
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
Genepi: a blackboard framework for genome annotation
Stéphane Descorps-Declère1,3, Danielle Ziébelin2,3, François Rechenmann3
and Alain Viari*3

Address: 1GENOME express, Meylan, France, 2Université Joseph Fourier, Grenoble, France and 3INRIA Rhône-Alpes, Helix group, Montbonnot,
France

Email: Stéphane Descorps-Declère - Stephane.Descorps-declere@inrialpes.fr; Danielle Ziébelin - Danielle.Ziebelin@imag.fr;
François Rechenmann - Francois.Rechenmann@inrialpes.fr; Alain Viari* - Alain.Viari@inrialpes.fr

* Corresponding author

Abstract
Background: Genome annotation can be viewed as an incremental, cooperative, data-driven,
knowledge-based process that involves multiple methods to predict gene locations and structures.
This process might have to be executed more than once and might be subjected to several revisions
as the biological (new data) or methodological (new methods) knowledge evolves. In this context,
although a lot of annotation platforms already exist, there is still a strong need for computer
systems which take in charge, not only the primary annotation, but also the update and advance of
the associated knowledge. In this paper, we propose to adopt a blackboard architecture for
designing such a system

Results: We have implemented a blackboard framework (called Genepi) for developing automatic
annotation systems. The system is not bound to any specific annotation strategy. Instead, the user
will specify a blackboard structure in a configuration file and the system will instantiate and run this
particular annotation strategy. The characteristics of this framework are presented and discussed.
Specific adaptations to the classical blackboard architecture have been required, such as the
description of the activation patterns of the knowledge sources by using an extended set of Allen's
temporal relations. Although the system is robust enough to be used on real-size applications, it is
of primary use to bioinformatics researchers who want to experiment with blackboard
architectures.

Conclusion: In the context of genome annotation, blackboards have several interesting features
related to the way methodological and biological knowledge can be updated. They can readily
handle the cooperative (several methods are implied) and opportunistic (the flow of execution
depends on the state of our knowledge) aspects of the annotation process.

Background
The first complete genomic sequence of a living organism,
the bacterium H. influenzae, was obtained in 1995. Ten
years after, the number of fully sequenced genomes is
steadily increasing: more than 350 bacterial and archea-

bacterial genomes and 20 eukaryotic genomes are pres-
ently available in public databases. However, the
availability of the sequence is merely a starting point. The
real challenge actually consists in interpreting and anno-
tating the genomic text. When annotating a genome, biol-

Published: 12 October 2006

BMC Bioinformatics 2006, 7:450 doi:10.1186/1471-2105-7-450

Received: 15 May 2006
Accepted: 12 October 2006

This article is available from: http://www.biomedcentral.com/1471-2105/7/450

© 2006 Descorps-Declère et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17038181
http://www.biomedcentral.com/1471-2105/7/450
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
ogists are especially looking for the genes, i.e. the regions
of the chromosome containing the information to pro-
duce proteins or RNA, as well as regulatory signals. Find-
ing all genes and regulatory signals on a complete raw
genomic sequence is still an open problem, especially in
the case of eukaryotic genomes where the coding regions
are interspersed with non-coding regions called introns.
Moreover, finding genes and signals is just the first step of
the process. Once this has been done, the biologist should
face the question to assign a putative function to the
gene's product. This is done, for instance, by scanning
databases of known proteins in order to pickup those that
most resemble the protein to identify. Finally, once all
these information have been collected, new and more
complex questions arise, such as positioning the protein
within its metabolic or gene regulation networks. All these
steps compose the annotation process and involve com-
puter programs as well as a lot of human expertise.

Genome annotation can be seen as an incremental, coop-
erative, data-driven, knowledge-based process [1]. The
prediction of coding regions and regulatory signals
requires the application of multiple methodsand the ade-
quate combination of their results [2]. For instance,
Markov chain models can be used to compute the protein-
coding probability of a genomic region [3] and pattern
matching or statistical methods will help locating intron-
exon junctions and signals. Moreover, results of proteic or
nucleic database scanning will usually be superimposed
to these predictions, together with any kind of additional
information supporting the predicted gene structure. Biol-
ogists will retain a gene prediction by confronting these
various results and adding their own expertise.

The annotation is thus a long and tedious interpretation
process. Moreover, it might have to be executed more than
once and subjected to revisions. First of all, sequencing
errors may be reported or manual corrections may be sup-
plied by experts and will ask for the reannotation of the
corrected regions. Moreover, as new prediction methods
appear, they should be applied on the already annotated
genomes to produce up-to-date annotations. There is
therefore a strong need for computer systems which take
in charge, not only the primary detection of genomic fea-
tures, but the whole incremental annotation process. In
this paper, we propose to adopt a blackboard architecture
for designing such a system.

Related works
To our knowledge, no annotation software has ever been
designed as a blackboard system, but several existing auto-
matic annotation platforms have adopted well-recognized
architectures. Our purpose is not to list hereafter all the
existing platforms (for reviews see [4,5]), but to pinpoint

those that are emblematic of a particular problem-solving
architecture.

Biopipe [6] has been partly inspired from Ensembl [7]. It
organizes the annotation methods into pipelines. In Bio-
pipe, a pipeline is the association of:

• A set of "analyses", which describe how a method can be
accessed and what are the adequate parameter values;

• A set of rules, which specify when and how a method has
to be executed; the set of rules thus defines the possible
sequences of analysis methods;

• A manager, which is in charge of accessing the data.

Taverna [8] has adopted a workflow architecture, which
adds control structures to the pipeline architecture. It is
thus possible to specify iteration loops or conditional
alternatives over the methods. Taverna offers graphical
interfaces to describe the graph which links the "proces-
sors", i.e., the data transformation methods. External
methods can be remotely called as Web services.

