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Abstract: The ability to regenerate amputated or injured tissues and organs is a fascinating property
shared by several invertebrates and, interestingly, some vertebrates. The mechanism of evolutionary
loss of regeneration in mammals is not understood, yet from the biomedical and clinical point of
view, it would be very beneficial to be able, at least partially, to restore that capability. The current
availability of new experimental tools, facilitating the comparative study of models with high
regenerative ability, provides a powerful instrument to unveil what is needed for a successful
regeneration. The present review provides an updated overview of multiple aspects of appendage
regeneration in three vertebrates: lizard, salamander, and zebrafish. The deep investigation of this
process points to common mechanisms, including the relevance of Wnt/β-catenin and FGF signaling
for the restoration of a functional appendage. We discuss the formation and cellular origin of
the blastema and the identification of epigenetic and cellular changes and molecular pathways shared
by vertebrates capable of regeneration. Understanding the similarities, being aware of the differences
of the processes, during lizard, salamander, and zebrafish regeneration can provide a useful guide
for supporting effective regenerative strategies in mammals.

Keywords: appendage regeneration; WNT/β catenin; FGF; lizard; salamander; zebrafish; stem cells;
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1. Introduction

Regeneration is the capacity of an organism to regrow a part of the body after injury.
Many species of anamniote vertebrates are capable of spectacular accomplishment of
regeneration. Among them, the best known is salamander, which is able to restore limb,
tail, eye, jaw, and heart [1]. Regeneration is also present in various members of the class of
actinopterygians [2]. The adult zebrafish (Danio rerio), a small teleost, exhibits remarkable
regeneration of fins, central nervous system structures, or entire organs including heart,
pancreas, liver, and kidney [3]. The ability to activate the regeneration morphogenetic
program is almost completely lost mainly in terrestrial animals, such as amniotes, in which
nearly all structures are unable to regenerate, with some exceptions such as the regeneration
of digit tips in children [4] and young mice [5], ear pinna in the spiny mouse [6], or the antler
regeneration in deer [7]. Lizards are the only terrestrial amniotes that can regenerate
a structure long and complex as the tail [8].

The distribution of the regenerative capacity along the phylogenetic tree is haphazard
and a common pattern is difficult to identify (Figure 1). Regeneration appeared very early
during evolution, likely coinciding with the origin of multicellularity [9]. The similarities
between regeneration and development may suggest that the former originated as an
epiphenomenon of an ontogenetic program that an organism accesses and employs when
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a structure is lost. Based on these observations, regeneration could be an ancestral property,
lost due to higher energetic maintenance costs (for a detailed review, see [10]).
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arrow indicates the reactivation of the regenerative process in amniotes. 

In salamanders, several genes are associated with the regeneration ability, one of 
them is the one coding for the glycerophosphatidyl (GPI)-anchored cell surface Prod1, 
which mediates positional memory through a proximal-distal gradient of cell adhesion 
[11]. Despite a protein with similar functions being recently identified in the regenerating 
tail of the lizard Gekko japonicus [12], the Prod1 gene has not been found in any other spe-
cies [13]. 

The ability to regenerate paired and unpaired fins was documented in many ray-
finned fish (Actinopterygii). Teleosts possess a wide range of regenerative abilities, from 
complete absence of regeneration in some members of the family Blennidae [14] to a high 
regenerative ability of zebrafish. However, this trait is limited to the bony fin rays and 
does not include the proximal structures such as musculature and endoskeleton. The only 
exception are Polypteriformes, one of the basal lineages of Actinopterygii [15,16]. The 
strong regenerative potential found in this taxon suggests that regeneration in this case 
has emerged early during evolution, long before the appearance of Teleostei. In terrestrial 
amniotes, the evolution of a strong adaptive immune system could have favored a more 
defensive role of macrophages during the early phases of regeneration to the expenses of 
their ability of tissue remodeling [17]. The extreme “non-lethal predation” of lizards’ tails 
in the wild could instead explain the presence of a regenerative program in these amniotes 
[18]. 

Many factors have contributed to the loss of regeneration in the evolution, and fur-
ther phylogenetic and comparative studies are necessary to unravel the mechanisms reg-
ulating the process. The investigation of the regeneration of different organs, from the 
simple tail to the more complex limb in different organisms, represents a powerful tool to 
shed light on the process. This review will examine appendage regeneration in verte-
brates, with a specific focus on tail regeneration in lizards, limb regeneration in salaman-
ders, and fin regeneration in zebrafish. We will describe common cellular mechanisms 
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The blue line indicates lineages containing one or more species capable of appendage regeneration, the orange line those
incapables of regeneration, and the black line those in which appendage regeneration has not yet been documented.
The dashed yellow line indicates the uncertain presence of appendage regeneration in chondrichthyes and cyclostomes.
The arrow indicates the reactivation of the regenerative process in amniotes.

In salamanders, several genes are associated with the regeneration ability, one of
them is the one coding for the glycerophosphatidyl (GPI)-anchored cell surface Prod1,
which mediates positional memory through a proximal-distal gradient of cell adhesion [11].
Despite a protein with similar functions being recently identified in the regenerating tail of
the lizard Gekko japonicus [12], the Prod1 gene has not been found in any other species [13].

The ability to regenerate paired and unpaired fins was documented in many ray-finned
fish (Actinopterygii). Teleosts possess a wide range of regenerative abilities, from complete
absence of regeneration in some members of the family Blennidae [14] to a high regener-
ative ability of zebrafish. However, this trait is limited to the bony fin rays and does not
include the proximal structures such as musculature and endoskeleton. The only exception
are Polypteriformes, one of the basal lineages of Actinopterygii [15,16]. The strong regen-
erative potential found in this taxon suggests that regeneration in this case has emerged
early during evolution, long before the appearance of Teleostei. In terrestrial amniotes,
the evolution of a strong adaptive immune system could have favored a more defensive
role of macrophages during the early phases of regeneration to the expenses of their ability
of tissue remodeling [17]. The extreme “non-lethal predation” of lizards’ tails in the wild
could instead explain the presence of a regenerative program in these amniotes [18].

Many factors have contributed to the loss of regeneration in the evolution, and further
phylogenetic and comparative studies are necessary to unravel the mechanisms regulating
the process. The investigation of the regeneration of different organs, from the simple
tail to the more complex limb in different organisms, represents a powerful tool to shed
light on the process. This review will examine appendage regeneration in vertebrates,
with a specific focus on tail regeneration in lizards, limb regeneration in salamanders,
and fin regeneration in zebrafish. We will describe common cellular mechanisms across
the regenerative process in these animals and investigate differences that could have led to
the loss of regenerative capacity in mammals.
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2. Experimental Approaches

The study of the regenerative process in lizard, salamander, and zebrafish, expanded
in the last years by the development of new experimental tools, provided a better under-
standing of the regeneration mechanisms in these species pointing out similarities and
differences.

The ability of lizards to spontaneously lose their tail and then regrow it as an anti-
predation strategy (known as “autotomy”) made lizards one of the animal models used
to study healing and regeneration. Autotomy is often exploited in laboratories to induce
less invasive traumas and avoid surgery, so that simply pinching the tail causes the tail
to drop [8]. After tail loss, tissues are easily accessible, allowing manipulation and study
in vivo. In recent years, several lizard genomes have been characterized, including that
of the green lizard Anolis carolinensis, the primary candidate for regeneration studies [19].
This allowed to carry out genomic and transcriptomic analysis of genes involved in wound
healing, cell proliferation and inflammatory-immune response to injury [20–24]. Nonethe-
less, transgenic or knockout/knockdown lizard models are still difficult to generate due to
the complexity of accessing zygotes for genetic manipulation. With the advent of CRISPR-
Cas9-mediated gene editing, this will likely change and recently, the first gene-edited Anolis,
deficient for tyrosinase gene, has been created [25]. Given their close relation to mammals,
as the only amniote model system for regeneration, the establishment of transgenic and
mutant lizard models may help to clarify the loss of regenerative capacities in mammals
during evolution.

