not attributing to 
the disease. The web application allows users to explore the sen-
sitivity of prevalence parameters tailored to the setting before 
application of an algorithm and is expected to sufficiently guide 
the utilization of tests. Likewise, the etiology of febrile illness 
differs largely across different age groups [2], which needs to 
be taken into account for more precise age-specific algorithms. 
The model also does not take into account disease severity and 
assumes that all the diseases under consideration have sim-
ilar treatability and treatment outcomes. Missing a diagnosis 
for 1 disease etiology might lead to more severe clinical con-
sequences as compared to others. It is important to not forget 
that diagnostic testing cannot happen in isolation and the final 
diagnosis by a clinician has to consider risk factors, clinical in-
dicators, and measurable severity markers (eg. respiratory rate, 
lactate, procalcitonin) as additional precautions. Differentiating 
clinical signs and symptoms (eg, rose spots for typhoid, hem-
orrhagic rashes for dengue), although rare, should supersede 
diagnosis based on the order of testing in the algorithm when 
these symptoms are present and can be distinguished based on 
available clinical expertise and/or laboratory parameters, such 
as thrombocytopenia for dengue, for example. The prevalence 
estimates used in this study were derived from hospital-based 
studies, which may not represent a large rural population. The 
prevalence estimate used for malaria in Cambodia is unusually 
high [15], but is representative of a high malaria-endemic re-
gion. Also, the data on test accuracies were derived from the 
studies published from diverse settings and are not specific to 
our study settings. Despite our utmost efforts to use the best 
possible evidence, available estimates on disease prevalence and 
test accuracies may not accurately represent the true values in 
the study population and may therefore influence the results of 
this study.

It is widely recognized that available RDTs for AUFIs are in-
sufficient and improved assays with superior diagnostic accu-
racy values are needed [9–11, 17]. The development of better 
tools demands substantial time and resources; thus, a new en-
hanced RDT may not become an immediately available solu-
tion. In the meantime, it is critical to take advantage of available 
tools and improve care using pragmatic yet evidence-based ap-
proaches. Using available tests based on appropriate algorithms 

is imperative and can substantially improve patient care deci-
sions and ensure the most appropriate use of resources.
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