In the ImaGene [9] object-oriented system, the sequence
analysis methods are organized into tasks. A task is
described by the objects it accepts as input and the objects
it creates as output. Tasks can be arranged into more com-
plex tasks with the help of operators: sequence (thus
allowing the description of pipe-lines), conditional alter-
native, iteration. The user can follow the successive steps
of execution of a complex task: its actual flow of execution
is displayed together with its structure. Executions are
themselves objects and can be stored and executed again,
possibly after modifying some parameter values.

In rule-based systems, the biological data are represented
by facts and the methodological knowledge is represented
by rules. Rules express how facts in the current state of the
system allow to infer new facts, which in turn allow the
activation of rules, and so on. MagPie [10] is a good exam-
ple of such a rule-based annotation system. Two sets of
Prolog rules run concurrently. The first one is dedicated to
the data collection task; the second to the analysis task.
The rules dictate the sequence of execution of the elemen-
tary methods, which consume and produce data as Prolog
assertions.

In GeneWeaver [11], the annotation system results from
the interactions between autonomous, but interacting
agents. Five classes of agents are identified:

• The Primary database agents maintain a shared
sequence database up to date so that it can be read and
used by the agents which need these information;
Page 2 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
• The Non-redundant database agents rely on the infor-
mation provided by the Primary database agents to main-
tain a curated non-redundant database.

• The Genome agents manage the information related to
a particular genome;

• The Calculation agents are associated to sequence anal-
ysis methods;

• The Broker agents register and manage the information
on all the other agents so as to facilitate their working.

One of the limitations of GeneWeaver is that it has never
actually been deployed as a truly operational annotation
system. However it recently gave rise to AGMIAL [12], a
system actually used in microbiology laboratories.

Other systems using multi-agent concepts have been pro-
posed: including BioMAS/DECAF [13] and
EDIT_ToTrEMBL [14]. The BioMAS agents, for instance,
are classified into three main categories:

• The Information Extraction agents provide access to
databases as well as some calculation services (such as
sequence similarity search or feature predictions)

• The Task agents are mostly generic middle agents except
for the Annotation Agent that orchestrates the collection
of information for each sequence and, therefore, provides
some reasoning capabilities about sequence features.

• The interface agents communicate with other agents and
provide user interface to manual annotation and database
querying.

These various architectures can be classified into two main
categories. The first category, which includes pipeline,
workflow and task-based systems, is characterized by a
sequential method invocation scheme. The second class,
which includes multi-agent, blackboard-based and rule-
based systems, is characterized by an opportunistic, event-
driven, method invocation scheme. The advantages and
drawbacks of these various approaches will be discussed
later on in the Discussion section.

The blackboard architecture
Blackboard systems exhibit several similarities with afore-
mentioned rule-based systems: a shared working mem-
ory, a procedural representation of knowledge and an
inference cycle. The blackboard architecture is well known
to support cooperative data-driven interpretation proc-
esses [15]. Indeed, the first experiment in blackboard
development resulted in the Hearsay system dedicated to
human speech understanding [16]. The input to the sys-
tem is the signal of a microphone; the output is expected
to be a database query as it was expressed by the speaker.

A blackboard system has three main components [17]: the
blackboard itself, a set of knowledge sources, and the con-
troller (Figure 1).

The blackboard and the layers
The blackboard is a shared working space, hierarchically
structured into layers. Each layer receives domain entities.
These entities are produced by knowledge sources acting
on entities belonging to lower layers. The bottom layer is
directly populated with input data. In Hearsay, the bot-
tom layer contains the raw signal coming from the micro-
phone; the second layer receives the segments into which
this continuous signal was decomposed; the third layer
stores the hypothetical phonemes associated to each seg-
ment; on the fourth layer, these phonemes are grouped
into syllables and so on, up to the last layer which con-
tains the formal database query.

Since a knowledge source may produce more than one
entity for a given set of input data, the entities are given an

The blackboard architectureFigure 1
The blackboard architecture. The blackboard itself is a
shared working space organized into layers. At any time dur-
ing the problem solving process, it contains all the objects
that have been either entered as data or inferred through the
execution of knowledge sources. Knowledge sources take as
input objects on one or several specific layers and write
down the inferred objects on other upper layers. Among all
the knowledge sources that could be applied at a given time,
the controller selects the ones that will be actually executed.

knowledge sources (KS)blackboard

controler

layers
Page 3 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
hypothesis status. Some of them will be confirmed later
on and merged into new entities stored in upper layers.
Some others will be further discarded. The management
of hypotheses is therefore an important feature of a black-
board system.

The knowledge sources
All layers of the blackboard are observed by knowledge
sources (KS). A KS takes as input the entities of one or
more layers and will infer new entities to be stored on one
or more higher layers. Inference of a new entity may be the
result of an algorithm, a set of expert rules, a formal neural
network, or any executable code. From the system point of
view, a KS is actually a black box which is only known by
the pattern of entities it expects as input (the activation
condition) and the type of entities its produces as output.
In Hearsay, the KS working on the lowest layer is a signal
processing method; other KSs deal with the succession of
phonemes and attempt to merge them into syllables;
other KSs look up lexicons to predict words from syllable
or check the syntax of a predicted sentence.

The controller and the inference cycle
The inference process of a blackboard system follows a
cycle. First, as an event, such as the creation of an entity,
occurs on the blackboard, the controller will inform all
the KSs that are concerned by this event. Each selected KS
then checks if its activation condition is satisfied or not.
The resulting list of activable KSs is further sorted by the
controller in order to prioritize the KSs that must be acti-
vated first. The further execution of these KSs will then
produce new entities on the blackboard, thus triggering
new events and a new cycle begins. The process ends when
no KS can be further activated so that the state of the
blackboard remains unchanged. The role of the controller
is essential in focusing the inference process. It maintains
an agenda of the pending KSs and may change the priori-
ties of the agenda entries according to any specified crite-
ria. The efficiency of the overall problem solving process
may strongly depends upon the strategy used by the con-
troller to order the KSs.

