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Abstract

Research Article

Background

An important issue in biomarker research is the intra‑ and 
inter‑tumor heterogeneity of the composition of tumors.[1,2] Tumors 
arise and grow in a very complex environment of different cell 
types, including primary tumor cells, stromal cells, and immune 
cells, among others. All of these different cell populations 
contribute to varying degrees to any protein, DNA, or RNA signal 
obtained as a result of studies working on patient material. This 
heterogeneity has been proposed as a significant challenge to 
successful cancer biomarker research.[3] Consequently, multiple 
authors have demonstrated the importance of enrichment to 
obtain specific signals for unbiased biomarker discovery.[4‑6]

The lack of biomarkers remains an urgent issue in colorectal 
cancer. To this day, the tumor node metastasis (TNM) staging 

system remains the “gold standard” for tumor classification in 
this disease, which assigns patients into one of four categories 
with unique treatment regimens. The lack of biomarkers 
is most prominent in Stage 2 and 3 patients. While Stage 
2 patients are usually surgically treated, Stage 3 patients are 
readily administered adjuvant therapies. These differences in 
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treatment regimen are based predominantly on the absence or 
presence, respectively, of lymph node metastases. The need for 
additional biomarkers for improved patient stratification and 
management is found in the conflicting finding that subgroups 
of Stage 3 patients (Stage 3A) are characterized by more 
favorable prognosis than subgroups of Stage 2 patients (Stage 
2B and 2C).

Among the available methods for biomarker discovery, mass 
spectrometry (MS) certainly ranks among the methods with 
the highest accuracy and throughput. The typical application 
for mass spectrometry in protein biomarkers discovery refers 
to an untargeted, or “shotgun,” approach. This procedure 
involves extraction and denaturation of proteins from frozen 
or formalin‑fixed paraffin‑embedded (FFPE) tissue into 
solution, followed by enzymatic digestion with specific 
proteases such as trypsin. The resulting peptide solution is 
chromatographically separated, ionized, and injected for 
analysis into an MS instrument in an approach known as 
liquid chromatography‑based MS [LC‑MS]. Because of the 
principle of injecting a solution of fragmented proteins into an 
MS instrument, this approach has also been coined “shotgun 
proteomics.”

MS represents a well‑suited method for biomarker discovery, but 
additional methods are required for the subsequent validation 
of identified candidates. In that respect, the combination of 
digital image analysis (DIA) and immunohistochemistry (IHC) 
has recently shown very promising results. For example, the 
Ki67 marker has been used for years as a proliferative marker 
in breast cancer but is limited by significant interobserver 
variability. Recently, however, Stålhammar et al.[7] have used 
DIA for more reliable and objective scoring for Ki67. The 
potential of DIA can be further increased in combination with 
a next‑generation tissue microarray® (ngTMA) approach that 
allows for targeted regions of tissue to be included in digital 
analysis.[8‑10]

The aim of this study is the discovery of novel potential 
biomarkers for patients with Stage 2 colorectal cancer. This 
aim is achieved by developing a pipeline for biomarker 
discovery that begins by enriching tumor samples for MS 
analysis using ngTMA technology, followed by validation of 
candidate proteins using quantitative DIA. This combination of 
methodologies represents a new milestone for the identification 
and validation of biomarkers in cancer research.

Methods

Patients
A total of 413 surgically treated patients with primary colorectal 
cancer were entered into this study. Patients were treated at 
the University Hospital of Bern between 2002 and 2013. 
Patient characteristics are found in Supplementary Table 1. All 
diagnostic slides were re‑reviewed by expert gastrointestinal 
pathologists, and the following histopathological information 
was recorded: tumor grade, lymphatic and venous invasion, 
pathological T, N, and M stage, overall TNM stage, perineural 

invasion, tumor border configuration, tumor budding score 
assessed according to the ITBCC guidelines,[11] microsatellite 
status, and tumor histology. Clinical data included age at 
diagnosis, gender, survival time, and therapy. No cases were 
preoperatively treated. Median overall survival time for the 
full cohort was 42.7 months.

