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Abstract18

Given the narrowness of the initial testing criteria, the SARS-CoV-2 virus spread through cryptic19

transmission in January and February, setting the stage for the epidemic wave experienced in March and20

April, 2020. We use a global metapopulation epidemic model to provide a mechanistic understanding21

of the global dynamic underlying the establishment of the COVID-19 pandemic in Europe and the22

United States (US). The model is calibrated on international case introductions at the early stage of23

the pandemic. We find that widespread community transmission of SARS-CoV-2 was likely in several24

areas of Europe and the US by January 2020, and estimate that by early March, only 1−3 in 100 SARS-25

CoV-2 infections were detected by surveillance systems. Modeling results indicate international travel26

as the key driver of the introduction of SARS-CoV-2 with possible importation and transmission events27

as early as December, 2019. We characterize the resulting heterogeneous spatio-temporal spread of28

SARS-CoV-2 and the burden of the first COVID-19 wave (February-July 2020). We estimate infection29

attack rates ranging from 0.78%-15.2% in the US and 0.19%-13.2% in Europe. The spatial modeling of30

SARS-CoV-2 introductions and spreading provides insights into the design of innovative, model-driven31

surveillance systems and preparedness plans that have a broader initial capacity and indication for32

testing.33
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Introduction34

The first confirmed case of COVID-19 in the United States (US) was diagnosed in Washington state on35

January 21, 2020 (1). In Europe, the first three COVID-19 cases were reported in France on January 2436

and had an onset of symptoms on January 17, 19 and 23, respectively (2; 3). In quick succession other37

cases were confirmed in the US (4; 5; 6) and in several European countries such as Germany (January38

27), Italy (January 30), Spain, and the United Kingdom (January 31). In Fig. 1A we include a timeline39

of initial confirmed cases and early containment and mitigation initiatives in the US and Europe. To40

study the cryptic spreading phase and the ensuing first wave of the COVID-19 pandemic, we use a41

data-driven, stochastic, spatial, and age-structured global epidemic model. We develop a mechanistic42

understanding of the epidemic evolution and estimate the time frame for the establishment of local43

transmission in different states and countries. The model provides a statistical picture of SARS-CoV-244

introductions across US states and European countries. We quantify the association between the amount45

of international/domestic air travel and the model estimates of the arrival times of the virus in the US and46

Europe, showing that international and domestic travel patterns were a key driver in the establishment47

of SARS-CoV-2 local transmission. Furthermore, we use the model to estimate the COVID-19 disease48

burden across the two regions. We provide model estimates for the infection fatality ratios and the49

infection attack rates as of July 4, 2020. We find that our model-estimated infection attack rates are in50

good agreement with the results from serological studies of SARS-CoV-2 antibody prevalence conducted51

at different spatial resolutions (i.e., city, state, country). Additionally, the model highlights a strong52

statistical association between the number of cases reported at the time of issuing major mitigation53

policies in each country/state and the estimated number of infections at the end of the first wave. This54

is in agreement with statistical analysis showing that the effectiveness of mitigation policies is associated55

with the timing of their adoption (7; 8; 9; 10; 11; 12; 13; 14; 15). The unique, mechanistic understanding56

of the way in which the COVID-19 pandemic unfolded highlights that, in countries with confirmed local57

transmission, policies such as testing based on travel history and international travel restrictions are highly58

inefficient in preventing the development of local outbreaks. Wide spread testing would have detected59

transmission earlier and allowed for earlier implementation of interventions. Future preparedness plans60

must have broader, initial capacity and indication for testing to mitigate wide spread cryptic transmission.61

These findings are of particular relevance given that contrasting the spread of SARS-CoV-2 variants of62

concern presents similar dynamics and problems.63

Results64

We consider data concerning the continental US and the following list of 30 countries we will informally65

refer to as “Europe”: Austria, Belgium, Bulgaria, Croatia, Czech Republic, Denmark, Estonia, Fin-66

land, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta,67

Netherlands, Norway, Poland, Portugal, Romania, Slovak Republic, Slovenia, Spain, Sweden, Switzer-68

land, and the UK. To study the spatial and temporal spread of SARS-CoV-2, we use the Global Epi-69

demic and Mobility Model (GLEAM), a stochastic, spatial, and age-structured metapopulation epidemic70

model (16; 17; 18). The model was previously used to characterize the early stage of the COVID-19 epi-71

demic in mainland China and the effect of travel restrictions on infections exported to other regions (19).72