Salamanders are another example of vertebrates with remarkable regeneration ca-
pabilities, being able not only to regenerate tail, but also limbs, neural cells [26], and
heart [27]. Various salamander species captured the interest of regenerative research.
Among them, the paedomorphic axolotl (Ambystoma mexicanum) has been investigated
since the 1860s [28], emerging as the first salamander model for regenerative studies. Re-
cently, a newt model (Pleurodeles waltl), sharing the same regeneration abilities and the short
life cycle of the axolotl, has been established [29]. Given the feasibility for functional genetic
approaches provided by both models, a large number of tools, including transgenesis and
gene silencing, has begun to accumulate [30–32]. Axolotl and Pleurodeles genomes are
large and rich in long terminal repeat (LTR) retrotransposons [33]. Their genomes are now
sequenced and annotated [29,34,35], paving the ways for deeper genetic approaches, such
as mutagenesis [36], transcriptomics [37], and genetic lineage tracking [38].

Zebrafish (Danio rerio), a freshwater teleost, has become one of the most widely used
vertebrates for the study of regeneration. It has several experimental advantages, such
as ease of manipulation and short developmental cycle. Its genome was sequenced and
revealed about 70% coding sequence conservation to humans [39]. Importantly, zebrafish
can regenerate several organs such as fin, heart, kidney, liver or brain [3]. The rapid
regeneration of zebrafish caudal fin has made them one of the most powerful tools for
regenerative studies, especially since the transcriptomics approaches are possible [40–42],
and transgenesis and morpholinos techniques are readily available [43–46]. The recently
established CRISPR-Cas9 gene editing additionally increased the value of this model. Ze-
brafish are also particularly suitable for small-molecule drug application, which, in skeletal
field, takes enormous advantage of tail regeneration [47].

To summarize, lizard, salamander, and zebrafish offer a variety of experimental ap-
proaches for the investigation of the regeneration processes (Table 1), which will represent
a huge opportunity to expand the understanding of appendage regeneration in vertebrates.
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Table 1. Experimental accessibility and tools for vertebrate species used in regeneration research.

Lizard Salamander Zebrafish

A. carolinensis E. macularius G. japonicus P. muralis A. mexicanum P. waltl D. rerio

Experimental
Accessibility
Genome Size 1.78 Gb 2.23 Gb 2.55 Gb 1.51 Gb ~32 Gb ~20 Gb 1.67 Gb
Fertilization internal internal internal internal external external external

Egg Size ~6 mm ~12 mm [48] ~13 mm [49] ~11 mm [50] ~2 mm ~2 mm <1 mm [51]
Egg Transparency no no no no yes yes yes

Experimental Tools

Genome Annotation Ensembl
NCBI NCBI NCBI Ensembl

NCBI NCBI NCBI Ensembl
NCBI

Transcriptome
Annotation NCBI NCBI NCBI NCBI NCBI NCBI NCBI

Knock-down * no no no no yes [31] no yes [46]
Transgenesis no no no no yes [30,38] yes [52] yes [43,53]

Knock-out/Knock-in no no no no yes [54] ** yes [55] ** yes [42,56] ** #

* = morpholino ** = CRISPR/Cas9 # = ENU mutagenesis.
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3. Common Morphological Aspects of Early Regenerative Response

Lizard tail, salamander limb, and zebrafish fin regeneration are examples of epimor-
phosis. The term epimorphic regeneration, coined by Thomas H. Morgan in 1901 [57],
describes the restoration of a part of the organism without remodeling, characterized
by the formation of the blastema. This mass of undifferentiated cells at the wound site
mediates tissue differentiation [58,59]. Epimorphosis is characterized by a high degree of
cellular differentiation and stands in contrast with morphallaxis, usually observed in hy-
dras, in which blastema is not formed and the majority of regeneration is taking place by
reorganization of the remaining parts of the body [58,59].

Lizard, salamander, and zebrafish share several common morphological aspects of
epimorphic regeneration that distinguish this process from the limited regeneration in mam-
mals. Some differences were however identified. For example, lizards, unlike salamanders,
are unable to regenerate amputated limbs. Also, after autotomy or amputation, lizard tail
undergoes an “imperfect regeneration” in which the bony vertebral column is replaced
with a hollow cone of cartilage and the fracture planes, that are structures evolved to
allow autotomy at precise locations, are not regenerated [60]. On the contrary, salamanders
and zebrafish can restore the original appendage. Lastly, while lizard and salamander
appendage regeneration occur following cartilage formation, zebrafish caudal fin rays are
directly generated as bone.

The regenerative process begins immediately after an appendage loss and consists of
three phases: wound healing, blastema formation and regenerative outgrowth (Figure 2).
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wound healing response, and result in a decline in regenerative fidelity in lizard and sal-
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Initially, after autotomy or amputation, a blood clot forms. Lizard’s tail stump has
evolved the presence of vascular sphincters located proximal to fracture planes that con-
tract to avoid excessive bleeding and to facilitate hemostasis [61]. Within a few hours,
epithelial cells begin to migrate to cover the wound, forming an epithelial layer called
the wound epidermis. The integrity of the wound epidermis is essential to accomplish re-
generation in lizard and salamander. Impeding its formation by excision or suture prevents
the appendage to regenerate [62,63]. Repetitive amputations seem to trigger a persistent
wound healing response, and result in a decline in regenerative fidelity in lizard and
salamander [64,65]. In the newt Notophthalmus viridescens, repeated amputation of the limb
can lead to severe morphological abnormalities [66]. To the contrary, in zebrafish, repeated
amputations do not perturb regeneration and instead lead to an increase in the dermal
bone thickness [67].

After several days, in salamander and zebrafish, the thick wound epidermis forms
a specialized structure, the apical epidermal cap (AEC) that acts as a layer of signaling cells
coordinating the regenerative process [61,68]. For this reason, AEC needs to be continuously
in contact, and to communicate with, the underneath mesenchymal cells. Interposition
of dermis or the formation of basement membrane between the two structures inhibits
blastema formation and regeneration [69]. This property suggests that diffusible signaling
factors are produced in the AEC and signal to the underlying mesenchyme. In lizards, this
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thick epithelium has a different morphology, owing a discontinuous basement membrane,
and is often referred to as an apical epidermal peg (AEP) [70].

As quickly as the wound epidermis thickens, the tissues below undergo degeneration
and histolysis. The dynamic remodeling of extracellular matrix (ECM) plays a crucial role
in this process. The secretion of acid hydrolases and proteinases of the matrix metallopro-
teinases (MMPs) family at the level of the basal layer of the wound epidermis helps degrad-
ing ECM components, such as collagens and laminins. This process is likely facilitating cell
migration and cell communication by disturbing basement membrane re-assembly [71–73].
MMPs also favor the elimination of cellular residues and debris generated by tissue de-
struction and by the bactericidal activity of neutrophils and macrophages [69]. In lizard
and salamander, the degradation involves primarily bone and muscle [74,75]. In zebrafish,
in which the caudal fin is mainly composed of bone, the establishment of a cryoinjury-
mediated tissue damage triggers a similar osteolytic process [76]. The degeneration of
stump tissues, or “histolysis”, favors the release of progenitor cells that will contribute to
the formation of blastema. Comparative anatomy of regenerating appendages in lizard,
salamander, and zebrafish is depicted in Figure 3.
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Figure 3. Comparative anatomy of regenerating appendages in lizard, salamander, and zebrafish. (A) Amputation or
autotomy of lizard tail induces the formation of a cone-like shaped blastema, covered by a thick wound epidermis that will
form the apical epidermal peg(AEP), whose correspondence to the apical epidermal cap (AEC) found in amphibians and
fish is still uncertain. During blastema formation, likely in response to AEP signals, the central canal of the original spinal
cord, the ependymal tube, elongates and infiltrates the proliferating tail blastema. (B) After amputation of salamander limb,
the wound epidermis quickly covers the stump. Within days, the wound epithelium becomes innervated, thickens, and
becomes a specialized AEC. The AEC induces dedifferentiation in the underlying stump tissue and attracts cells, which
accumulate below the AEC to form the blastema. Modified from Payzin-Dogru and Whited, 2018. (C) After zebrafish fin
amputation, epithelial cells migrate to cover the wound, forming the AEC. Under the AEC, stump tissues dedifferentiate to
form the blastema. Within 24 h, blastemal cells segregate into two compartments: the distal blastema, populated by slowly
proliferating cells, and the proximal blastema, in which cells rapidly proliferate and differentiate to replace the amputated
tissue. Dotted lines indicate the site of amputation/autotomy.