Next‑generation tissue microarray construction
Blocks were retrieved from the archives of the Institute of 
Pathology, University of Bern, Switzerland. From each block, 
an H and E slide was created and scanned (digitalized) on a 
Panoramic 250 scanner (3DHistech, Budapest, Hungary). On 
each digital slide created this way, multiple circular digital 
annotations (i.e., regions of interest [ROI]) with a diameter of 
0.6 and 1.0 mm were annotated in histological tumor regions 
of all patients in the cohort. Digital slides were aligned with 
their corresponding blocks, and annotated regions were 
extracted from the block and placed in a new, empty paraffin 
block. This resulted in ngTMA® featuring multiple cores per 
patient in the validation cohort [Supplementary Figure 1]. 
The validation cohort ngTMA® contained in a total of 
796 cores. The use of clinical data and tissue samples 
was approved by the Ethics Committee of the Canton of 
Bern (KEK 2014/200).

Protein extraction and mass spectrometry
From these 413 patients, 26 Stage 2 and 26 Stage 3 cases 
were selected for MS. Patients were selected to represent a 
balanced cohort without missing data for any feature including 
survival. Using the same technology as described above for 
TMAs, digital annotations were used to target regions of tumor 
epithelium. Blocks were aligned with the digital scans, and four 
cores from each patient were collected in 2 ml tubes. Extracted 
cores were re‑embedded in a 7 mm × 7 mm paraffin block, 
20 sections (15 µm each) from each block were cut, and protein 
was extracted according to the “Extraction of Total Protein from 
FFPE Tissue Sections” protocol of the Qproteome® FFPE Tissue 
Handbook (p. 18‑19, Qiagen). 15 µl of the resulting protein 
extract was injected on an LC‑MS/MS system (EASY nLC1000 
liquid chromatograph coupled to a QExactive mass spectrometer, 
both from ThermoFisher Scientific). To reinforce the confidence 
in identified biomarkers, MS results were evaluated with one 
commercial (Proteome Discoverer version 2.2, ThermoFisher) 
and one freely available (MaxQuant version 1.5.8.3) software 
with the following settings: up to two missed cleavages in 
tryptic digest peptides, carbamidomethylation on cysteine as 
fixed modification and N‑terminal acetylation and methionine 
oxidation as variable modifications. A mass tolerance of 10 ppm 
was used for precursor ions and 20 ppm for fragment ions. 
False discovery rate on protein level was set to 0.01 (1%), 
with a minimum of two unique peptides required for protein 
identification.

After result evaluation, a python script was specifically 
developed to extract intensities of all identified proteins from 
both software packages by summing up individual intensities 
of the three most abundant peptide ions. This approach is 
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known as “Top 3” and has been previously shown to be the 
most accurate approximation of abundance in label‑free 
protein quantification.[12,13] MaxQuant‑calculated “label‑free 
quantification” (LFQ) scores were also included in the statistical 
evaluation. The three calculated quantification methods (LFQ 
and Top 3 scores from MaxQuant, Top 3 score from Proteome 
Discoverer) were imported into  R version 3.4.2[14] and were 
used for calculating fold change and associated P values 
for all proteins identified with at least two unique peptides. 
All proteins exhibiting significant (P < 0.05) fold changes 
in all three scores were considered as true biomarkers. The 
cathepsin B protein was selected for subsequent validation on 
the previously constructed ngTMA® cohort.

Immunohistochemistry
For IHC validation, two sequential slides of the validation 
ngTMA® were created and stained with cytokeratin (clone 
AE1/AE3, Cell Signaling) and cathepsin B (clone EPR4323, 
GeneTex), respectively, on the automated BOND RX® (Leica 
Biosystems, Newcastle, UK). Digital copies of slides were 
obtained at highest quality settings and ×40 resolution on a 
Panoramic 250 Scanner and stored on our institute servers. The 
intensity of cathepsin B was visually assessed and classified 
into one of two “visual intensity” categories, namely category 
0 (low expression) or category 1 (high expression) based on 
reference intensities. These visual intensity categories were 
also combined with clinical, pathological data for inclusion 
in the statistical analysis.

Digital image analysis using QuPath
For quantification with DIA, slides were imported into the 
QuPath software version 0.1.2,[15] core areas were detected 
using the built‑in TMA dearrayer module, and the position 
of tissue cores was manually adjusted to ensure proper 
recognition and further processing of all cores on the slide. 
All cytokeratin‑stained tissue cores were then evaluated for 
inclusion or exclusion in further data analysis. Tissue cores 
were excluded from analysis if (i) their shape was distorted 
such that the tissue region extended beyond the borders of the 
0.85 mm circular annotation, (ii) they contained any amount 
of normal epithelial tissue, (iii) they showed clear indications 
that the staining protocol did not work, (iv) they contained 
overlapping tissue, or (v) they contained <25% of tissue. Cores 
for which observers were not in agreement were discussed after 
evaluation until agreement of both evaluators was reached.