The model divides the global population into more than 3, 200 subpopulations in roughly 200 different73

countries and territories. A subpopulation is defined as the catchment area around major transportation74

hubs. The airline transportation data encompass daily origin-destination traffic flows from the Official75

Aviation Guide (OAG) database (20) reflecting actual traffic changes that occurred during the pandemic.76

Ground mobility and commuting flows are derived from the analysis and modeling of data collected77

from the statistics offices of 30 countries on five continents (17; 16). We set, as initial conditions, an78

epidemic starting date in Wuhan, China between November 15, 2019 and December 1, 2019, with 2079
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initial infections (21; 22; 23; 24; 19; 25). This considers that the virus could have emerged as early80

as mid October, 2019. The international travel data account for travel restrictions and government is-81

sued policies. Furthermore, the model accounts for the reduction of internal, country-wide mobility and82

changes in contact patterns in each country and state in 2020. To initially calibrate the global model, we83

use an Approximate Bayesian computation (ABC) method (26) that considers reports of international84

travelers carrying SARS-CoV-2 returning from China up to January 21, 2020, and accounts for different85

case detection capabilities (27; 19) among countries. The model details are reported in the Materials and86

Methods section and the Supplementary Information (SI).87

Stochastic simulations of the global epidemic spread yield international and domestic infection impor-88

tations, incidence of infections, and deaths per subpopulation at a daily resolution. In Fig. 1B we show89

the model estimates for the median daily incidence of new infections up to February 21, 2020, for both the90

US and Europe. These values are much larger than the number of officially reported cases (see Fig.1A),91

highlighting the significant number of potential transmission events that may have already occurred before92

many states and countries had implemented testing strategies independent of travel history.93

As validation we compare our model projections of the number of infections during the week of March94

8, 2020 to the number of cases reported during that week within each US state and European country95

that had at least 1 reported case (shown in Fig.1B inset). While we see a strong correlation between96

the reported cases and our model’s projected number of infections (Pearson’s correlation coefficient on97

log-values, US: 0.79, p < 0.001; Europe: 0.80, p < 0.001), many fewer cases had actually been reported by98

that time. If we assume that the number of reported cases and simulated infections are related through99

a simple binomial sampling process, we find that on average 9 in 1, 000 infections (90%CI [1 – 35 per100

1, 000]) and 35 in 1, 000 infections (90%CI [4 – 90 per 1, 000]) were detected by March 8, 2020 in the US101

and Europe respectively. As testing capacity increased that week, the ascertainment rate grows and our102

estimates increase to detecting 17 in 1, 000 infections (90%CI [2 – 55 per 1, 000]) by March 14, 2020 in103

the US and 77 in 1, 000 infections (90%CI [5 – 166 per 1, 000]) in Europe. The estimated ascertainment104

rates are in agreement with independent results based on different statistical methodologies (28; 29; 30).105

In mid-February, other than travel-related restrictions, there were very few mitigation policies im-106

plemented for the purpose of reducing community transmission (i.e., social distancing guidelines, school107

closures, stay at home orders, etc.) in the US and Europe. Combined with the lack of testing capabilities,108

the virus was able to spread undetected and unhindered. In Fig.1C we show the probability that a city in109

the US or Europe had generated at least 100 infections by February 21, 2020. We see that the progression110

of the virus through the US and Europe is both temporally and spatially heterogeneous. While many111

cities had not yet experienced much community transmission by late February, a few areas such as New112

York City or London likely already had local virus spreading. As discussed in more detail in the following113

sections, the position of the cities within the global mobility network plays a critical role in the timing114

of the virus’ introduction to the population and onset of local transmission.115

Onset of local transmission. The model allows us to study the unfolding patterns compatible with116

the global importation of cases from China leading to the initial local outbreaks. It is important to stress117

that the model’s realizations explore all possible paths of the epidemic. Thus rather than describing118

a specific, single causal chain of events, the results provide a statistical description of all the potential119

pandemic histories compatible with the initial evolution of the pandemic in China. For instance, some120

initial clusters, such as in Germany, have been effectively contained, possibly delaying the start of wide121

spread transmission (31). While the inclusion of these additional events in selecting epidemic paths would122