Adequacy of the blackboard architecture to problem solving
Born as an AI architecture, the blackboard presents indeed
several interesting features from the knowledge and soft-
ware engineering points of view. Most of these properties
derive from the existence of a shared working space,
which represents, at any time, the state of the system. First
of all, the KSs do not interact with each other. A KS is only
concerned by the events occurring on one (or more)
layer(s). At this time, it checks whether some patterns of
entities match its own input pattern and declares itself as
applicable to the controller. It is eventually executed when
requested by the controller and finally writes its results
onto its associated output layers. A KS can therefore be

added or removed from the overall system without affect-
ing the other KSs. Moreover, the inner part of a KS can be
modified without affecting the system, as long as its acti-
vation pattern is not modified. Alternatively, the strategy
of the controller can be independently modified and
tuned up in order to make the inference process more effi-
cient.

The inference process is said to be opportunistic: the
sequence of method invocations is not explicitly
expressed before run time, but is decided according to the
state of the system. As a striking illustration of this oppor-
tunistic behavior, if data produced by external sources are
laid onto the blackboard, they are taken into account as if
internally produced by the KSs and will affect the infer-
ence process accordingly.

Blackboard systems have been built for a large spectrum
of applications, for which the problems to be solved could
not be linearly or hierarchically decomposed into sub-
problems. This is the case of most interpretation prob-
lems, such as the seminal example of speech analysis and
understanding. Examples of application of blackboards in
biology include Protean [18], which was designed to pre-
dict the 3D conformation of a sequence of amino acids
through the application of known physical and chemical
constraints, and Crysalis [19], which was designed to ana-
lyze the data resulting from the X-ray diffraction pattern of
a protein in order to reconstruct its 3D structure.

Adequacy of the blackboard architecture for genome annotation
Apart from the striking similarities between genomic
sequence annotation and speech analysis, the decision to
adopt a blackboard architecture for an annotation system
has been motivated by the very nature of the annotation
process. As explained previously, the annotation process
relies on multiple methods, the execution of which pro-
vides different clues on the presence of coding sequences
and regulatory signals. These clues have to be confronted,
possibly discarded, but hopefully merged at different lev-
els to finally predict the location and the structure of
genes. The annotation process can thus be seen as a coop-
erative (several methods are implied), opportunistic (the
flow of execution depends on the state of the blackboard,
i.e. on the results of the previously executed KS), knowl-
edge-based (the conditions under which a method may be
applied has to be explicitly expressed) and data-driven
(the problem solving process is directed by the occurrence
of patterns on the input DNA sequence) problem solving
process.

This latest point is probably the most important and the
most characteristic of blackboard systems as compared to
more traditional architectures. In blackboard systems
each KS is autonomous and responsible of recognizing a
Page 4 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
particular state of the shared working space (its activation
pattern) and declaring itself as activable. Therefore, the
sequence of execution of methods is not programmed in
a procedural manner but depends upon the current state
of the blackboard. This aspect sometimes causes trouble
to developers who want to have full control on the
sequence of execution. With blackboards, one should bet-
ter think in terms of event-driven programming.

Implementation
We have implemented a blackboard framework (called
Genepi) for developing automatic annotation systems. By
framework, we mean that the system is not bound to any
specific annotation strategy or to any particular KSs.
Instead, the user can specify a blackboard structure (layers
and KSs) in a single configuration file and the system will
actually instantiate and run this particular annotation
strategy. This allows designing several strategies to target
specific biological applications. However, all these strate-
gies will share common mechanisms and properties that
will be described by using the very simple prokaryotic
annotation strategy depicted in Figure 2. The strategy con-
sists in first identifying Open Reading Frames (ORFs), i.e.
regions which are delimited by two in-frame Stops, and
then to search for the leftmost in-frame Start triplet within
each ORF. The observation of a ribosome binding site pat-
tern (RBS) upstream of the Start triplet will ascertain the
CDS [20]. Finally, the retrieval of similar sequences in

annotated sequence databases may eventually lead the
biologist to annotate the CDS. This strategy is given
mainly for the purpose of illustration; a more sophisti-
cated and realistic example will be presented later in the
Results section.

The blackboard, the layers and the KSs
The blackboard itself is structured into a hierarchy of lay-
ers, all collinear with the input sequence (Figure 3). The
lowest layer contains the genomic sequence to be ana-
lyzed. The highest one contains the annotated genes as
predicted by the application of the various knowledge
sources. Each layer contains genomic features (hereafter
simply called "features") that have either been detected on
the raw sequence or built through the aggregation of fea-
tures from lower layers. A genomic feature, such as a Stop
triplet, a ribosome binding site (RBS) or a coding region
(CDS), is described by its origin, its end and its type, i.e. as
an oriented and typed interval over the sequence.