4. Role and Origin of Blastema: Dedifferentiation versus Stem Cells

Blastema is the key component of the epimorphic process and the primary source of
differentiated cells responsible for appendage regeneration. Blastema formation occurs
within 10–15 days post-amputation in most lizard species [20,77]. After tail autotomy
of the leopard gecko Eublepharis macularius, blastema can be identified after 3 days, and
continues to expand until 8 days post-autotomy [78]. In adult newts, blastema cells appear
within 4-5 days post-amputation [69] and accumulate around 7 days post-amputation
in axolotl [79,80]. In zebrafish, blastema can be identified at day 2 post-amputation
(Figure 2) [68,81].

Despite the role of blastema as the necessary and sufficient structure for the progres-
sion of regeneration, its origin is still controversial and debated. Two competing hypothe-
ses have emerged to define the source of activated progenitor cells within the blastema.
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The first one points to resident stem cells characterized by self-renewal potency and the abil-
ity to produce one or more differentiated cell types [82]. The second hypothesis foresees
a cell conversion event by which differentiated cells dramatically change their identity.
One of the mechanisms associated with this conversion is dedifferentiation, in which dif-
ferentiated cells lose their specialized function and revert to a less-differentiated stage with
higher potential, akin to the events taking during the generation of induced pluripotent
stem cells from dermis [83]. The other possible mechanism is direct transdifferentiation,
in which differentiated cells switch lineage and are converted into another cell type within
or across germ layers. Transdifferentiation is naturally observed during lens regenera-
tion in newts where removal of the lens induces the formation of a new lens derived
from the cells of the iris [84,85]. Direct transdifferentiation occurs without going through
a stem/progenitor-like cell [86–88].

In lizard tail regeneration fails when the amputation occurs at its base, in the non-
autotomous region. This phenomenon has been hypothesized as caused by the depletion
of stem cells after the basal amputation of the tail [77]. Indeed, histological, immunocyto-
chemical, and autoradiographic studies indicate the presence of slowly cycling, putative
resident stem/progenitor cells in various tissues of lizards’ original tail, including satellite
cells of muscles and ganglia, and chondroblasts localized in intervertebral cartilages and
vertebrae [89,90]. Following injury, these cells can activate, as demonstrated by the im-
mune detection of telomerase and c-myc, and migrate to contribute to the blastema [91,92].
Transcriptomic and histological works on Anolis carolinensis tail regeneration led to the iden-
tification of a population of PAX7+ satellite cells, pointing to a stem-cell mediated pro-
cess [20,93].

On the other hand, a study on the lizard Podarcis muralis suggests that the activa-
tion of a dedifferentiation process could be linked to a degree of tissue damage. After
3-4 days post-autotomy, fragmented myofibers showed an infiltration by macrophages
indicating phagocytosis and gave origin to small cells with euchromatic nuclei, interpreted
as dedifferentiated muscle fibers. Similarly, the spinal cord, fibrocytes of the dermis or
inter-muscle connective tissues, adipose and cartilaginous tissues, following damage, gave
rise to viable, proliferating cells [94]. A recent lineage tracking study on the mourning
gecko (Lepidodactylus lugubris) indicates that during tail regeneration, differentiated car-
tilage cells contribute to muscle and differentiated muscle cells contribute to cartilage
in the regenerated tissue, suggesting that dedifferentiation or even transdifferentiation
could play a role [95]. The contribution of muscle to cartilage cells was also described
during axolotl tail regeneration [96]. These findings are in contrast with what was reported
for limb regeneration. Using a GFP transgene to track limb tissues, Kragl et al. showed
that limb blastema cells are lineage-restricted and only capable to give origin to cells
from the same germ layer. Dermis was able to form cartilage and tendons, derived from
the lateral plate mesoderm, but not muscle, that derives from the presomitic mesoderm.
In the same way, muscle was able to give origin to only muscle and not cartilage [30].
These contradictory findings could, in part, be explained by the embryonic differences
between tail and limb buds, with the former having a pluripotent nature and being able
to give origin to all the three germ layers [97]. Differences are also seen when comparing
blastemas of Anolis lizards and leopard gecko Eublepharis macularius. In the Anolis lizard,
no cell proliferation was detectable leading some authors to question whether this was
a real blastema [20,78,93], whereas the leopard gecko blastema was reported to be rich
in actively proliferating cells [72,98,99]. A recent study by Lozito and Tuan suggests that
Anolis tail regeneration could require cell populations of different origin. This study was
aimed to clarify why proximal regenerated lizard tail skeleton undergoes hypertrophy and
endochondral ossification, whereas the distal regenerate remains cartilaginous. The study
shows that the proximal regenerated lizard tail skeleton is derived from progenitor/stem
cells within the vertebrae periosteum in response to BMP and Ihh signaling, whereas more
distal regions are derived from multipotent blastema cells and respond to Shh signals [100].
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Different contributions to blastema are also found within closely related species.
In the newt Notophthalmus viridescens, myofiber dedifferentiation is required for blastema
formation and generates PAX7− cells that will later give rise to new muscle in the regener-
ated tissue. In axolotl, after amputation, myofibers give rise to neither proliferative cells
in the blastema nor to regenerated muscle. Instead, the primary contributors to blastema
are PAX7+ satellite cells [101,102]. However, a combination of the two mechanisms can-
not be excluded. A recent single-cell RNA-sequencing study on axolotl limb identified
the presence of PAX7+ cells and, likely, tendons progenitor cells together with a population
of multipotent fibroblasts able to form joints, cartilage, and bone of the regenerate [103].
Whether fibroblasts derive from rare specialized progenitor populations or from general
activation of already differentiated fibroblasts, remains to be determined.

Blastema formation in zebrafish caudal fin occurs mainly, if not exclusively, by dedif-
ferentiation. Studies employing different cell-tracking methods revealed that cells followed
lineage restriction. Knopf et al. demonstrated that osteoblasts temporarily dedifferen-
tiate in response to amputation. In the caudal fin, a strong expression of the mature
osteoblast marker osteocalcin was detected in the bony rays. Following the amputation
and ensuing regeneration, sequential induction of runx2, pre-osteoblasts marker at 2 days
post-amputation, osterix/sp7, marker for intermediate differentiation of osteoblasts at
3 days post-amputation and osteocalcin at 6–7 days post-amputation were detected [44].
The same authors, using Cre-loxP-based fate-mapping, demonstrated that dedifferentiating
osteoblasts enter fin blastema and give rise only to osteoblasts during zebrafish fin regen-
eration. They implemented a double transgenic fish line carrying tamoxifen-inducible
CreERT2 under the osterix promoter (osterix:CreERT2) in conjunction with a floxed DsRed-
Stop cassette under the control of a heat shock promoter expressing GFP after the excision
of the DsRed-Stop cassette (hsp70:loxP DsRed2 loxP nlsEGFP). During regeneration, GFP+
cells were found within the blastema, forming new osteoblasts, without significantly con-
tributing to other lineages [44]. A similar approach was used by another group and led to
the same results [104].

Tu and Johnson generated mosaic fish by inserting a XenEF1α:GFP transgene by Tol2
transposition into 1–2 cell embryos [105]. The EF1α promoter, driving GFP expression,
was silenced in adult tissues, and its expression was restricted to the blastema during
fin regeneration, providing a useful tool to visualize differentiating cells in regenerative
tissues [106]. Co-occurrence analysis for GFP labeled clones showed that caudal fin is
formed by 9 distinct lineage classes: the unipotent osteoblast, fibroblast, glial, iridophore,
epidermis, and lateral line; the bipotent vessel/artery and melanophore/xanthophore.
After amputation, the labeled cells always regenerated the same cell type and did not
contribute to other cell types [105]. Also, after amputation of caudal fins using fish with
labeled cells in the body, but not in the fin, no labeled cells were found in the regenerate,
excluding a distant cell contribution during regeneration [105].