be computationally unfeasible, it is possible to assume, considering also recent evidence from models of123

genomic epidemiology (32; 31; 33), that Italy has been the first among European countries to experience124

substantial widespread transmission. Due to limited testing capacity during the early phases of the125

pandemic, confirmed SARS-CoV-2 deaths might be a better proxy for the relative start of the local126

outbreak in each country rather than reported cases. As of March 9, 2020, Italy reported 463 cumulative127

deaths, Spain 35, USA 26, France 25, Germany 2, the UK 7, and Italy was the first in the region to128
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impose a national lockdown. Therefore, throughout the paper, we constrain the ensemble of simulations129

focusing only on stochastic realizations where Italy is the first country, in the group under examination,130

to experience sustained local transmission. In the SI we report the analysis of the full unconstrained set131

of simulations.132

Here, we define the onset of local transmission for a country or state as the earliest date when at least133

10 new infections are generated per day. This number is chosen because at this threshold the likelihood134

of stochastic extinction is extremely small (34; 35). In fact, the probability of disease extinction in a135

fully susceptible and well-mixed population exposed to n infected individuals can be approximated as136

R−n0 , which is approximately 10−5 when R0 = 2.7. As detailed in the SI, further calibration on the US137

states and European countries suggests values of R0 ranging from 2.4 − 2.8. These values are consistent138

with many other (country dependent) estimates (36; 37; 38; 39; 40; 8). At the same time, given the139

doubling time of COVID-19 before the implementation of public health measures, any variation of a140

factor 2 around the 10 infections/day threshold corresponds to a small adjustment of 3 − 5 days to the141

presented timelines.142

In Fig. 2, we show the posterior distribution of onset of local transmission for different US states (A)143

and European countries (B). Among the US states, California and New York state are the earliest, with144

over a 50% estimated probability of local transmission by the end of January (California) or beginning145

of February (New York), 2020. In Europe, Italy, UK, Germany, and France are the first countries with146

a probability larger than 50% to have experienced local transmission by the end of January 2020. A147

majority of the states and countries analyzed have a median date of onset of local transmission by early148

March, with the large majority of them in February, 2020, a critical month for the cryptic spread of149

SARS-CoV-2 in the continental US and Europe. Remarkably, the plots for both Europe and the US150

indicate that while surveillance and testing in February and early March were focused on travel history,151

several European countries and US states were likely already experiencing local community transmission.152

This finding confirms that from late January to early March SARS-CoV-2 had been spreading across the153

US and Europe mostly undetected. However, the wide distribution of dates suggest that SARS-CoV-2154

cryptic transmission may have begun as early as December, 2019. The model also allows us to estimate155

possible COVID-19 related deaths during the undetected spreading phase. For instance by March 1,156

2020, the model suggests that the median cumulative number of deaths was 56 [90% CI 9 − 544] in the157

US and 120 [90% CI 21 − 1, 177] in Europe. Although some US states and European countries launched158

investigations in search of evidence that COVID-19 was the cause of death as far back as December 2019,159

it is likely that most early deaths were not recorded (41).160

SARS-CoV-2 introductions. As the model allows the recording of the origin and destination of SARS-161

CoV-2 carriers at the global scale, we can study the possible sources of infection importation for each US162

state and European country. More specifically, we record the number of introductions in each stochastic163

realization of the model. In Fig. 3 we visualize the origin of the introductions considering some key164

geographical regions (e.g., Europe and Asia) while keeping the US and China separate and aggregating165

all the other countries (i.e., Others). We show the directed importation flows from the aggregated source166

regions to the US states (A) and European countries (B). States and countries are ordered according to the167

date of the estimated establishment of local transmission. In both cases, the contribution from mainland168

China is barely visible and the local share (i.e., sources within Europe and US) becomes significantly169

higher across the board. Hence, while importation events in the early phases of the outbreak were key to170

start the local spreading (see details in the SI), the cryptic transmission phase has been sustained largely171

by internal flows. Domestic SARS-CoV-2 introductions through April 30, 2020, account for 71% [IQR172

61%−82%] of the introductions in California, 79% [IQR 73%−88%] in Texas, and 71% [IQR 61%−82%]173

in Massachusetts. European origins account for 69% [IQR 60% − 80%], 84% [IQR 79% − 91%], and 58%174