The KS activation patterns
Some KSs integrate feature detection methods relying on
bioinformatics algorithms such as Markov modeling or
pattern searching, while others merely confront and
merge features into more complex structures. An example
of the latter is KS:HypoCDS in Figure 3. This KS computes
an hypothetical CDS starting from an ORF and an in-frame
Start triplet located within this ORF. More generally, it

A basic strategy to look for prokaryotic coding sequence (CDS)Figure 2
A basic strategy to look for prokaryotic codingsequence (CDS). A coding sequence is known to start with one Start
codon (ATG, GTG or TTG) and ends with a Stop codon (TAA,TAG,TGA) in the same frame (they are separated by a multiple
of 3 bases). In-frame Start codons may also appear within the CDS, in which case they code for the methionine. A basic search-
ing strategy therefore consists in first identifying ORFs (Open Reading Frames), i.e. regions which are delimited by two in-
frame Stop triplets and long enough to code a protein (typically containing more than 150 bases). The heuristics then searches
for the leftmost in-frame Start triplet (i.e. the one yielding the longest predicted CDS). The further discovery of a pattern asso-
ciated to a ribosome binding site (RBS) upstream of the CDS (usually less than 10 nucleotides before Start) will ascertain this
CDS. Conversely, the presence of an RBS inside (but not too far from the beginning) a CDS may lead to the selection of an
other Start. Finally, the retrieval of similar sequences in annotated sequence databases may eventually lead the biologist to
assert the presence of a coding region. This strategy is given only for illustrative purpose.

RBS

Open Reading Frame

hypothetical CDS

StartStop Stop

5’ 3’
Page 5 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
turns out that a large number of such annotation rules can
be expressed by considering the relative position of the
intervals representing the features. That is, by considering,
for instance, that a given interval is located "before" or
"after", or "overlaps" another interval. More formally, the
activation pattern of a KS can be expressed by using a set
of relations between intervals adapted from Allen's work
on temporal relations [21] (Figure 4a), completed with
four relations specific to genomic sequences (Figure 4b).
Figure 3 provides several examples of these extended Allen
relations in activation patterns. For instance, the activa-

tion pattern of KS:HypoCDS states that this source should
be activated when it exists an in-frame Start "during" an
ORF. In the same way, KS:AnnotCDS will be activated
when it exists a database hit "during" a predicted CDS. This
KS will further ensure that the characteristic of the overlap
(e.g. the sequence identity) is sufficient to produce an
annotated CDS in the upper layer. When the activation pat-
tern of a KS matches a pattern of features, the KS is said to
be applicable. It will be further triggered and its output
(i.e. a new feature) will be deposited on the corresponding
layer.

Example of layers and knowledge sources implementing the basic annotation strategy of Figure 2Figure 3
Example of layers and knowledge sources implementing the basic annotation strategy of Figure 2. The layers are
named after the type of objects they accommodate. Knowledge sources take objects from one or several layers as input and
produce new objects on upper layers. KS:Start/Stop and KS:FindRBS directly work on the raw DNA sequence to locate respec-
tively the Start and Stop triplets and the ribosome binding sites (RBS). KS:FindORF builds ORFs from the Starts and Stops loca-
tions. KS:HypoCDS computes a hypothetical CDS by retaining the leftmost in-frame Start within an ORF. KS:predCDS validates
a hypothetical CDS (or possibly modifies its beginning) because of the existence of an RBS. The resulting CDS is placed on the
predicted CDS layer. The final step consists in searching sequence databases for similarities with known genes to finally ascertain
annotated CDSs.

DNA
sequence

Start/Stop

ORF

RBS

predicted
CDS

annotated
CDS

database
hit

hypothetical
CDS

KS:Start/Stop

KS:FindORF

KS:HypoCDS

KS:PredCDS

KS:SearchDB

KS:AnnotCDS

KS:FindRBS

layers KSs
Page 6 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
The controller
A blackboard system repeats a detection/selection/execu-
tion cycle as long as some events take place on the black-
board. The occurrence of an event may be due to the
creation or the modification of an entity on a layer. This
event is collected by the controller, which selects the rele-
vant KSs. When its activation pattern can be fully satisfied,
a KS is declared to be applicable. The newly applicable KSs
are added in the controller agenda and receive a priority.
This priority depends upon the control strategy that has
been selected by the user. We have currently implemented
a simple depth-first strategy: the agenda is a stack so that
the first KSs to be executed are the last that have been
selected. However, if needed, the data structures of the
Genepi agenda allow implementing more sophisticated
strategies.

The propagation-activation network
In a naïve implementation of the controller, the activation
patterns of all the KSs concerned by an event must be
scanned in order to decide on the applicability of the KSs.
In order to greatly improve the performance of the con-
troller, all the activation patterns are compiled into a
RETE-like [22] propagation-activation network. Indeed,
the problem of selecting the KSs according to their input
patterns is very similar to the problem of selecting the
rules in a rule-based expert system according to their left-
hand sides and the facts available on the working mem-
ory. A problem for which the RETE algorithm was initially
designed.

Efficiency issues: packing features
Implementing a blackboard such as the one described in
Figure 3 will probably not be very efficient in practice,
especially on large sequences, because of the low granular-
ity of the entities involved (such as Starts and Stops). In

Allen's set of relations and their extension for the expression of KS patternsFigure 4
Allen's set of relations and their extension for the expression of KS patterns. I and J are two features (intervals)
defined by their type and the position of their beginning and end on the sequence. (a) Allen's original relations. (b) extensions
of the Allen's set of relations to take into account two specificities of intervals over DNA sequences. same-strand (I, J) holds
if I and J are on the same strand; diff-strand (I, J) holds if I and J are on opposite strands. same-phase (I, J) holds if I and J
are in the same phase (i.e. they are on the same strand and they are separated by a multiple of three bases); diff-phase (I, J)
holds if I and J are on different phases.