This apparent variety of mechanisms (Table 2) recapitulates the heterogeneity of tissue
repair and regeneration of vertebrates. Thus, a better understanding of blastema origin
will have implications in regenerative medicine.

Table 2. Mechanisms of cellular derivation of blastema in vertebrates. The green tick indicates what cellular conversion
process has been documented during blastema formation in different species.

Lizard Salamander Zebrafish

A. carolinensis L. lugubris P. muralis A. mexicanum N. viridescens D. rerio

Dedifferentiation 4 [95] 4 [94] 4 [30,107] 4 [102] 4

[44,104,105]
Transdifferentiation 4 [95]

Stem cell recruitment 4 [20,90,93] 4 [89] 4 [101,102]
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5. Epigenetic Changes in Regeneration

When damage or injury triggers appendage regeneration, a series of cellular and
molecular responses are activated, such as inflammation, dedifferentiation, proliferation,
and differentiation. Currently, a great effort has been placed in regenerative medicine to
reprogram somatic cells toward a stem-like state, and then induce their differentiation to
cells with the desired functionality. To this purpose, the understanding of the epigenetic
changes regulating these processes is fundamental.

Epigenetic regulation of gene expression can be achieved through covalent modifica-
tion of DNA and associated histones, chromatin remodeling, and the action of non-coding
RNAs [108]. The best characterized is DNA methylation occurring on cytosines belonging
to cytosine and guanine repetitive clusters (CpG islands) [109]. Methylation maintenance
relies on DNA methyltransferase 1 (DNMT1), while de novo methylation requires DNA
methyltransferase 3 (DNMT3) and results in a change of expression [109]. DNMT3s are
essential during early embryonic development [110] and are important regulators of cell
differentiation [111,112]. Recent studies indicate that de novo DNA methylation also acts
during regeneration to control cell behavior and fate. A nerve-dependent downregulation
of the axolotl DNMT3a during limb regeneration was associated with the transition of
the wound epidermis into a functional AEC [113]. In an experimental assay, the treatment
of axolotl skin wounds with a DNMT inhibitor induced cells to participate in blastema
formation and resulted in a regenerative response [113]. After zebrafish caudal fin am-
putation, the level of cytosine methylation was transiently reduced and associated with
an increased expression of demethylation genes [114]. The degree of methylation was
gradually recovered during fin regeneration and at 72 h post-amputation the expression of
three zebrafish orthologues of mammalian DNMT3A and DNMT3B (dnmt3aa, dnmt3ab, and
dnmt4) [115,116] was clearly detected in blastema cells [117]. The presence of a dynamic
role of DNA methylation has yet to be investigated during lizard tail regeneration. Mi-
croRNAs (miRNAs), short non-coding RNAs, mediate post-transcriptional repression by
binding the 3′ untranslated region (UTR) of target mRNAs. Among their multiple roles as
epigenetic regulators, they are fundamental to control cell differentiation and fate [118].

Microarray analysis of miRNAs expression during axolotl limb regeneration reported
the overexpression of miR-21 in the mid-bud blastema, which presumably maintains
blastema cell differentiation through a negative regulation of the developmental gene
Jagged1 [119].

miR-133a, miR-133b, and miR-206, already known as regulators of muscle develop-
ment and differentiation [120,121], were found to be differentially expressed during Anolis
carolinensis tail regeneration, with an increased expression in the proximal portion with
respect to tail tip [122].

miR-133 was found to be also highly expressed in uninjured fins and depleted during
zebrafish caudal fin regeneration [123]. Interestingly, the depletion was dependent on FGF
signaling, indicating a significant role of this pathway in maintaining low miR-133 levels
besides its essential role for blastema formation and maintenance. It would be interesting
to investigate its epigenetic role also in lizards. Another study on zebrafish caudal fin
regeneration indicates that the other master regulator of regeneration, the Wnt/β-catenin
pathway, is also regulated by miRNAs. This study showed that miR-203 specifically
targets the Wnt signaling transcription factor Lef1 and acts as a negative regulator of
regeneration [124].

These data indicate that epigenetic changes, as during development, play fundamental
roles during regeneration and are sometimes conserved in different species. The success of
regenerative therapies based on induced dedifferentiation will likely depend on the ability
to recreate and regulate these specific epigenetic changes.

6. Patterning and Positional Memory

A classical regeneration restores not only the lost appendage, but also its three-
dimensional architecture and size. Indeed regeneration, similar to development, involves
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morphogenetic processes to shape the regenerated tissues. The proximodistal, antero-
posterior, and dorsoventral developmental axes are reorganized within the regenerative
blastema, guided presumably by diffusible as well as positional clues permitting, among
others, size preservation. One of the first and most popular explanations for this phe-
nomenon was proposed by Wolpert. He hypothesized a simple coordinate system that
provides cells with a positional value that, together with the cells’ genetic heritage, de-
termines a specific response during ontogenetic pattern formation [125]. In the context
of a regenerative process, this phenomenon is defined “positional memory” and refers to
the information that blastema cells retain about their position along the proximodistal axis.

The properties of blastema during the patterning and outgrowth phase were initially
studied using regenerating salamander limbs. Butler and colleagues proposed the rule
of distal transformation that refers to the ability of blastema to regenerate along any level
of the proximodistal axis and always proceeds in a direction distal to the stump surface.
The rule was tested by inverting the proximodistal axis of an Ambystoma regenerating limb
by suturing the autopod to the body trunk, and then cutting the circularized limb. This
gave rise to two limbs, one of which had reversed polarity, but still regenerated all limb
elements distal to the level of the amputation surface (Figure 4A) [126].
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Figure 4. Experiments illustrating the principles of positional memory in salamander limb. (A) Rule of distal transfor-
mation. After the creation of a circularized limb, successive amputation induces the creation of two stumps, one with
correct polarity and one with reversed polarity. Both stumps regenerate distal elements from the level of amputation, thus
duplicating the distal segments already present in the reversed stump. The proximo-distal axis is indicated with a gradient
of green (indicating proximal elements) and red (indicating distal elements). (B) Intercalation. Intercalary regeneration
(dark red) occurs if a hand is grafted to an upper arm (left), but not if an upper arm segment is grafted to a forearm (right).
Adapted from Carlson 2007.

The stump tissues can also “sense” discontinuities along the proximodistal axis. Ex-
periments in which gap discontinuities were created in regenerating limbs revealed that
cells tend to proliferate and eliminate them in a process named intercalation. For instance,
when a distal blastema was grafted onto an upper limb stump, the intermediate limb parts
arose from the stump tissue, whereas in the converse experiment, grafting of a proximal
blastema onto a wrist stump resulted in regeneration directly from the wrist and inter-
calation did not occur (Figure 4B) [127]. Much remains to be learned from a molecular
and cellular point of view on how regenerating appendages are precisely replaced. Var-
ious observations suggest that positional memory may be related to a proximal-distal
gradient of ligands and receptors with higher concentrations inducing more distal fates.
For instance, one of the most intriguing findings was the ability of retinoic acid (RA) to
reprogram proximo-distal values of blastema cells. Treatment of regenerating salamander
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limb with RA resulted in proximalization of the wrist blastema, so that an entire limb could
be regenerated. The extent of proximalization was dependent on the exposure time and
RA concentration [128]. A differential screening comparing newt RA-treated distal limb
blastema with untreated one was used subsequently to identify cell-surface molecules
able to act as effectors of positional memory [11]. This method led to the identification of
Prod1, a GPI-anchored receptor belonging to the Ly6 family. The likely role of Prod1 is to
determine positional memory via a gradient of cell adhesion. Indeed, the gene is highly
expressed in newt proximal limb blastema and upregulated in response to RA [11,13].
Furthermore, overexpression of Prod1 in axolotl limb blastema re-specified cells to attain
a more proximal position in the regenerated limb [129]. Lizard Gekko japonicus CD59 expres-
sion, originally interpreted as the ortholog of Prod1 [11], was found to increase following
tail amputation and was upregulated by RA [12]. Also, overexpression of CD59 in lizard
distal blastema re-specified transfected cells to a more proximal location, similarly to what
has been shown during salamander limb regeneration [12]. Although no putative CD59
homolog has been identified in zebrafish, some CD59 related transcripts and proteins
expressed in proximal to distal gradients have been found in the regenerating caudal fin.
Furthermore, aldh1a2 involved in RA synthesis and the anterior gradient protein agr2,
identified as a Prod1 ligand [130], are expressed in proximally enriched gradients [41].