[IQR 48% − 68%] of the introductions in Italy, Spain, and the UK, respectively. In the SI we report the175

full breakdown for all states and countries.176

It is important to distinguish between the full volume of SARS-CoV-2 introductions and the introduc-177
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tion events that could be relevant to the early onset of local transmission in each stochastic realization178

of the model. In the model we can investigate these specific events by recording introduction events179

before the local transmission chains were established (defined as the median dates of Fig. 2). We report180

the results of this analysis in the SI, showing that importations from mainland China may be relevant181

in seeding the epidemic in January, but then play a small role in the COVID-19 expansion in the US182

and Europe due to the travel restrictions imposed to/from mainland China after January 23, 2020. In183

fact, about 74% [IQR 60%− 100%] and 45% [IQR 15%− 71%] of the virus introduction before the onset184

of local transmission in California and New York states, respectively, were from mainland China. The185

equivalent share of importations from China in Italy and the UK were 72% [IQR 50% − 100%] and 52%186

[IQR 31% − 71%].187

Our results concerning SARS-CoV-2 introductions in different countries/states can be compared to188

analysis based on gene sequencing and travel volumes, showing a good degree of agreement with the189

temporal and geographical distribution of SARS-CoV-2 importations. For example, Ref. (42) estimates190

that the majority of importation events associated with onward transmissions in the UK, through April191

2020, came from Europe. Similar to our findings, the contributions from China are quantified below192

1% and limited to the very early phase. Furthermore, the seeding events from the US are estimated193

to be ∼ 3% which is in agreement with our estimate of 8% [IQR 3% − 9%]. However, their results194

point to a larger share from Europe (∼ 90%) compared to ours (58% [IQR 48% − 68%]). Conversely, we195

estimate a larger contribution from Asia (27% [IQR 19% − 35%]). The discrepancies might be due to196

biases in genomic sampling (43) and/or the fact that we sample all possible epidemic paths statistically197

possible rather than the single, observed occurrence. To this point, it is worth stressing that seeding198

importations are different from the actual number of times the virus has been introduced to each location199

with subsequent onward transmission. Even after local transmission has started, future importation200

events may give rise to additional onward transmission forming independently introduced transmission201

lineages of the virus(42). Ref. (44) confirms the key role of national importations in the US. In fact,202

by analyzing both genomic and travel data (national and international) it estimates that the outbreak203

in Connecticut was largely driven by domestic importations. Our results indicate an internal share of204

importations for that state of 64% [IQR 54% − 76%]. Furthermore, Ref. (33) confirms the key role of205

importations from China to Italy at the beginning of the pandemic. As shown in the SI and mentioned206

above, our results suggest that 72% of the early introductions before the start of the local outbreak in207

Italy are linked to China.208

COVID-19 burden. The model allows us to estimate the disease burden in the US and Europe once209

COVID-19 has established local transmission. Starting in March 2020, the COVID-19 epidemic trajectory210

in each country and state is driven by the establishment and timing of non-pharmaceutical interventions211

(NPIs) as well as by the epidemiological relevant features (i.e., population size and density, age-structure212

etc.) which are spatially heterogeneous (45; 46; 47; 7). The model accounts for these features as detailed213

in the SI. To calibrate the model results for each individual US state and European country, we use the214

weekly number of new deaths reported from March 22, 2020 to June 27, 2020. Furthermore, we consider215

a uniform prior for the average infection fatality ratio (IFR) in the range from 0.4% to 2% that is age216

stratified proportional to the IFR values reported in Ref. (48). We also consider a uniform prior for217

reporting delays between the date of death and reporting ranging from 2 to 22 days in both Europe218

and the US (49). We provide the details of our calibration for each geographical unit (i.e., US state or219

European country) in the SI.220

In Fig. 4(A-D, F-I), we report the projected results of the weekly deaths of the first wave for selected221

states and countries. Additional model results for all investigated regions including a sensitivity analysis222

of different calibration methods can be found in the SI. We find a strong correlation between the weekly223

model-estimated deaths and the reported values with a Pearson correlation coefficient of 0.99 (p < 0.001)224

for both Europe and the US (see Fig. S5). As the data suggest, many European countries and US states225

saw peaks in April and May with various decreasing trajectories that are dependent on the mitigation226
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strategies in place. Additionally, we report the estimated cumulative infection attack rates and IFRs as227

of July 4, 2020, in European countries experiencing more than 100 total deaths and the top 20 states228

ranked by infection attack rate in the US. The median infection attack rates vary from 0.19%− 13.2% in229