To all tissue cores included in the analysis, QuPath’s simple 
linear iterative clustering superpixel segmentation (Gaussian 
sigma: 5 µm, superpixel spacing: 10 µm, iterations: 15, 
regularization: 0.1) was applied. This approach is very well 
suited for capturing the histological shape of tissue cores. 
QuPath intensity features (preferred pixel size: 2 µm, region: 
ROI, tile diameter: 25 µm, compute all features including 
Haralick features [Haralick et al., 1973] with 32 bins) were 
calculated for all superpixels identified this way.

After calculation, annotations were placed on randomly 
chosen tissue cores of each cytokeratin slide in three 

regions: epithelium, stroma, and whitespace. It was ensured 
that each annotation contained 3000 (±5%) superpixels. 
Annotated superpixels were used to build a Random 
Trees detection classifier for the entire TMA slide, and 
this approach ensured a balanced training set in the three 
selected regions. Superpixels belonging to the same class 
were then combined to a single annotation, resulting in three 
annotations (epithelium, stroma, and whitespace) on each 
tissue core of all slides.

After classification of superpixels, epithelial regions were 
manually transferred to corresponding cores of the sequential 
ngTMA® slide stained for cathepsin B. Corresponding cores 
were aligned, the epithelial annotation from the cytokeratin 
slide was manually transferred to the cathepsin B slide, and 
necrotic areas as well as intraglandular debris of the transferred 
annotation were manually removed before further analysis. 
Annotations were not transferred if the core on the cathepsin 
B slide (i) showed clear indications that the staining did not 
work, (ii) contained overlapping tissue, (iii) was distorted in 
a way that the core tissue region extended beyond the borders 
of the 0.85 mm circular annotation, or (iv) contained <25% of 
tissue. Upon successful transfer of all epithelial annotations 
to the candidate biomarker slide, the watershed cell detection 
method (detection image: optical density sum, requested pixel 
size: 0.5 µm, background radius: 8 µm, median filter radius: 
0 µm, Sigma: 1.5 µm, minimum area: 10 µm2, maximum 
area: 400 µm2, threshold: 0.1, checked options: splitting by 
shape, include cell nucleus, smooth boundaries) was applied 
to all annotations on the candidate biomarker slide. Cell 
features were calculated for all cells using QuPath’s add 
intensity features option (preferred pixel size: 0.5 µm, region: 
ROI, tile diameter: 25 µm, compute all features including 
Haralick features with 32 bins). This approach calculates 163 
parameters for each detected cell on the candidate biomarker 
slide, which were exported into a tab‑delimited file using a 
QuPath script specifically developed for this purpose. Exported 
measurements from all cells on the biomarker candidate slide 
were combined with relevant clinical pathological features and 
imported into R version 3.4.2 for statistical analysis.

Study design
Patients for biomarker discovery (26 patients from Stage 2 and 
3, respectively) as well as for the construction of the validation 
cohort were chosen from an initial four hundred and thirteen 
CRC patients. The complete study design is shown in Figure 1.

Statistical analysis
All statistical analysis was performed in R version 3.4.2. 
Differences in survival curves were assessed using the 
log‑rank test. Biomarkers in the three scoring approaches 
were identified using the t‑test. Only proteins with P < 0.05 
in all three comparisons were considered significant. The 
association of visual intensity categories and Brightness_Max 
with clinical‑pathological features was performed using the 
Spearman correlation coefficient, Chi‑square, or Wilcoxon’s 
rank‑sum test.
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results

Differentially expressed proteins between Stage 2 and 
3 patients
Differential protein expression between Stage 2 and 3 patients 
revealed 1947 proteins identified with at least two unique 
peptides. The three types of quantification scores (LFQ scores 
from MaxQuant and Top 3 scores from MaxQuant and Proteome 
Discoverer) were combined using a python script developed 
specifically for this purpose and analyzed in R. To reinforce 
the validity of biomarker candidates, only proteins with a 
significant P value (P < 0.05) fold change in all three scores 
were considered as true biomarkers [Figure 2a]. This resulted 
in eight candidates for subsequent validation [Figure 2b]. 
Based on the body of available literature, the cathepsin B 
protein was chosen for further validation on the validation 
cohort using DIA.