I equals J

I before J

I meets J

I overlaps J

I starts J

I finishes J

I during J

I

I

I

I

I

I

I

J

J

J

J

J

J

J

I

J

I

J

I
J

I same-strand J

I same-phase J

I diff-phase J

I diff-strand J

J

+2

+1

+1

I

a b
Page 7 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
this approach, each Start and Stop entity will be consid-
ered and treated independently by one or more KSs. As a
consequence, there will be a lot of pending KSs in the
agenda and the whole process will slow down considera-
bly. In practice, it is more efficient to group these features
into (homogeneous) sets of features and to make the KSs
work with those sets instead of individual features. For
instance, in Figure 3, the KS:HypoCDS that is responsible
of computing the CDSs will take as input the set of all
Starts and the set of all ORFs and will produce a set of all
CDSs. This approach is called "feature packing". Of
course, it is less elegant than the low granularity approach
since most of the logic should be encoded within the KS
instead of being explicitly declared in the blackboard. For
instance, the fact that a CDS is defined as a maximal
stretch of DNA between a Start and a Stop in the same
frame will not be declared in the KS activation pattern but
will be hidden within the internal code of KS:HypoCDS.

In practice both approaches may be mixed, e.g. by packing
features in the lowest layers (i.e when producing large
amount of raw features such as Starts, Stops and CDSs)
and by working with individual features at the higher lev-
els (i.e. when producing richer annotations). This
approach will be further illustrated in the Results section.

Implementation issues
Genepi has been implemented in Java and can be used
either as a standalone application or as a library embed-
ded into larger applications. The system can be easily
extended by adding new Java classes complying with the
API. Some KSs maybe associated to external executables
(e.g. Blast [23]) through the use of Unix-shell calls. The
current KS toolbox includes methods for finding prokary-
otic ORFs, tRNAs and RBSs as well as BlastP for scanning
databases. It provides the basic elements to design black-
boards targeted at prokaryotic genome analysis. As it will
be illustrated in the next section, configuring a new black-
board to use already existing KSs does not require any pro-
gramming skill.

Results
The prototype has not been developed with the ambition
to overcome existing automatic annotation systems, but
to demonstrate the appropriateness of the blackboard
architecture for the development of genome annotation
systems, both from the knowledge engineering and the
software engineering points of view. Although the system
is robust enough to be used on real-size applications, it is
of primary use to bioinformatics researchers who want to
experiment with blackboard architectures. To this purpose
we provide, in addition to the core system, a graphical
user interface allowing to load a blackboard configura-
tion, to run it (possibly step by step) and to graphically

visualize the creation of features on the chromosome dur-
ing the execution.

Instantiating a genome annotation blackboard
To instantiate a blackboard, the designer must declare, in
a configuration file, the number of layers, the types of the
different entities, the KSs, i.e. their input and output pat-
terns and their executable body. This process will be exem-
plified now on the real annotation strategy depicted in
Figure 5. This strategy aims at finding genes on a bacterial
chromosome and annotating those that putatively encode
for enzymes. It works in the following way: first the chro-
mosomal sequence is scanned (KS:FindORFs) for long
ORFs (ALL_ORFS). These ORFs are used to build
(KS:LearnMatrix) a Markov transition matrix (matrix). This
matrix is further used to actually find (KS:FindCDS) CDSs.
These CDSs are then checked (KS:SearchDB) against an
enzyme database (database) whose entries are annotated
with EC numbers (an EC number characterizes the func-
tion of an enzyme). Finally, when a CDS gets sufficient
matches with annotated enzymes and when the majority
of these matches have the same EC number, then this EC
number is transferred to the CDS's product to eventually
yield an enzymatic gene (ENZGENE). It is important to
note that, in this example, we stopped at the gene level but
one could imagine to continue using these genes in higher
layers of the blackboard, representing for instance bacte-
rial operons (sets of co-transcribed genes) or metabolic
pathways (for instance, a pathway may be considered as
complete when all enzymes catalyzing the biochemical
reactions are present).

Configuring the blackboard
To configure a blackboard implementing this strategy,
one has to edit an XML configuration file such as the one
described in Figure 6. This file contains two parts, one for
the definition of the blackboard layers (Figure 6-1) and
one for the KSs (Figure 6-2). In Figure 6-1, we declare
seven layers. The first four layers (i.e. sequence, matrix,
database and ALL_ORFS) are implemented as lists. They
represent respectively, the raw sequence, the Markov
matrix, the database to scan (all of these three are single-
tons) and the list of all ORFs (for efficiency, these ORFs
are packed within a single entity called ALL_ORFS). The
last three layers (i.e. CDS, DBHITS and ENZGENE) are
implemented as intervals (TimeLine) and represent indi-
vidual features : CDSs, Blast hits associated to one CDS
and validated enzyme genes respectively. The second part
of the configuration file deals with the declaration of the
KSs. Each KS has two parts: the activation pattern (<condi-
tions> tag) and the executable body (<actions> tag). More-
over, the type of entities produced by a KS is specified by
the <source> tag attribute create. For instance, KS:FindORFs
in figure Figure 6-2-a, has a very simple activation pattern
that reads "select any entity from layer sequence". It pro-
Page 8 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
duces (a single packed) entity of type ALL_ORFS through
the call of the executable pkorf declared in the <actions>
tag. All sub-tags of the <actions> tag are associated to a
piece of Java code. Some of them perform internal opera-
tions (e.g. <writeln> will write some text on the console)
and others may call external executables (e.g. <pkorf>).
When adding a new KS to the system, one will have also
to define the associated tag. A more sophisticated KS
example is given on Figure 6-2b. The KS:SearchDB is
responsible of computing Blast hits associated to each
CDS. Its activation pattern reads as "select all couples
composed of one CDS and the database. This CDS will
then be scanned (<blastp>) on the database and the result-
ing hits will be further packed (<pack_interval>). Finally,
an example of Allen relation is given on Figure 6-2c.
KS:ECAnnotator activates on each couple composed of one
CDS and a set of associated hits (DBHITS) that is included
in ("during") the CDS.