The 3D structure of the Prod1 protein was solved by nuclear magnetic resonance
(NMR) spectroscopy in order to perform a comparative study to other members of the three-
finger protein (TFP) superfamily, to which Prod1 belongs. The molecular phylogeny, based
on both sequence and structural criteria, indicates that Prod1 has no known orthologues
in other vertebrate taxa [131].

Patterning and size control during growth and regeneration are also regulated by
bioelectric signaling. Several well-studied zebrafish mutants with mutations in K+ channels
show altered appendage growth. The another longfin (alf ) phenotype is due to a muta-
tion in Kcnk5b, which directly increases potassium conductance, and causes fin over-
growth [132]. In contrast, the short fin (sof ) mutation occurs in the connexin43 (cx43) gene,
which encodes a protein involved in gap junction formation, and results in shorter fins [133].
The correlation between ion current and patterning is largely unknown, and possibly de-
pends on electrical coupling between cells [134,135]. It is interesting to notice that ion
current has been implicated in several examples of tissue regeneration, including salaman-
ders and newts. For instance, after amputation, forelimb stumps are traversed by a strong,
steady, and polarized Na+ electric current that originates at the injury site [136]. Reducing
this current resulted in inhibited or abnormal limb regeneration [137].

Recently, a role for heat shock proteins (HSPs) as regulators of shape during tail
regeneration of the newt Pleurodeles waltl has been proposed [138]. Considering that HSPs
expression has been proven necessary for blastema formation during axolotl limb [139]
and zebrafish caudal fin regeneration [140,141], it would be of interest to elucidate if they
have morphogenetic functions also during regeneration of other organisms.

Taken together, these findings suggest that mechanisms of patterning and positional
memory could be conserved and adapted in the different species. Further studies are
needed to clarify the effectors of the latest stages of regeneration and how they are phylo-
genetically correlated. Most importantly, it will be relevant to determine which of these
signals have been further preserved in the evolution and could be potentially reactivated
for biomedical purposes.

7. Role of Inflammation

The key role of macrophages as key mediators of inflammation during mammalian
tissue repair associated with the deposition of fibrotic tissue and scar formation is well
known [142]. In the past decades, a large body of data has been collected on the role of
macrophages in organizing and controlling the inflammatory responses during wound
healing of species characterized by high regenerative potency. Godwin et al. contributed
to one of the major studies on urodele inflammatory response after limb amputation.
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The authors demonstrated an increased level of myeloid cells in regenerating axolotl
tissues within one day after amputation. During the early stages of regeneration, a bal-
anced expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-16, IL-17, IL-23, IFN-γ)
and anti-inflammatory cytokines (IL-4, IL-5, IL-10, IL-13) is required. Indeed, the use
of clodronate liposome, a well-established method to selectively deplete macrophages
in vivo, led to an unbalanced increase of pro-inflammatory/anti-inflammatory cytokine
ratio, reduced MMPs secretion, and resulted in non-functional wound epidermis [143].
The tracking of myeloid cells in transgenic zebrafish lines revealed a similar response, with
circulating neutrophils and resident macrophages accumulating in the injury site at 6 h
post-amputation and 3 days post-amputation, respectively. Although the creation of a neu-
tropenic environment did not considerably affect the regeneration rate, genetic macrophage
ablation resulted in reduced tissue regrowth in this model [53]. A recent study explored
the role of macrophages in lizard regenerating tail, revealing an increase in the phagocytic
cell population within the blastema starting from 3 days post-amputation. Clodronate
liposome treated lizards failed to form blastema and to regrow amputated tail, further
confirming the importance of macrophages in regeneration [144]. Another recent work
reported the presence of anti-inflammatory M2-like macrophages underneath the wound
epidermis and near the ependyma in the regenerating Podarcis muralis tail, which similarly
to the amphibian limb, support and stimulate regeneration [145]. This is in contrast with
lizard scarring limb in which only M1-like macrophages were detected [146].

Taken together, these results indicate that a timely activation of macrophages is re-
quired during the early steps of regeneration for a correct blastema formation and the onset
of the regenerative process. During this phase, macrophages contribute to the establish-
ment of an inflammatory environment through the secretion of cytokines and MMPs to
degrade ECM components and tissue debris facilitating cell migration and communi-
cation [17,143,144]. Furthermore, the presence of an early anti-inflammatory response
is related to a resolutive and anti-fibrotic activity that may be critical to both resolve
inflammation and to carry on regeneration [147] by preventing fibrotic deposition and
scarring [142]. The clearance of senescent cells is another suggested role for macrophages
during the early regeneration phase. In fact, amputation or injury triggers apoptosis and
cellular senescence [148,149]. In salamander for instance, it was demonstrated that senes-
cent cells were transiently induced following amputation and subsequently cleared by
macrophages. Since the depletion of macrophages led to senescent cells accumulation [150],
perhaps the effective removal of senescent cells by them is a physiological mechanism
during the regenerative program. Nevertheless, a role for macrophages during the later
steps of regeneration cannot be excluded. Indeed, ablation of macrophages after blastema
formation does not affect regeneration rate, but compromises fin patterning and bone for-
mation in zebrafish [53]. In salamander, the lack of macrophages during the later stages of
regeneration associates with a reduction of surface vasculature, implying another possible
functional role for macrophages during tissue outgrowth [143].

8. Immune System and Regeneration

The strong, scar-free regenerative potential in selected vertebrate species has raised
the question whether differences in immune systems can affect the outcome of tissue regen-
eration. One of the indications of a negative effect of the immune system on regeneration
was described in anuran amphibians which lose their robust regeneration ability after
metamorphosis when the immune response is enhanced [17].

Lizard, salamander, and zebrafish heavily rely on an efficient innate immunity,
consisting of diverse components such as antimicrobial peptides, neutrophils, macrophages,
and the complement system [151–154]. Their adaptive immunity, however, differs from
that of mammals by missing lymphoid organs such as Peyer’s patches and lymph
nodes [151,155,156].

Lizards, of the three species the closest related to mammals, share similarities with
them in terms of generation of antibody diversity, but produce slower and less robust



Cells 2021, 10, 242 13 of 28

adaptive humoral responses [151]. Their B cells are characterized by phagocytic activity,
a feature shared with salamanders and still under debate for zebrafish [155,157,158], and
act as a component of innate immunity [151]. The strong innate immune system seen
in this group of vertebrates could be sufficient to protect from microbial infections present
in the first stages of life, making efficient adaptive immunity non-essential.

Salamanders are generally considered “immunodeficient” since they have a weak cell-
mediated immune response, and their humoral immunity is based only on IgM production
and is apparently amnestic [152]. Moreover, they have a restricted MHC class II diversity,
likely resulting in a poor T-helper stimulation and a low cytokine synthesis [159] that could
in part explain the low inflammatory response seen during limb regeneration.

Zebrafish develop their adaptive immunity later, at the end of their embryo phase [160].
Their T-cell responses are negatively affected by low body temperature [161]. RAG1 protein,
essential for antibody and T-cell receptor V(D)J recombination, is conserved in zebrafish.
However, homozygous rag1 mutant fish, lacking functional T and B lymphocytes, reach
adulthood and are fertile [162,163], suggesting that these cells are likely not necessary for
an efficient immune response.

