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Abstract: Approximately 18% of ovarian cancers have an underlying genetic predisposition and
many of the genetic alterations have become intervention and therapy targets. Although mutations
in MutY homolog (MUTYH) are best known for MUTYH associated polyposis and colorectal cancer,
it plays a role in the development of ovarian cancer. In this review, we discuss the function of
the MUTYH gene, mutation epidemiology, and its mechanism for carcinogenesis. We additionally
examine its emerging role in the development of ovarian cancer and how it may be used as a
predictive and targetable biomarker. MUTYH mutations may confer the risk of ovarian cancer by the
failure of its well-known base excision repair mechanism or by failure to induce cell death. Biallelic
germline MUTYH mutations confer a 14% risk of ovarian cancer by age 70. A monoallelic germline
mutation in conjunction with a somatic MUTYH mutation may also contribute to the development
of ovarian cancer. Resistance to platinum-based chemotherapeutic agents may be seen in tumors
with monoallelic mutations, but platinum sensitivity in the biallelic setting. As MUTYH is intimately
associated with targetable molecular partners, therapeutic options for MUTYH driven ovarian cancers
include programed-death 1/programed-death ligand-1 inhibitors and poly-adenosine diphosphate
ribose polymerase inhibitors. Understanding the function of MUTYH and its associated partners is
critical for determining screening, risk reduction, and therapeutic approaches for MUTYH-driven
ovarian cancers.
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1. Introduction

Ovarian cancer, which generally refers to cancers originating from the ovary, fallopian
tube, and peritoneum, is the deadliest gynecologic cancer, responsible for taking the lives
of approximately 14,000 women in the United States this year [1]. Although most ovarian
cancers are sporadic, approximately 18% have an underlying genetic predisposition [2].
The best known and most penetrant germline genetic mutations responsible for ovarian
cancer are in the tumor suppressor breast cancer susceptibility genes 1 and 2 (BRCA1I and
BRCA?2), which are noted in 13-20% of ovarian cancers [3,4]. These genes help maintain
genome integrity by performing deoxyribonucleic acid (DNA) repair via the homologous
recombination repair pathway [5]. BRCA1 and BRCA2 (BRCA1/2) mutations are inherited
in an autosomal dominant fashion and contribute to an increased risk of several cancers
including breast, ovarian, and pancreatic cancers [6]. BRCA1 carriers are estimated to have
a 44% risk of developing ovarian cancer and a 72% risk of developing breast cancer by age
80 [7]. Similarly, BRCA2 carriers incur a 17% risk of developing ovarian cancer and a 69%
risk of developing breast cancer by age 80 [7]. Evaluation of families with multiple cases of
breast and/or ovarian cancer have demonstrated an approximate 40% mutation frequency
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in the BRCA1/2 genes [8], suggesting less prevalent germline mutations contribute to the
development of hereditary breast and ovarian cancer.

A germline mutation in the tumor protein 53 (I'P53) tumor suppressor gene results
in the rare, autosomal dominantly inherited Li Fraumeni hereditary cancer syndrome.
Although Li Fraumeni syndrome has not classically been associated with an increased risk
for ovarian cancer, higher than expected frequencies of ovarian cancer in patients with
germline TP53 mutations have been reported [9]. Other gene mutations that confer ovarian
cancer risk include those involved in the development of Lynch syndrome, or hereditary
non-polyposis colorectal cancer. These include mutations in the mismatch repair genes
mutL homolog 1 (MLHI), mutS homologs 2 and 6 (MSH2, MSH6), post-meiotic segregation
increased 2 (PMS2), and epithelial cell adhesion molecule (EPCAM). Mutations in these
genes are inherited in an autosomal dominant manner [10] and result in an increased
risk of colon (lifetime risk 52-82%), endometrial (lifetime risk 25-60%), gastric (lifetime
risk 6-13%), and ovarian (lifetime risk 4-12%) cancers [10]. Specifically, mutations in
MLH1, MSH2, or MSH6 confer risk of ovarian cancer by age 75 of 10%, 17%, or 13%,
respectively [11].

Germline mutations in the mutY homolog (MUTYH) base excision repair gene, is
best known for their role in MUTYH-associated polyposis (MAP), an autosomal recessive
condition that confers a 63% risk of colorectal cancer by age 60 [12]. Notably, although
MAP is inherited in an autosomal recessive pattern, both monoallelic and biallelic MUTYH
carriers are at an increased risk for other cancers (Table 1), including bladder, ovarian,
duodenal, breast, gastric, hepatobiliary, endometrial, and skin cancers [13,14].