Assessment of cathepsin B by visual assessment of 
next‑generation tissue microarray
In a first step, the expression of cathepsin B in all patients in 
the validation cohort was visually assessed and assigned one 

of two categories “low/no cathepsin B expression” or “high 
cathepsin B expression” based on reference images [Figure 3]. 
All patients in the cohort were then stratified for overall 
survival by this visual intensity category [Figure 4a]. 
However, these results did not indicate any significant 
stratification of patients (log‑rank test, P > 0.05). In addition, 
this categorization into expression categories did not reveal 
any significant associations with clinical‑pathological 
features [Table 1]. Based on these findings, subgroup analysis 
for available Stage 2 patients was performed. Stratification 
of Stage 2 patients by visual intensity is shown in Figure 4b. 
Although not statistically significant, a trend in the stratification 
of patients can be observed.

Digital image analysis of cathepsin B
Our categorization of cathepsin B by visual assessment did 
not reveal any significant stratification of patients. However, 
we hypothesized that DIA, which allows analysis of IHC 
expression on a continuous rather than a categorical scale, 
would improve the associations with clinical‑pathological 
features and potentially yield a “digital” surrogate for the 
expression of cathepsin B. Therefore, to identify which 
of the measured QuPath variables would most closely 
represent the visually assessed intensity, each variable 

Figure 2: (a) P values and associated fold change between Stage 2 
and Stage 3 patients for all proteins identified in our mass spectrometry 
results for each of the three quantification scores (◊: “Top3” scores from 
ProteomeDiscoverer, ○: label‑free quantification scores from MaxQuant, 
+: “Top 3” scores from MaxQuant). Note that a negative fold change 
indicates higher expression in Stage 2. Eight proteins with P < 0.05 in 
all three quantification scores (indicated in bold) were considered as 
biomarker candidates. (b) Additional information for each of the eight 
biomarker candidates

a

b

Figure 1: Workflow for digital pathology (left) and mass spectrometry (right) 
analysis in the presented study
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intensity is manifested by higher staining intensity (i.e., 
darker staining), we had an a priori expectation that 
Brightness_Max would be inversely correlated with visual 
intensity. Indeed, our data showed significantly higher 

was independently analyzed in a Cox proportional hazards 
model containing Stage 2 patients in the validation cohort. 
The limited size of the cohort precluded the application of 
a multivariate model. Univariate Cox analysis resulted in 
three QuPath variables with significant (P < 0.05) hazard 
ratios: Red_Max, Residual_Min, and Brightness_Max. We 
considered Brightness_Max, which is representative of 
the maximum median pixel intensity of all cells detected 
on particular patient core in the tumor epithelium region, 
as the best surrogate for visual intensity. Since visual 

Table 1: Association of cathepsin B staining by visual assessment and digital image analysis and clinicopathological 
features

Clinical‑pathological variable Visual intensity (P) Brightness_Max in Stage 2 (P) Brightness_Max in full cohort (P)
Age 0.960 0.089 0.747
Gender 0.296 0.517 0.341
Tumor histology 0.338 0.797 0.488
Tumor location 0.392 0.030 0.583
pT 0.917 0.143 <0.001
pN 0.831 ‑ 0.004
cM 1.000 ‑ 0.001
TNM stage 0.831 ‑ <0.001
Grade 0.511 0.343 0.001
L 1.000 0.089 <0.001
V 0.321 0.650 0.008
Pn 0.430 0.296 <0.001
Number of buds (ITBCC) 1.000 0.042 0.007
Budding category 0.833 0.086 0.042
Tumor border configuration 0.615 0.117 0.001
MMR status 1.000 0.090 0.024
Overall survival 0.612 0.044 0.042
TNM: Tumor, node, metastasis

Figure 3: Reference tissue cores stained for cathepsin B used for 
assessment of visual intensity. The top row showing cores which were 
categorized as “low cathepsin B expression,” the bottom row showing 
cores categorized as “high cathepsin B expression”

Figure 4: Overall survival in the full validation cohort (a) and in Stage 
2 patients of the validation cohort (b), stratified by visual intensity 
category. Indicated P values are the result of a log‑rank test

a

b
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values of Brightness_Max values in the “low cathepsin 
B expression” category, which confirmed our a priori 
hypothesis [Supplementary Figure 2].