An ultrastructural study of the regenerating tail of the lizard Podarcis muralis showed
that repeated amputations or cauterization trigger an increase in the number of immune
cells such as granulocytes, macrophages, and lymphocytes within the blastema and led to
the deposition of fibrinoid material with scarring [64]. The study supports the hypothesis
that the evolution of the immune system may be associated to the reduced regeneration
ability in lizards, and in amniotes in general. Further studies are needed to clarify how
immune cells and mesenchymal cells of the blastema communicate and interact during
regeneration.

9. Nerve-Dependency of Regeneration

The knowledge that the nervous system is involved in the regenerative process was
reported as early as 1823, when Todd demonstrated that denervation of the amputated
salamander limb inhibited or caused defective regeneration [164]. Nerve-dependency
became one of the most intensively studied topics in regeneration only from the mid of
the 20th century when Singer performed a series of elegant experiments on denervated
salamander limbs (reviews of his work [165,166]). He pointed out that not a specific
type of nerve, but all nerve fibers contribute equally to the regenerative process. Also,
he observed that regeneration never occurred if the number of nerves did not exceed
a certain threshold [167,168]. Based on these findings, the neurotrophic hypothesis was
formulated, stating that the nerve produced trophic factors crucial for the survival and
proliferation of blastema cells. Regenerating nerves interact with the wound epidermis
and sustain apical epidermal cap (AEC) formation and maintenance [169]. Potential
trophic factors include substance P, insulin, transferrin, neuregulin-1, FGFs and BMPs [170]
but the main candidate trophic factor is the anterior gradient protein (AGP), a ligand for
the blastema cell surface receptor Prod1 cited previously, that offers a molecular explanation
for nerve-dependence in urodeles. AGP is strongly expressed in Schwann cells of newt
limbs in the first phase of regeneration and later shifts to the glandular structures of
the wound epidermis [130]. Similarly, in axolotl, which do not possess subepidermal
glandular cells, AGP expression was observed in Leydig cells [171], and denervation of
limbs abolished AGP production. This suggests that, in both newt and salamanders, nerves
induce the production of the protein that is then secreted by epithelial cells to blastema
cells with a holocrine mechanism.

Nerve-dependency of regeneration is a phenomenon that extends across phylogeny.
Destruction of the spinal cord disrupts regeneration in lizard in a mechanism following
the concept of a required threshold of nerve fibers [172]. In particular, the ependymal
tube seems to be crucial for initiating regeneration [173]. If white and grey matter are
damaged alone, but the ependymal population is maintained, regeneration still occurs [174].
Furthermore, transplanted segments of the ependymal tube can initiate blastema formation
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and produce ectopic tails at grafting sites [174,175], demonstrating that this structure alone
is capable of starting regeneration. How exactly the ependymal tube mediates regeneration
remains unclear.

The supporting role of nerves to wound epidermis and AEC is confirmed in zebrafish
regenerating pectoral fin. In this model, thickening of the wound epidermis and AEC
formation are negatively affected by denervation [176]. The demand for regeneration of
a threshold number of nerve fibers is extended also to this organism. Indeed, the complete
absence of nerve fibers impedes blastema formation and regeneration, whereas a reduced
number of nerves allows smaller and deformed fin to regenerate [176]. The AGP homolog
agr2 was found to be expressed in the mucus-secreting cells of the epidermis, although
no difference was seen between control and denervated fins. Furthermore, if denervation
was applied after blastema formation, fin rays regenerated, but presented a narrowed
and crooked structure [176]. This last observation supports the critical role of nerves
during the initial stages of regeneration and points to their effect also during regenerative
outgrowth and patterning.

An exception to the nerve-dependency phenomenon is the aneurogenic salamander
limb created by removing the neural tube from embryos. Aneurogenic limbs have never
been innervated but are still able to regenerate [177]. However, aneurogenic limbs become
nerve-dependent upon complete innervation from the host [178]. Thus, a fascinating
explanation for why aneurogenic limbs regenerate is that critical regeneration factors are
initially produced in the developing limb, but after innervation, they are supplied by
nerves. After that, a neural–epidermal relationship is created, and the epidermis becomes
dependent on neural factors to promote and sustain the regenerative process [170,179].
It will be interesting to investigate the conservation of this phenomenon in other species.

Taken together, the findings reported in the different species support the idea that
nerves produce trophic factors promoting and regulating blastema proliferation and differ-
entiation and possibly the subsequent patterning. The nerve-dependent regeneration is
detected in most regenerating organisms, but mechanisms differ. Investigating the evolu-
tion of nerve-dependency in different regenerating vertebrate species would likely help to
get further insight into this process.

10. Molecular Pathways Implicated in Regeneration

Further identification of the signaling networks involved in the regeneration remains
one of the key research directions in this field. In the past decades, much knowledge was
acquired about the molecular mechanisms that mediate the regenerative processes in vari-
ous organisms, pointing to the presence of shared signals (Figure 5). Indeed, the molecular
comparison among different regenerating vertebrates reveals that FGF and Wnt/β-catenin
signaling pathways play fundamental roles during blastema formation and proliferation
in all of them and can reasonably be considered as universal regulators of regeneration.

An interesting study comparing lizard regenerating tail and scarring limb transcrip-
tomes shows that many genes belonging to the Wnt pathway (wnt2b, wnt5a, wnt5b, wnt6)
are upregulated in the tail blastema, but absent in the scarring limb. Instead, the scarring
limb expressed genes that act like inhibitors of the Wnt pathway (such as dkk2), impeding
cell proliferation, stimulating differentiation and tissue repair leading to scarring [21].
Wnt pathway is also required for axolotl limb regeneration. Overexpression of Axin1, an
intracellular inhibitor of the Wnt pathway, in the regenerating limb inhibited regeneration
and resulted in spike-like regenerated limbs lacking the digits [180].
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FGF1 and FGF2 were detected in the regenerating lizard tail, especially in the wound
epidermis and in the spinal cord [181] and inhibition of their activity eventually stopped
regeneration [182]. Interestingly, FGFs are absent from lizard scarring limb [183] and if
administrated after lizard limb amputation stimulate the formation of the AEP and the re-
generation of cartilaginous femur, tibia, and fibula, although never of an autopodium
(digits), confirming their requirement for a successful regeneration [184]. During sala-
mander limb blastema formation, fgf8 and fgf10, already present in the intact limb, are
upregulated [185]. It has been proposed that this pattern of expression correlates with
the “readiness” to regenerate [185]. Denervation of the limb prevents fgf8 and fgf10 upregu-
lation [185], given their neurotrophic properties [186].

In zebrafish, the wound healing phase begins immediately following the amputation
coinciding with the induction of wnt10a and fgf20a [43,56]. Disruption of either signaling
pathways using transgenic fish lines or pharmacological inhibitors resulted in an abnor-
mal wound epidermis and altered blastema formation [43,56,187]. A strong expression of
aldh1a2, the rate-limiting enzyme in RA synthesis, was also detected early in the stump.
RA administration increased the levels of Wnt/β-catenin and FGF ligands wnt10b and
fgf20a, demonstrating that these signals belong to a complex network orchestrating and
coordinating blastema formation [188]. After blastema forms, it compartmentalizes in two
domains: a low proliferating distal-most blastema, and a large proximal blastema pop-
ulated by highly proliferating and differentiating cells [81]. RA, Wnt/ β-catenin and
FGF pathways remain active in the blastema to sustain proliferation and survival. Non-
canonical Wnt signaling mediated by wnt5b, instead, plays an antagonistic role and inhibits
regeneration [43].