As mentioned earlier, the Genepi standalone applications
also provides a graphical interface allowing to follow step

by step the execution of the blackboard. Figure 7 is a snap-
shot of this interface during the execution of the previous
example. In this case, only the domain entities corre-
sponding to individual genomic features are graphically
represented (namely CDS, DBHITS and ENZGENE). As a
real-sized test case, we ran this particular annotation strat-
egy on the whole chromosome of B. subtilis (~4 Mb).
More than 97% of the actual genes (4106) were correctly
found (with 7% of over-predicted genes). 399 genes were
further annotated with EC numbers, most of them (95%)
beeing correct as compared to the published annotation.
On the other hand, 494 genes with EC annotations
remained unpredicted, indicating that this particular strat-
egy (or its parameters) were probably too conservative.
The total running time on the whole chromosome was 9
hours (on a MacBook Intel 2 GHz, 1 Gb), most of the time
(99%) being actually spent in the Blast steps.

Discussion
As already mentioned in the Background section, two
main classes of architecture of automatic annotation sys-

Example of a blackboard strategy to find and annotate gene putatively encoding for enzymesFigure 5
Example of a blackboard strategy to find and annotate gene putatively encoding for enzymes. The raw sequence
is scanned to look for long ORFs (KS:FindORFs). These ORFs are then used to train a Markov model (KS: LearnMatrix) which
is further used to find CDS's (KS:FindCDS). Each CDS (1_CDS) is then scanned (KS:SearchDB) against an enzyme database
(database) whose entries are annotated with EC numbers. Finally, when a CDS gets sufficient matches with annotated enzymes
and when the majority of these matches have the same EC number, then this EC number is transferred to the CDS annotation
(by KS:ECAnnotator) to give rise to an enzymatic gene (3_ENZGENE). Note that, from the blackboard point of view, all
objects that are manipulated by KSs have to be explicitly represented in layers. For instance, the database and matrix objects
do have their own layers too. Also note that, for efficiency, the ORFs are not represented as individual features but are packed
within a single set (dashed line).

KS:FindORFs

KS:ECAnnotator

KS:LearnMatrix

KS:SearchDB

sequence

ALL_ORFS

matrix

CDS

ENZGENE

DBHITS

KS:FindCDS

database
Page 9 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
tems can be identified. The first class, which includes
pipeline, workflow and task-based systems, is character-
ized by a sequential method invocation scheme. The
order in which the analysis methods have to be executed
is static and predefined. Some variations may be accepted
if alternative sequences can be described. This is often the
case in task-based systems, which allow the next task to be
chosen according to the results of the previous one. The
main drawback of such a sequential scheme is the lack of
flexibility regarding the maintenance and the modifica-
tion of the system, especially when new methods are to be
added. On the other hand, the end user can easily follow
the execution of the system. The second class, which
includes multi-agent, blackboard-based and rule-based
systems, is characterized by an opportunistic method
invocation scheme. The order in which the methods are
called is not preset but is determined at runtime by the
state of the system. The major advantage is that a new
knowledge chunk (a KS, a rule or an agent) corresponding
to a new method can be easily added or removed without
much disturbing the other parts of the knowledge base. If
the conditions of a method invocation have been properly
defined, the method will be appropriately called when the
corresponding state will occur in the system. Among these
systems, blackboard architectures present determinant

advantages: a shared working memory which is structured
in layers in adequacy with the levels of hypothesis setting,
a centralized control strategy which is easy to follow, an
intuitive description of the methods and their activation
patterns as independent knowledge sources.

Blackboards and multi-agent systems
Multi-agent and blackboard systems are both part of the
so-called distributed AI systems in which the processing
capacity is distributed among multiple entities: the KSs of
the blackboard systems and the agents of the multi-agent
systems. The main difference lies in the way the entities
communicate. In a multi-agent system, the entities, i.e. the
agents, communicate directly one with the others by send-
ing messages: the control is therefore also distributed. On
the contrary, in blackboards, KSs never communicate
directly. They find their input on the blackboard and
deposit the products of their execution on the same black-
board, which can thus be seen as a shared working mem-
ory. In both cases, the advantages of the architecture result
from the modularity it induces from both the software
and knowledge engineering points of view. However, we
consider that the existence of a shared and structured
working memory, together with a central controller, pro-
duce a reasoning system which is much easier to follow

Declaration of the blackboard implementing thestrategy depicted on Figure 5Figure 6
Declaration of the blackboard implementing thestrategy depicted on Figure 5. In order to instantiate a blackboard
implementing an annotation strategy, the user just has to write an XML configuration file. This file contains two parts: one (1)
for the declaration of the blackboard layers and the other (2) for the definition of the KSs. In this example, the blackboard con-
tains seven layers (out of which three correspond to individual genomic features: CDS, DBHITS and ENZGENE). For clarity,
the figure just displays an excerpt of the actual listing (the complete version can be found in the distribution of Genepi).

<!-- BLAST EC db-->
<source name="SearchDB"create="2_DBHITS">
<conditions>
<patternid="pred7" select="all"

from="1_CDS, database"/>
</conditions>
<actions>
<writeln message="BlastCDS against EC db"/>
<blastplimitres="5"/>
<pack_interval/>
</actions>

</source>

<!-- EC annotator-->
<source name="ECAnnotator"create="3_ENZGENE">
<conditions>
<patternid="pred8" select="during"

from="1_CDS,2_DBHITS"/>
</conditions>
<actions>
<writeln message="Annotation of CDS function"/>
<annot_ec identity="60"covmin="60"/>
</actions>

</source>

1

2

2a

<!-- BB DEFINITION -->

<blackboard>
<!--packed -->
<dim domain="sequence" as="org.bbx.domains.List"/>
<dim domain="matrix" as="org.bbx.domains.List"/>
<dim domain="database" as="org.bbx.domains.List"/>
<dim domain="ALL_ORFS" as="org.bbx.domains.List"/>
<!--features -->
<dim domain="1_CDS" as="org.bbx.domains.TimeLine"/>
<dim domain="2_DBHITS" as="org.bbx.domains.TimeLine"/>
<dim domain="3_ENZGENE" as="org.bbx.domains.TimeLine"/>

</blackboard>

<!-- KS DEFINITION -->
...
<!-- ORF finder-->
<source name="FindORFs"create="ALL_ORFS">
<conditions>
<patternid="pred4" select="all"from="sequence"/>
</conditions>
<actions>
<writeln message="Searchinglong ORFs"/>
<pkorf minlen="1000"/>
<pack/>
</actions>

</source>
...