Association of cathepsin B Brightness_Max scores with 
clinical pathological features
Our DIA approach incorporated the alignment of 
cytokeratin‑stained and cathepsin B‑stained cores, followed 
by cell detection and digital assessment of staining intensity. 
Based on the specificity of cytokeratin to epithelial regions, 
this approach ensured that cathepsin B expression would be 
digitally assessed only in the tumor epithelial regions, thereby 
removing any potential bias from stromal signals [Figure 5]. 
Based on our DIA data, we successfully established QuPath’s 
Brightness_Max measure as a digital surrogate of visual 
intensity. It also enabled an investigation of the association 
with important clinical pathological features of the validation 
cohort. This analysis was performed for both Stage 2 patients 
and for all patients in the validation cohort [Table 1]. 
Interestingly, we found lower values of Brightness_Max (i.e., 
higher expression of cathepsin B) significantly associated 
with less aggressive pathological features of CRC in the full 
cohort, such as the absence of lymphatic (P < 0.001) and 
perineural (P < 0.001) invasion, and a lower number of tumor 
buds (P = 0.007). We could also demonstrate a significant 
association of Brightness_Max with overall survival in the full 
cohort (P < 0.05), although this was only found in univariate 
analysis. Unfortunately, Brightness_Max does not represent 
an independent prognostic factor in multivariate analysis when 
adjusting for other confounders.

conclusions

The lack of prognostic and predictive biomarkers remains 
an important issue in proper patient classification and 
management for CRC. In this study, we investigated whether 
the introduction of a novel approach coupling DIA and 
state‑of‑the‑art tissue enrichment methodology to mass 
spectrometry for biomarker discovery would allow for 
the identification of clinically relevant novel biomarkers, 
with a particular focus on markers in Stage 2 patients. The 
presented study identified the human cysteine cathepsin B as 
a promising biomarker and proposed validation guidelines 
using ngTMA® coupled to DIA on a previously established 
validation cohort of 413 patients. Although the cathepsin B 
protein is not as interesting in terms of differential protein 
expression compared to other candidates such as Hexokinase 
3, it was chosen for validation based on a number of different 
reasons. First, the role of cathepsin B in cancer malignancy 
and progression is supported by a large body of literature: 
cathepsin B expression has been directly associated with a 
more aggressive phenotype and positive expression in tumor 
buds in CRC,[16] and the cathepsin family of proteins is 
generally attributed an important promoting role in a multitude 
of cancers.[17‑20] Second, the investigation of tumor budding 
as the main focus of our research group aligned well with 
the previously reported function of cathepsin B. Finally, the 
availability of a commercial antibody for cathepsin B and its 
excellent quality of staining was an inevitable prerequisite 
for validation in our study. Taken together, this renders 
cathepsin B the most obvious choice for validation in our list 
of biomarker candidates.

While our results indicated that the visually inspected cathepsin 
B category was not a suitable prognostic factor on the validation 
cohort, the analysis specific to Stage 2 patients revealed 
its prognostic potential. Stratification of patients by visual 
intensity category revealed two prognostic subgroups, with a 
trend toward statistical significance. Interestingly, the better 
prognostic subgroup is characterized by increased expression 
of cathepsin B, indicating a “protective” effect of this protein.

The role of cathepsin B, one of the eleven human cysteine 
cathepsins (B, C, F, H, L, K, O, S, V, W, X/Z), has been 
well described.[21] The protein is constitutively expressed 
as a precursor on the rough endoplasmatic reticulum and 
transported to lysosomes, where it is converted into its 
active form. A dual role has been reported for this protein in 
cancer: On the one hand, it has been shown to promote tumor 
progression via increased secretion into the extracellular 
matrix and degradation of the basement membrane.[22‑24] 
On the other hand, cathepsin B has also been reported as an 
important proapoptotic component of apoptosis by cleaving 
anti‑apoptotic members of the Bcl‑2 family of proteins.[25,26] 
Taken together, evidence in the literature suggests opposing 
roles for cathepsin B in malignancy. Our data indicate that the 
“protective” effect of cathepsin B is more pronounced in our 
validation cohort since the favorable prognostic subgroup of Figure 5: Digital image analysis workflow
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Stage 2 patients is characterized by increased expression of 
cathepsin B.