The induction of cell proliferation is one of the essential and early stages of regen-
eration. Recently, Myristoylated alanine-rich C-kinase substrate (MARCKS)-like protein
(MLP) was identified to be responsible for the induction of an early regenerative response
in axolotl tail and limbs [189]. MARCKS, and MARCKS-like proteins, have been previously
described as widely distributed, intracellular substrate for protein kinase C (PKC) that
coordinate membrane–cytoskeletal signaling events, such as cell adhesion, membrane
trafficking, and phagocytosis [190,191]. In vivo injection of Axolotl MLP (AxMLP) into
uninjured axolotl tissue induces cell cycle re-entry of multiple cell types, such as epider-
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mis, spinal cord, notochord and myotubes, while its morpholino knock-down prevents
cell cycle onset and regeneration [189]. Interestingly, despite the protein lacking a signal
peptide [192], immunohistochemical analysis of AxMLP distribution in epidermal and
spinal cord tissues shows that the protein was mostly cytoplasmic in uninjured tissue,
and, following injury, was translocated to the membrane and secreted [189]. How AxMLP
induces cell proliferation and is extracellular release is still unknown. The induction of
MARCK-like protein in the lizard regenerating tail suggests that this protein may be an
initiator of regeneration also in this organism [21,70]. Since MLP secretion was reported
only in axolotl so far, it would be interesting to assess if this unconventional process is also
present in other vertebrates with regenerative ability.

The communication between wound epidermis and blastema is fundamental to
achieve regeneration. IGF signaling, already known as a regulator of cell growth during
development [193], seems to mediate this epidermis-blastema interaction [46]. The ligand
igf2b is expressed in the zebrafish caudal fin blastema, whereas signal-responsive cells
expressing its receptors igf1ra/b are located in the wound epidermis. The activation of
Igf1r signaling in the wound epidermis promotes and sustains cell survival and wound
epidermis specification, but more importantly, it is required also for the normal blastema
formation. The inhibition of the signaling affects the expression of both wound epithelial
markers wnt5b and lef1 and blastemal markers msxb and fgf20a [46].

Whereas other members of the TGF-β superfamily are needed in the early phases of
the regenerative program, such as activin-βA [99,194], the bone morphogenetic proteins
(BMP) pathway is recruited later in the post-blastema phase to promote patterning and
morphogenesis. As revealed by investigation on lizard A. carolinensis, BMP signaling
mediated by BMP-2 and BMP-6 regulates proximal cartilage proliferation and hypertrophy
during tail regeneration [100].

Dedifferentiation of muscle cells in the salamander limb blastema in vivo was shown
to occur thanks to the activation of BMPs [195]. Another proposed role for BMP sig-
naling during limb regeneration is to trigger cell condensation and apoptosis. In fact,
the overexpression of Noggin, a general inhibitor of all BMPs, inhibits both processes [196].

BMPs are expressed in fin osteoblasts during regeneration in zebrafish [197]. A recent
work suggests that BMP signaling acts in the later phases of regeneration by activating
dkk proteins to counter growth induced by the Wnt pathway and promote osteoblasts
differentiation [198]. The overexpression of chordin, another BMP signaling inhibitor,
in the regenerating caudal fin leads to a reduction in bone matrix deposition due to
defects in the maturation and function of bone-secreting cells [197]. Hsp70 promoter-driven
expression of noggin 3 in transgenic fish causes a regression of the outgrowth in regenerating
caudal fin exposed at heat shock between 3 and 4 days post-amputation (dpa) [199].

Sox9a and sox9b genes, known to be involved in condensation and chondrocyte dif-
ferentiation, are detectable in zebrafish regenerating fin, which has a dermal origin. Their
different pattern of expression (mesenchymal cells of the blastema and basal epidermal
layer, respectively) and different response to BMP inhibition (only sox9a is downregulated)
suggest that they could be regulated by different pathways in the regenerate [197].

Msx homeobox genes, the immediate early BMP response transcription factors [200],
are thought to have a role in development and regeneration as well. Despite the lack of
expression in Anolis carolinensis [20] and Gekko japonicus [201], a proximal–distal gradient
of Msx1-and -2 generated from the apical blastema was detected in the regenerating tail
of the lizard Podarcis muralis [202], suggesting a role in blastema maintenance for these
proteins in this model. In regenerating urodele limbs, the two Msx genes are differentially
expressed: the Msx2 gene is rapidly induced in the wound epidermis and subjacent tissues
after amputation, while the Msx1 gene expression is induced only in blastema cells [203].
They possibly have different functional roles, with Msx2 being implicated in wound
epidermis-blastema interaction and Msx1 acting to control blastema cells proliferation.
The induction of Msx1 expression has been demonstrated to activate salamander myotubes
cell cycle entry in vitro [107], suggesting that this molecule may control cellular plasticity
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during salamander limb regeneration. Finally, Msx genes also have been demonstrated to
participate in zebrafish fin regeneration [204]. Zebrafish msxb/msxc genes, related to Msx
genes of tetrapods [205], are upregulated early in the blastema and were demonstrated to be
dependent on Fgfr1 expression [187]. Also, msxb shows an interesting pattern of expression
during the regenerative outgrowth. In the immature blastema, msxb is expressed by
slow proliferating blastemal cells. After blastema compartmentalization, msxb expression
localizes in the distal blastema, suggesting that it acts in this compartment to regulate cell
cycle and proliferation [206], similarly to axolotl Msx1 [203]. Confirming this functional
role, morpholino knockdown of msxb prevented cell proliferation and fin outgrowth [207].

The Hedgehog signaling is possibly the key player of the last phase of regeneration.
The morphogen sonic hedgehog (Shh) is expressed in the regions surrounding the ependy-
mal tube in the regenerating lizard tail, where it establishes proximal organization centers
and induces chondrogenesis in lizard blastemal cells. Its pattern of expression along
the circumference of the tail is probably related to the characteristic lack of dorsal-ventral
patterning of the regenerating tail [100]. Developmental studies demonstrated that out-
growth and patterning of salamander limb bud is coordinated by a positive feedback loop
between Shh and Fgf [208]. In salamander regenerating limbs, shh localizes in the posterior
part of the blastema, immediately adjacent to the AEC [209]. A recent study demonstrated
that stimulating the Shh signaling pathway in anterior innervated limb tissue was sufficient
to sustain limb regeneration and form a normal limb. The posterior cells, instead, are “re-
fractory” and do not respond to shh stimulation but proliferate only after overexpression of
fgf8. Thus, similarly to the developmental process, posteriorly localized shh signal supports
anterior expression of fgf8 in a positive feedback loop that ultimately leads to proliferation
and eventually patterning of the limb [210].

In zebrafish regenerating fin, the shh gene is expressed in the cells of the basal layer
of the epidermis, in the area surrounding newly forming fin rays [211]. The bone mor-
phogenetic protein bmp2 is expressed in both the basal epidermal cells and the adjacent
blastema. Shh and bmp2 expression in epidermis is further regulated by cell-cell interac-
tions between basal epidermal cells and blastema [211]. Ectopic expression of shh or bmp2
in the blastema results in bone deposition between fin rays and mispatterning of the regen-
erated fin [212]. The exposure to cyclopamine, inhibitors of the Shh signaling, reduces pro-
liferation and differentiation of specialized bone-secreting cells within the blastema [212].
Shh has also a role in bone patterning and ray branching morphogenesis [213,214].

Taken together, these findings show to what extent the signaling pathways underlying
the regenerative processes in different vertebrates are shared. Despite some difference, it
seems that there are conserved molecular key players of regeneration that induce similar
cellular responses and similar outcomes across phylogeny. Our knowledge is far from com-
plete, but future studies will help unravelling what are the precise functions of these signals
and how they differ among different organisms and perhaps will allow for the molecular
manipulation of the regeneration process in mammals.