Europe and 0.78% − 15.2% in the US.230

Within Europe, Belgium has the highest estimated infection attack rate of 13.2% (90% CI [8.5% −231

28.3%]) by July 4, 2020, in agreement with the results detailed in Ref. (28). Furthermore, by that time232

Belgium reported the highest COVID-19 mortality rate out of the European countries investigated with233

8.5 deaths per 10, 000 individuals. Italy is estimated to have the highest median IFR of 1.4% (90% CI234

[0.6%−1.8%]), which aligns with other ranges reported in the literature (50; 51). The US states with the235

highest infection attack rates are located within the Northeast and experienced a significant first wave236

during March-April 2020. New York and New Jersey are the top two states with infection attack rates237

of 13.4% (90% CI [9.1% − 26.7%]) and 15.2% (90% CI [10.2% − 31.3%]) respectively. These numbers238

are aligned with estimates from New York City reported in Ref. (52). However, unlike many European239

countries, some states did not experience a significant initial wave until late summer 2020, after the time240

window considered here. The IFRs estimated for the US states range from 0.8% to 1.3%. In the SI we241

report summary tables with estimated IFRs, infection attack rates, as well as the reproductive number242

in the absence of mitigation measures for all calibrated US states and European countries.243

The drivers and impact of the cryptic transmission phase. In the early stages of a pandemic,244

surveillance data are known to be unreliable due to under-detection. For each state in the US and245

each country in Europe we compared the order in which they surpassed 100 cumulative infections in the246

model and in total cases in the surveillance data (gathered from the John Hopkins University Coronavirus247

Resource Center (53)). In Fig. 5A we plot the ordering for states and compute the Kendall rank correlation248

coefficient τ (see SI for details). The correlation is positive (τEU = 0.71, p < 0.001 and τUS = 0.68,249

p < 0.001) indicating that, despite the detection and testing issues, the expected patterns of epidemic250

diffusion are largely described by the model in both regions. The model, however, suggests that one251

major driver of this early diffusion pattern is air travel. We compare the ordering of states and countries252

according to their air travel volume to their epidemic order as previously defined (Fig. 5A). We consider253

both national and international traffic, and find a positive correlation (τEU = 0.66 with p < 0.001 and254

τUS = 0.66 with p < 0.001) between the epidemic ordering derived from surveillance data and air traffic,255

suggesting the passenger volume of both international and national traffic are key factors driving the256

early spreading of the outbreak across countries. Similar observations have been reported in China,257

where the initial spreading of the virus outside Hubei was strongly correlated with the traffic to/from258

the province (54). Population size is also correlated with both the traveling flows (τEU = 0.59, p < 0.001259

and τUS = 0.7, p < 0.001) and the epidemic order of each state (τEU = 0.46, p < 0.001 and τUS = 0.68,260

p < 0.001) as discussed in the SI. In our model, it is not possible to exclude increased contacts in highly261

populated places before social distancing interventions and disentangle this effect from increased seeding262

due to the correlation between travel volume and population size.263

As more cases were detected in countries and states, travel restrictions were implemented to/from264

high risk regions. Consequently, COVID-19 deaths started to rise along with hospitalizations and many265

governments began to issue social distancing guidelines, school closures, and community / country-wide266

lock downs. All NPIs were aimed at mitigating the spread of COVID-19 (8). In Fig. 5C (left) we report267

the correlation between the cumulative infections projected by the model on July 4, 2020, and the number268

of cases reported by the date of lockdown (reported data from Ref. (55)). Similarly, in the US (right:269

Fig. 5C) we show the correlation between the cumulative infection projections on July 4, 2020, and the270

number of cases reported by March 16, 2020, the date the “15 days to slow the spread” guidelines were271

released (56). At this point in time, many people were aware of the virus and altering their behavior (such272

as working from home or social distancing) (57; 58). In both cases we find a strong correlation (Pearson273

correlation coefficient, r = 0.92, p < 0.001 and r = 0.73, p < 0.001 in Europe and US respectively)274

indicating that the earlier NPIs had been issued with respect to the number of cases confirmed in each275
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specific state or country, the smaller the COVID-19 burden experienced during the first wave. This is276

in agreement with other analyses showing that the timing of NPIs is crucial in limiting the burden of277