With respect to DIA, our study revealed important points for 
consideration. We have proposed a method to successfully 
identify a digital “surrogate” measure based on the framework 
of visually assessed intensity levels. In this context, our 
approach outlines the benefits and challenges of incorporating 
DIA into biomarker discovery studies. On the one hand, DIA 
provides a continuous measure of visual intensity, which bears 
obvious benefits in terms of statistical evaluation compared 
to the classical categorical assessment of visual intensity. 
The benefits of a digital, continuous measure of intensity for 
biomarker validation are shown in Table 1, which outlines 
significant associations with relevant clinical pathological 
features in both Stage 2 patients and in all patients of the 
validation cohort. A comparison of the same features with 
categorical visual intensity fails to reach statistical significance.

On the other hand, our approach also outlines the challenges 
associated with DIA‑based approaches. The amount of data 
produced by QuPath (and DIA software in general) is orders 
of magnitude larger than any type of visual assessment. This 
offers many more possibilities for data analysis, such as an 
examination of quantitative cell‑specific expression data or 
cell–cell interactions. However, the resulting data analysis, 
processing, and storage are more challenging and require 
advanced expertise in bioinformatics, which may not be readily 
available in research institutions.

Our study may be limited in several aspects. One very 
important point is the mode of synthesis of cathepsin B. 
Proteins synthesized in the form of a precursor which is only 
activated at a later stage form a major challenge for IHC, since 
antibodies specific to either the precursor or its active form are 
difficult to obtain. In most cases, the IHC staining does not 
differentiate between the two forms, including the presented 
work. Therefore, our results cannot be used to distinguish 
whether the more favorable identified prognostic subgroup 
in Stage 2 is truly characterized by increased expression of 
cathepsin B, its precursor form, or a combination of the two. In 
addition, our experience has shown that while the incorporation 
of DIA approaches may increase the objectivity of results, 
image analysis software remains prone to imperfections. These 
imperfections may be manifested in the form of tissue artifacts, 
mast cells which intensely pick up a wide range of staining, or 
two closely adjacent cells which are falsely identified as one 
much larger cell. Such issues are avoided in visual assessment 
of staining intensities since they are “obvious” to the observer. 
This addresses an important aspect that will require further 
refinement in the comparison of visual versus digital pathology.

In conclusion, cathepsin B is a marker for more indolent tumor 
behavior and favorable prognosis in colorectal cancer. Our 
work has shown that inclusion of DIA increases objectivity 
compared to visual assessment. However, we have also 
outlined some of the challenges associated, including the 
amount and analysis of validation data. We estimate that with 

increasing popularity of various DIA software packages, this 
approach will be the focus of many future studies which will 
help to clarify current challenges in the comparison between 
visual and digital pathology.
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Supplementary Figure 1: Next-generation Tissue Microarray Construction 

Supplementary Table 1: Clinical‑pathological features of 
the patient cohort

Feature Frequency (%)
Age (median) (minimum‑maximum) 70.6 (19.1‑92.1)
Sex

Female 161 (39.2)
Male 250 (60.8)

Grade
1 10 (2.9)
2 262 (75.3)
3 76 (21.8)

L
0 126 (34.7)
1 237 (65.3)

V
0 168 (45.8)
1 199 (54.2)

pT
0 22 (5.7)
1 9 (2.3)
2 66 (17.0)
3 210 (54.0)
4 82 (21.0)

pN
0 199 (48.5)
1 124 (30.2)
2 87 (21.2)

pM
0 296 (72.0)
1 115 (28.0)

TNM stage
0 19 (4.6)
1 47 (11.4)
2 106 (25.8)
3 124 (30.2)
4 115 (28.0)

Pn
0 281 (78.7)
1 76 (21.3)

Preoperative TX
No 360 (87.6)
Yes 51 (12.4)

Tumor border configuration (percentage expanding, 
median) (minimum‑maximum)

50 (0‑100)

Budding (ITBCC, median) (minimum‑maximum) 3 (0‑195)
Microsatellite status

MSI 30 (14.7)
MSS 174 (85.3)

Tumor histology
Adenocarcinoma 335 (87.5)
Mucinous 32 (8.4)
Other 16 (4.2)

Overall survival (median) (minimum‑maximum) 42.7 (0‑182.9)
Disease‑free survival (median) (minimum‑maximum) 38.8 (0‑161.5)
TNM: Tumor, node, metastasis, MSI: Microsatellite instability, 
MSS: Microsatellite stable

Supplementary Figure 2: Significantly higher values of Brightness_Max 
scaores in the “low” compared to “high” Cathepsin B expressing category