2b

2c
Page 10 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
and understand, and therefore easier to maintain, to tune
and to extend. Moreover, the KSs are truly independent
modules that can be added or removed without affecting
the others. On the other hand, the multi-agent architec-
tures are better suited to distributed environments.
Despite their qualities, blackboard systems seem to be
presently much less popular that multi-agent systems. An
explanation for this situation has probably to be searched
in the development of object-oriented techniques, which
have provided the technology to efficiently implement the
agents as interacting concurrent processes. In the same
time, the complexity of blackboard systems increased (it
was not uncommon to read about systems which
included multiple blackboards and highly sophisticated
control strategies) and thus lost some of their most appre-
ciated properties.

Advantages and drawbacks of blackboards for genome
annotation
In the context of genome annotation, blackboards have
several interesting features related to the way the method-
ological and biological knowledge can be updated. As
research in bioinformatics produces new methods, they
can be added to the system, wrapped as new KSs. Since KS
never communicate directly but via the blackboard, these
additions are simple because they do not interfere with
the ones already integrated. From this point of view, the
annotation of a genomic sequence can thus be updated
after a new analysis method has been integrated. Con-
versely, if a sequencing error has been detected and cor-
rected on the raw sequence, all the KS executions for
which the corrected region was involved can be forgotten,
their output erased from the layers on the blackboard and

Execution of the blackboard implemented in Figure 6Figure 7
Execution of the blackboard implemented in Figure 6. This figure shows the Genepi graphical interface during the exe-
cution of the blackboard declared in 6. The left panel displays the contents of the agenda with several applicable KS's currently
waiting for execution. The central (blue) panel displays the three layers containing genomic features. When this screenshot was
taken, the system was matching the ECAnnotator activation pattern. This pattern requires one CDS and one DBHITS with a
"during" relation (see Figure 6). The interface displays the activation pattern (black box in the center) and the corresponding
objects (red color). After the ECAnnotator KS has been triggered, a new ENZGENE object may appear on the top layer.

Agenda
Layers

3_ENZGENE

2_DBHITS

1_CDS
Page 11 of 13
(page number not for citation purposes)

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
the inference cycle reactivated. Finally, we would like to
mention another important case where the update facili-
ties offered by a blackboard architecture could be put into
play. Usually, after a first pass of fully automatic annota-
tion, the genomic features need to be manually reviewed
by experts. For instance, the Start position, the functional
annotation or simply the presence of a gene may be mod-
ified. These manual modifications may have conse-
quences on the overall annotation and need to be
propagated, for instance if the modified CDS is involved
in higher structures like operons or pathways. In the
blackboard view, this means that the human expert plays
the role of a new KS (technically the actual KS may be, for
instance, a graphical editor). The propagation and update
of the modification can then be handled by the architec-
ture.

Of course, besides these advantages, blackboard (and
multi-agent) systems also have some known drawbacks.
The first one is the difficulty of making them do specific
calculation in ordered tasks. As explained before, this is a
natural consequence of their opportunistic behavior.
Developers should therefore think in terms of event-
driven actions rather than strictly ordered tasks. However,
if such a pipeline behavior is desired then a solution is to
embed the ordered tasks within a single KS. Indeed, the
<action> part of a KS can be seen as a small pipeline. Of
course, this leads to a less declarative system where a part
of the annotation strategy becomes hidden in the KS.
Depending upon the problem to be solved, there is there-
fore a tradeoff to find between "pure" blackboard and
pipeline behavior. Another known, more technical, diffi-
culty is related to the debugging of the system. Again,
because of the event-driven method invocation scheme, it
may be sometimes difficult to pinpoint the source of a
potential problem.

Conclusion
The question of the reliability of bioinformatics software
takes a slightly different form depending whether one
considers a single piece of software or more complicated
systems such as integrated platforms. In the first case, as
long as the software correctly implements algorithms that
are well known and understood, the software designers
may consider that the results do not require to be further
explained or justified. On the other hand, for genome
annotation platforms, the execution of sequence analysis
algorithms merely provide clues that have to be con-
fronted, filtered and merged according to some methodo-
logical knowledge. This knowledge can be either directly
provided by the user or formally expressed and integrated
into the system. However, the possibility to formally
express this knowledge, as rules, objects, tasks or any other
modeling entities, does not mean that the resulting sys-
tem will yield pertinent results. Indeed, this highly

depends upon the expertise of the designers and the
results may be further discussed and possibly refuted by
the end users. In this context, we believe that an annota-
tion system should not only allow the formal expression
and integration of the methodological knowledge; it must
also provide facilities for the user to follow and under-
stand the annotation process, and to tune, adapt or even
refute the content of the methodological knowledge base.
The blackboard architecture appears to offer most of these
software and knowledge engineering properties.

Availability and requirements
The Genepi protoptype has been implemented in Java and
is freely available for download at the following url : http:/
/www.inrialpes.fr/helix/people/viari/genepi. The distri-
bution includes all the java sources as well as blackboard
samples. The core system and graphical interface run on
any platform supporting JavaVM. It has been tested on
Linux and MacOSX. Some KSs (like Prokov or Blast) need
external executables. These executable are provided in the
distribution for MacOSX and Linux platforms.