COVID-19 (7; 8; 9; 10; 11; 12; 13; 14; 15).278

By April-May 2020, after a month of stay-at-home orders and other NPIs coupled with travel re-279

strictions, many European countries and US states started to observed a decline in SARS-CoV-2 cases,280

deaths, and hospitalizations. This decline led to the relaxation of many social distancing policies, such281

as removing stay-at-home directives or opening workplaces and restaurants to in-person business. Even282

though at the end of the first wave the active prevalence of the virus may have been low within these283

regions, the relative low level of residual immunity left in a population has favored an epidemic resur-284

gence observed both in the US and Europe in October and November 2020. In Fig. 5D we report the285

correlation between our model-estimated infection attack rates and the prevalence of individuals with the286

SARS-CoV-2 antibody from 13 serological studies across the US and Europe. We find a remarkably good287

agreement between model estimates and seroprevalence studies at different point in times. Data from288

this figure can be found in the Table S7 in the SI.289

Discussion290

The model presented here captures the spatial and temporal heterogeneity of the early stage of the291

pandemic, going beyond the single country-level reconstruction. It provides a mechanistic understanding292

of the interconnected, underlying dynamics of the pandemic’s evolution. The results of our analysis293

suggest that the first sustained local transmission chains took place as early as January and by the end of294

February 2020 the virus was spreading in a majority of European countries and US states. This timeline295

is shifted several weeks ahead with respect to the detection of cases in surveillance data and is consistent296

with the fact that, in January and February, no country had the capacity to do mass testing. The297

results also indicate that the sources of introduction of SARS-CoV-2 infections into Europe and the US298

changed substantially and rapidly through time. If testing had been more widespread and not restricted299

to individuals with a travel history from China, there would have been more opportunities for earlier300

detection and interventions.301

The numerical simulations yield posterior distributions characterizing the timing of the onset of local302

transmission of SARS-CoV-2 across US states and European countries. These results generate a compre-303

hensive picture of the cryptic phase of the pandemic, especially for countries and states where genomic304

surveillance and testing capacity were not adequate. This is also relevant in the interpretation of many305

studies that are searching for SARS-CoV-2 traces in existing databases (ex. blood donors, sewage samples306

etc.).307

The model can estimate the impact of the first wave through measuring the country and state level308

infection attack rates. These projections align with other sources and provide insights into the heteroge-309

neous progression of the pandemic across countries/states due to the timing and magnitude of different310

public health responses. We find that an early response is important in minimizing the burden of COVID-311

19 disease on a region. The first European country to implement a cordon sanitaire in response to the312

rise in SARS-CoV-2 related illness was Italy on February 23, 2020, for a few northern cities (59). How-313

ever, this is nearly one month after the median date of the onset of local transmission estimated by314

the model (see Fig. 2B). Many other countries followed suit and implemented national lock downs in315

March 2020 (45; 60), weeks after our model estimated that SARS-CoV-2 was introduced and subsequently316

spreading.317

More generally, our results show that reactive response strategies, such as issuing travel restrictions318

targeting countries only after local transmission is confirmed, are highly inefficient. These strategies fail319

to prevent the establishment of local outbreaks because they do not recognize the critical importance320

of the cryptic phase. In addition, this finding parallels the emerging story of the cryptic spreading of321

variants of concern, pointing out the need of increased testing capacity not dependent on travel history,322
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contact tracing, and promoting the establishment of gene sequencing surveillance infrastructures.323

As with all modeling analyses, results are subject to biases from the limitations and assumptions within324

the model as well as the data used in its calibration. The model’s parameters, such as generation time,325

incubation period, and the proportion of asymptomatic infections are chosen according to the current326

knowledge of SARS-CoV-2. Although the model is robust to variations in these parameters (see the SI for327

the sensitivity analysis), more information on the key characteristics of the disease would considerably328

reduce uncertainties. The model calibration does not consider correlations among importations (i.e.,329

family travel) and assumes that travel probabilities are age-specific across all individuals in the catchment330

area of each transportation hub.331

Although the modeling results should be interpreted cautiously in light of the assumptions and lim-332

itations inherent to modeling approaches, they are of interest in combination with sequencing data of333