11. Regeneration and Aging

The aging process is associated with an imbalance between the accumulation of senes-
cent cells and the rate of cell renewal [215]. Interestingly, many invertebrates with high re-
generative potential as adults, such as hydra and planaria, show no signs of aging [216–218]
supporting a link between regeneration and aging. Various intrinsic and extrinsic factors
are associated with the decline of regenerative capacity upon aging: genomic instability,
telomere shortening, oxidative damage among the others [219]. The comparative studies
of vertebrates with extensive regenerative abilities is a powerful tool to better understand
the relationship between regeneration and aging. Unfortunately, only limited work has
been done on the topic, but the consensus is that embryos, larvae, and juveniles of diverse
species have a stronger regenerative potential compared to older individuals. A study
on embryonic and post-natal common lizards (Lacerta vivipara) demonstrated that after
tail amputation at different stages of embryonic development, regeneration occurs only
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in late-stage embryos, while early-stage embryos fail to regenerate [220]. The explanation
for these unexpected results could be linked to the evolution of tail regeneration in lizards.
The process of autotomy as an anti-predation strategy is probably the consequence of
natural selection and has no meaning in amniote embryos, which are already protected by
their mother’s body. Further studies are needed to confirm this hypothesis.

Salamanders and zebrafish, however, exhibit extensive and time stable ability to
regenerate their appendages. It was demonstrated that salamanders have a strong immune-
mediated mechanism that rapidly recognizes and clears senescent cells during limb regen-
eration [150]. Moreover, both their normal and regenerating tissues show no accumulation
of senescent cells with aging [150]. Taken together, these findings may indicate that ef-
ficient turnover of senescent cells is a physiological mechanism that can mediate aging
and regeneration in these organisms. Thyroxine-induced metamorphosis in age-matched
axolotls resulted in reduced regeneration rate and fidelity and increases in the occurrence
of morphological alterations in the limb [221], indicating patterning and growth alterations.
Also, metamorphosis seems to alter cell dynamics during regeneration and decreases
the number of proliferating blastema cells [221]. Metamorphosis is not necessarily related
to age; however, these findings imply that developmental stages are important modulators
of regeneration rate. Another view of metamorphosis as a destructive and reconstructive
process providing molecular and cellular sources that can be re-utilized during adult life
to regenerate appendages has been recently suggested [222,223]. Indeed, various genes
expressed during metamorphosis are also upregulated during regeneration in amphibians
and fish [223]. More detailed research will be relevant to clarify this correlation.

The relationship between aging and regeneration rate and ability is poorly understood
also in zebrafish. Although age and sex-related differences seem to affect regeneration of
the pectoral fin [224], the results reported for caudal fin regeneration remain controversial.
A study showed that fin regeneration was impaired, and telomerase activity was reduced
in the regenerating fin of older fish, indicating a correlation between telomerase activity,
a marker of aging, and regeneration efficiency [225]. Genotoxic stress caused by ionizing
radiation was also shown to enhance the process of aging and impair caudal fin regen-
eration [226]. Contrary to these results, another study reported a comparable caudal fin
regeneration rate between young and old fish and supported the idea that zebrafish keep
their regeneration capacity throughout the lifespan [227].

Many factors affect the aging and regenerative processes and unraveling the cor-
relation among them is difficult. More studies are needed in order to clarify what are
the regenerative-time windows in vertebrates and the nature of the genetic and epige-
netic alterations that occur during lifespan and change regenerative capacity. This type
of study would have implication not only in regenerative medicine but could also help to
understand what are the factors that affect aging and age-related disorders in humans.

12. Regeneration Models as a Tool for Biomedical Research

Zebrafish is not only a fascinating example of vertebrate regeneration, but also repre-
sents a well-known vertebrate model for disease and has already contributed to several
examples of successful phenotype-based drug discovery, providing a tool with many dif-
ferent applications in biomedical research, especially in the field of bone biology. Indeed,
zebrafish skeleton conserves the general basis of development, gene expression and cell
types that are found in mammals [47]. In this scenario, the remarkably fast regeneration
of zebrafish caudal fin provides an excellent tool to easy monitor bone formation over
time in healthy and pathological conditions [47]. The evaluation of bone regeneration rate
can be performed in combination with drug administration to discover new molecules
promoting regenerative and/or osteogenic activity. As an example, after fin amputation
bone growth can be followed in juveniles kept in small tanks with limited water volumes
and amount of drug, allowing high throughput analysis at low cost [228]. To these pur-
poses, the availability of transgenic lines and bone assays including fluorescent dyes such
as calcein and alizarin red, which stain calcified tissue, provides a simple and fast way to
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visualize the effect of a specific compound on bone [229]. One of the challenges for such
approaches is how to control and predict the amount of the administrated drug although
direct injection of the drug in fin rays can be used to overcome this limitation [230].

At the time, regeneration in other vertebrate models such as lizard and salamander is
not exploited for drug discovery, but the rapid advances in molecular techniques could
likely overcome such obstacle.

13. Conclusions

Mammals, humans included, are incapable of regenerating amputated or lost limbs.
Damage or injury can be sometimes life threatening and is reasonable to wonder how
we might be able to enhance our own regenerative potential. For this purpose, the un-
derstanding of cellular and molecular mechanisms orchestrating regeneration is crucial.
In the past years, the field of regenerative biology has seen considerable progress, par-
ticularly thanks to the study of organisms with a high regenerative potential. Although
morphological mechanisms and cell contributors of regeneration can vary widely even
among close species, the comparison of the three vertebrate models here discussed allows
to identify an overall common strategy to successfully restore a lost appendage. So, what
makes this possible? As it seems, a combination of multiple factors. First, the formation of
a thick wound epidermis/AEC that supports the regenerative process without scarring.
The formation of a blastema, which provides the source of differentiated cells that will
restore the lost tissues is the key process present in vertebrates with regenerative ability.
Proper activation of specific molecular pathways has been proven necessary for successful
regeneration. The data collected on the three described models unequivocally points to
the role of Wnt/β-catenin and FGFs as master regulators of the process. The expression
of these key molecules is not only necessary for regeneration to occur but is also able to
promote it in organs with limited regenerative potential, such as lizard limb. Blastema
growth is also strictly related to the level of immunosurveillance. Lizard tail, salamander
limb and zebrafish caudal fin can be considered immuno-privileged organs, in which in-
flammation triggered by injury equilibrates with the presence of healing, anti-inflammatory
macrophages.

Each model presents advantages and limitations. Salamanders are considered the mas-
ter regenerators being the only vertebrate able to regenerate a full limb. Since its discovery
in the 18th century [231], the regenerating limb system was used to perform fundamental
experiments to delineate the basic properties of regeneration. However, many aspects of
the urodelian life cycle are at odds with those of higher vertebrates. The axolotl, the most
used salamander for regenerative studies, is neotenic and retains all its juvenile features
even when it reaches adulthood. Lizards, on the other hand, follow a similar development
as mammals and therefore are more appealing from a developmental point of view. How-
ever, as amniotes, their regenerative ability is restricted to the complex structure of the tail,
and their lost appendages undergo an imperfect regeneration.

Given the simplicity of using powerful genetic tools, zebrafish has quickly emerged
as a model of choice to study regeneration. Zebrafish present several advantages, such as
the external fertilization and the transparency of embryos that makes them particularly
appealing for forward genetic approaches allowing to investigate regeneration in health
and disease.

Our knowledge of regenerative mechanisms is strictly related to the tools we can
use. Thus, the possibility to apply more advanced genetic tools also on powerful regen-
erators such as salamander and lizard could represent a key step forward. The recent
reports of Iberian ribbed newt (Pleurodeles waltl) and axolotl (Ambystoma mexicanum) com-
plete genomes, together with the recent generation of a CRISPR/Cas9 Anolis lizard, will
hopefully provide new tools to increase the use of these organisms to find the answer to
regenerative questions still unsolved.

No unique model for regeneration exists, and the comparative study of vertebrates
with high regenerative ability is fundamental to achieve significant insights on what are
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the factors driving regeneration, aiming to translate them into the field of regenerative
medicine. Indeed, the field of regenerative biology has made an enormous step forward
in the past decade, taking advance of imaging, genomics, and genome editing to identify
key cell types and molecules involved in the regeneration of many model organisms. Yet,
it can be difficult to foresee when and how findings from these studies will really advance
regenerative medicine. The identification of genes modulating the origins and fates of
blastemal progenitor cells will likely be the key to achieve appendage regeneration, and it
will provide novel targets for gene manipulation in mammals.
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