Authors' contributions
AV and FR initiated the project. SDD, DZ and FR designed
the architecture and software requirements. SDD wrote
most of the Java code and AV provided the external tool-
box. All authors participated in testing the software and in
editing and proofreading the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
SDD was supported by a CIFRE Grant from Association Nationale de la
Recherche Technique and GENOME express. The authors would like to
thank Pierre Netter (Université Paris VI) for his support during this work.

References
1. Stein L: Genome annotation: from sequence to biology.

Nature Reviews Genetics 2001, 2:493-503.
2. Rogic S, Ouellette B, Mackworth A: Improving gene recognition

accuracy by combining predictions. Bioinformatics 2002,
18:1034-1045.

3. Borodovsky M, McIninch J: GeneMark: Parallel Gene Recogni-
tion for both DNA Strands. Computers & Chemistry 1993,
17:123-133.

4. Durand P, Medigue C, Morgat A, Vandenbrouck Y, Viari A, Rechen-
mann F: Integration of data and methods for genome analysis.
Curr Opin Drug Discov Devel 2003, 6:346-352.

5. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A,
Pascal G, Scarpelli C, Médigue C: MaGe: a microbial genome
annotation system supported by synteny results. Nucleic Acids
Res 2006, 34:53-65.

6. Hoon S, Ratnapu KK, Chia J, Kumarasamy B, Juguang X, Clamp M, Sta-
benau A, Potter S, Clarke L, Stupka E: Biopipe: a flexible frame-
work for protocol-based bioinformatics analysis. Genome
Research 2003, 13:1904-1915.

7. Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E, Searle SM,
Clamp M: The Ensembl automatic gene annotation system.
Genome Research 2004, 14:942-950.

8. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver
T, Glover K, Pocock MR, Wipat A, Li P: Taverna: a tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics 2004, 20:3045-3054.
Page 12 of 13
(page number not for citation purposes)

http://www.inrialpes.fr/helix/people/viari/genepi
http://www.inrialpes.fr/helix/people/viari/genepi
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11433356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12833667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12869579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15201187

BMC Bioinformatics 2006, 7:450 http://www.biomedcentral.com/1471-2105/7/450
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

9. Médigue C, Rechenmann F, Danchin A, Viari A: Imagene: an inte-
grated computer environment for sequence annotation and
analysis. Bioinformatics 1999, 15:2-15.

10. Gaasterland T, Sensen CW: Fully automated genome analysis
that reflects user needs and preferences. A detailed intro-
duction to the Magpie system architecture. Biochimie 1996,
78:302-310.

11. Bryson K, Luck M, Joy M, Jones DT: Applying Agents to Bioinfor-
matics in GeneWeaver. In Cooperative Information Agents IV, Lec-
ture Notes in Artificial Intelligence Volume 1860. Springer-Verlag;
2000:60-71.

12. Bryson K, Loux V, Bossy R, Nicolas P, Chaillou S, van de Guchte M,
Penaud S, Maguin E, Hoebeke M, Bessieres P, Gibrat JF: AGMIAL:
implementing an annotation strategy for prokaryote
genomes as a distributed system. Nucleic Acids Res 2006,
34:3533-3545.

13. Decker K, Khan S, Schmidt C, Situ G, Makkena R, Michaud D: Bio-
mas: A multi-agent system for genomic annotation. Interna-
tional Journal of Cooperative Information Systems 2002, 11:265-292.

14. Möller S, Leser U, Fleischmann W, Apweiler R: EDITtoTrEMBL: a
distributed approach to high-quality automated protein
sequence annotation. Bioinformatics 1999, 15:219-227.

15. Carver N: A Revisionist View of Blackboard Systems. Proc
1997 Midwest Artificial Intelligence and Cognitive Science Society Confer-
ence 1997.

16. Erman LD, Hayes-Roth F, Lesser VR, Reddy DR: The Hearsay-II
Speech Understanding System: Integrating Knowledge to
Resolve Uncertainty. ACM Computing Surveys 1980, 12:213-253.

17. Engelmore R, Morgan T: Blackboard Systems. Addison-Wesley;
1988.

18. Hayes-Roth B, Buchanan B, Lichtarge O, Hewett M, Altman R, Brin-
kley J, Cornelius C, Duncan B, Jardetzky O: Protean: Deriving pro-
tein structure from constraints. In Proc AAAI 1986 Fifth National
Conference on Artificial Intelligence Morgan Kaufman Publishers, Inc;
1986:904-909.

19. Terry A: Using Explicit Strategic Knowledge to Control
Expert Systems. In BlackBoard Systems Edited by: Engelmore RS,
Morgan AJ. Addison-Wesley; 1988:159-188.

20. Suzek BE, Ermolaeva MD, Schreiber M, Salzberg SL: A probabilistic
method for identifying start codons in bacterial genomes.
Bioinformatics 2001, 17:1123-1130.

21. Allen JF: Towards a general theory of action and time. Artificial
Intelligence 1984, 23:123-154.

22. Forgy C: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence 1982, 19:17-37.

23. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids Res 1997,
25:3389-3402.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10068688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8905148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16855290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16855290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16855290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10222409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10222409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10222409
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Related works
	The blackboard architecture
	The blackboard and the layers
	The knowledge sources
	The controller and the inference cycle
	Adequacy of the blackboard architecture to problem solving
	Adequacy of the blackboard architecture for genome annotation

	Implementation
	The blackboard, the layers and the KSs
	The KS activation patterns
	The controller
	The propagation-activation network
	Efficiency issues: packing features
	Implementation issues

	Results
	Instantiating a genome annotation blackboard
	Configuring the blackboard

	Discussion
	Blackboards and multi-agent systems
	Advantages and drawbacks of blackboards for genome annotation

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