SARS-CoV-2 genomes to reconstruct in greater detail the early epidemic history of the COVID-19 pan-334

demic. The methods used in this analysis offer a blueprint to identify the most likely early spreading335

dynamics of emerging variants and they can be used as a real-time risk assessment tool to inform policy336

makers. Anticipating the locations where the virus is most likely to spread to next could be instrumen-337

tal in guiding enhanced testing and surveillance activities, and complement phylogeographic inference338

approaches (33). The estimated SARS-CoV-2 importation patterns and the cryptic transmission phase339

dynamics are of potential use when planning and developing public health policies in relation to inter-340

national traveling and they could provide important insights in assessing the potential risk and impact341

of emerging SARS-CoV-2 variants in regions of the world with limited testing and genomic surveillance342

resources.343

Methods344

SARS-CoV-2 transmission dynamic. The transmission dynamics take place within each subpopulation and345

assume a classic SLIR-like compartmentalization scheme for disease progression similar to those used in several346

large scale models of SARS-CoV-2 transmission (29; 61; 62; 63; 64; 22). Each individual, at any given point in347

time, is assigned to a compartment corresponding to their particular disease-related state (being, e.g., susceptible,348

latent, infectious, removed) (19). This state also controls the individual’s ability to travel (details in the SI).349

Individuals transition between compartments through stochastic chain binomial processes. Susceptible individuals350

can acquire the virus through contacts with individuals in the infectious category and can subsequently become351

latent (i.e., infected but not yet able to transmit the infection). The process of infection is modeled using age-352

stratified contact patterns at the state and country level (65; 66). Latent individuals progress to the infectious353

stage at a rate inversely proportional to the latent period, and infectious individuals progress to the removed stage354

at a rate inversely proportional to the infectious period. The sum of the mean latent and infectious periods defines355

the generation time. Removed individuals are those who can no longer infect others. To estimate the number of356

deaths, we use as prior the age-stratified infection fatality ratios from Ref (48). The transmission model does not357

assume heterogeneities due to age differences in susceptibility to the SARS-CoV-2 infection for younger children358

(1 − 10 years old). This is an intense area of discussion (67; 68; 69).359

Model calibration. We assume a start date of the epidemic in Wuhan, China, that falls between November 15,360

2019 and December 1, 2019, with 20 initial infections (21; 22; 23; 24; 19). The model generates an ensemble of361

possible epidemic realizations and is initially calibrated using Approximate Bayesian computation (ABC) rejec-362

tion approach (26) based on the observed international importations from mainland China through January 21,363

2020 (19). Only a fraction of imported cases are generally detected at the destination (70; 27). According to the364

estimates proposed in Ref. (71), we stratify the detection capacity of countries into three groups: high, medium and365

low surveillance capacity according to the Global Health Security Index (72), and assume asymptomatic infections366

are never detected. The model calibration does not consider correlated importations (i.e., family travel) and as-367

sumes that travel probabilities are homogeneous across all individuals in each subpopulation. We perform for each368

state and country an additional ABC rejection analysis using as evidence the weekly reported deaths in the time369

window starting on March 22, 2020 through June 27, 2020. A full description of the model is provided in the SM file.370

371
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Figure 1: Early picture of the COVID-19 outbreak in Europe and the United States. (A)
Timelines of the daily reported and confirmed cases of COVID-19 in Europe and US including information
on initial reported cases and other significant events related to the outbreak. (B) Model-based estimates
for the daily number of new infections in Europe and US. The inset plot compares the weekly incidence
of reported cases with the weekly incidence of infections estimated by the model for the week of March
8 − 14, 2020 for the continental US-states and European countries that reported at least 1 case. Circle
size corresponds to the population size of each state and country. (C) The probability that a city in
Europe and the US had generated at least 100 cumulative infections by February 21, 2020. Color and
circle size are proportional to the probability.
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Figure 2: Timing of the onset of local transmission. We plot the posterior distributions of the week
when each US state (A) or European country (B) first reached 10 locally generated SARS-CoV-2 trans-
mission events per day. Countries/states are ordered by the median date of their posterior distribution.
The week of this date corresponds to the dates reported on the the vertical axis.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.24.21254199doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.24.21254199
http://creativecommons.org/licenses/by-nc-nd/4.0/


IM
PO

RT
A

TI
ON

 S
OURCES

IT
AL

Y
1/

19

UN
IT

ED
 K

IN
GD

OM
1/

26
GE

RM
AN

Y
FR

AN
CE

SPAIN

2/
2

SW
IT

ZERLAND

2/9

NETHERLANDS

SWEDEN

DENMARK

AUSTRIA

BELGIUM

POLAND

PORTUGAL

CZECH REPUBLIC
IRELAND

NORWAY
HUNGARYFINLAND

2/16

ROMANIA

GREECE

BULGARIA

M
ALTA

2/23

LITH
UAN

IA

CROATIALA
TV

IA

ES
TO

N
IA

IC
EL

AN
D

LU
XE

MBOURG

SLOVAK R
EPUBLIC

SLOVENIA

3/1

STATES
UNITED

EUROPE

OTHERS

ASIA

CHIN
A

                              FEB

  
 

 
 

  
 

 
  

                                                                                                              BEF     
 

 
     

     
      

    
    

    
    

    
    

    
    

    
    

   
   

   
   

   
   

 
 

 
 

   
   

   
   

   
   

  
 

 
 

 

 
 

 
 

     
             

 JAN                                                

N
EW

 Y
OR

K
2/

2
N

EW
 J

ER
SE

Y
2/

9
FL

OR
ID

A
TE

XA
S

IL
LI

NOIS
W

ASHIN
GTON

MASSACHUSETTS

MARYLAND

NEVADA

2/16

ARIZONA

COLORADO

PENNSYLVANIA

OHIO

CONNECTICUT

MICHIGAN

NORTH CAROLINA

OREGONUTAH
NEW HAMPSHIRE

TENNESSEE

2/23

MISSOURI

W
ISCONSIN

LOUISIANA

SOUTH CAROLINA

KANSAS

OKLAHOM
A

KEN
TUCKY

IDAH
OIO

W
A

AL
AB

AM
A

M
AI

N
E

3/
1

AL
AS

KA

NEB
RAS

KA

RHODE IS
LAND

MONTANA

ARKANSAS
DELAWARE

MISSISSIPPIVERMONTWEST VIRGINIA
WYOMING

NORTH DAKOTA
SOUTH DAKOTA

N
EW

 M
EXICO

CA
LI

FO
RN

IA
1/

19

VIRGINIA

GEORGIA

MINNESOTA
INDIANA

STATES

UNITED

OTHERS

EUROPE

A
SIA

CHIN
A

                                                FEB

  
 

 
 

  
 

 
  

                                            BEF                               
        

             
      

     
     

     
    

    
 RAM 

 
 

 
 

   
   

   
   

   
   

  
 

 
 

 
 

 
 

 
    

 

 
 

 
 

  
                                                                    FEB

   
   

   
   

   
   

   
   

 IM
PORTATIO

N SOURCES

A B

Figure 3: Importation sources. Each US state (A) and European country (B) is displayed in a
clockwise order with respect to the start of the local outbreak (as seen in Fig. 2). Importation flows are
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importations flows, for each state, is one. In the SM we report the complete list of countries contributing,
as importation sources, in each group (i.e., geographical region).
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Figure 4: The burden of the first wave in Europe and the US (A-D) Model projection results of
the weekly deaths for selected countries in Europe. (E) Estimated infection attack rates and infection
fatality rates by July 4, 2020 for European countries where there were at least 100 reported deaths. (F-I)
Model projection results of the weekly deaths for selected states in the US. (J) Estimated infection attack
rates and infection fatality rates by July 4, 2020 for 20 US states.
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Figure 5: Correlation Analysis for European countries and US states. (A) The correlation
between the ordering of each country/state to reach 100 infections in the model projections and to
reach 100 reported cases in the surveillance data. Correlation is computed considering the Kendall rank
correlation coefficient, τ . (B) The correlation between the ordering of each country/state considering
the time needed to reach 100 reported cases in the surveillance data and the ranking of the combined
international and domestic air traffic. (C) Left: the correlation between the number of cases reported
by the date of lockdown for selected European countries (from Table 4 in (55)) and the projected total
number of infections by July 4, 2020. Right: the correlation between the number of cases reported by
March 16, 2020 for each US state and the projected total infections by July 4, 2020. (D) The correlation
between the model-projected infection attack rate and the serological prevalence collected from studies.
Data points refer to different dates and locations (table with values and dates reported in the SI). The
correlations are calculated using the Pearson correlation coefficient r in (C-D).
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