Table 1. Risk of cancer phenotypes for monoallelic and biallelic MUTYH pathogenic mutation

carriers.
Cancer Type Risk in Monoallelic Carriers Risk in Biallelic Carriers
Colon Cancer Possible increased risk 63% !
o/ 2
Bladder Cancer Insufficient evidence 205 /; (males)
8% < (females)
Ovarian Cancer No increased risk 14% 2 (females)
Duodenal Cancer Insufficient evidence 4%3

Breast Cancer 11% ! (females) 25% 3 (females)

5% 1 (males)
2.3% 1 (females)

3% 1 (males)

Gastric Cancer Insufficient evidence

Hepatobiliary Cancer 1.4% 1 (females) Insufficient evidence
Endometrial Cancer 3% 1 (females) Possible increased risk
Skin Cancer No increased risk Possible increased risk

! by age 60; 2 by age 70; 3 by age 75.

The purpose of this article is to describe the role of MUTYH mutations in the patho-
genesis of cancer and describe its emerging use in early detection, treatment decisions, and
possible targeted therapies for ovarian cancer.

2. MUTYH Gene
2.1. MUTYH Gene Function

The MUTYH gene is located on the short arm of chromosome 1 (1p34.1) [15] and
encodes instructions for the MYH glycosylase enzyme. This enzyme repairs DNA damage
via a base excision repair mechanism. Many different carcinogens damage DNA, including
reactive oxygen species, alkylating agents, DNA cross-linking agents, and radiation. Al-
though MUTYH performs base excision repair and initiation of apoptosis in response to
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DNA damage from alkylation [16] and ultraviolet radiation [17], its primary function is to
repair oxidative DNA damage [18].

Following stimulation from the MSH6 component of the MSH2/MSH6 heterodimer,
MUTYH identifies and binds a mismatch of 8-hydroxyguanine (8-oxoG):A [19]. Myh
glycosylase then excises the mismatched adenine, preventing inappropriate G:C > T:A
transversions in subsequent rounds of DNA replication [15,18,20,21]. Removal of the
inappropriate base-pairing generates an apurinic/apyrimidinic (AP) site [22]. A physical
connection between MYH and AP endonuclease I (APE1) enables prompt action by APE1 to
nick the DNA phosphodiester backbone, causing a single-strand DNA break [23] (Figure 1).
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Figure 1. Base excision repair mechanism of the MutY homolog (MUTYH) in response to oxidative damage.

In addition to its well-known role in base excision repair, MUTYH also plays a role
in rapid DNA damage response by inducing cell death [21,24,25]. Oka and colleagues
(2008) demonstrated that single-strand mitochondrial DNA breaks performed by MYH's
base excision repair mechanism result in cell death via calpain activation [25], which is
a p53 independent process [24,25]. Alternatively, nuclear DNA breaks induced by MYH
glycosylase result in cell death via a poly-adenosine diphosphate (ADP) ribose polymerase
(PARP) signaling pathway [25], which is mediated by the tumor suppressor protein, p53 [24]
and the mismatch repair gene MLH1 [26]. PARP senses and binds to single-strand DNA
breaks, ribosylates itself and other cellular proteins, and signals apoptosis-inducing factor
to translocate from the mitochondria to the nucleus, resulting in cell death [27].

Another method by which MUTYH responds to rapid DNA damage involves activa-
tion and phosphorylation of the tumor suppressor gene, checkpoint kinase 1 (CHEK1) via
ataxia telangiectasia and rad3-related protein (ATR), another tumor suppressor gene [28,29].
When activated, CHEK1 activates cell cycle checkpoint processes prompting DNA repair
and/or apoptosis [30]. Following exposure to DNA damaging agents, Hahm and col-
leagues (2011) found less CHEKI and ATR phosphorylation in knockdown MUTYH cells
than in wild-type cells [28]. When this pathway is altered, the activity of checkpoint kinase
2 (CHEK?2) increases [28].

2.2. MUTYH Germline Mutations

The estimated prevalence of a heterozygous MUTYH germline mutation is 1-2% [31,32]
and homozygous germline mutations is 0.012% [33,34]. Most pathogenic MUTYH muta-
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tions are missense [18,35], including Y179C (c.536A > G; previously Y165C (c.494A4G))
and G396D (c.1187G > A; previously G382D (c.1145G4A)). These mutations account for
approximately 70% of all pathogenic mutations in Western populations [31,35] likely due
to a genetic founder effect [21]. Although approximately 18% of all ovarian cancers are the
result of an inherited predisposition [2], it is unknown how many of these ovarian cancers
are directly attributable to biallelic MUTYH mutations. Consistent with the estimated
prevalence of carrying a heterozygous MUTYH germline mutation [31,32], monoallelic
germline MUTYH mutations have been identified in 1.9% of ovarian cancer patients [36].

2.3. MUTYH Somatic Mutations

Somatic MUTYH mutations are increasingly described in the literature and are noted
to be present in 3.3% of all tumors curated by the Catalogue of Somatic Mutations in
Cancer (COSMIC) database [37]. Similar to germline mutations, most (56.7%) mutations
are missense. Over 400 different somatic MUTYH mutations have been curated by COSMIC
and the most frequently identified is 157 + 30A > G, occurring 6% of the time [37]. Somatic
MUTYH mutations have been described in sporadic colorectal cancer and may occur
concurrent to somatic adenomatous polyposis coli (APC) gene mutations [38]. Furthermore,
MUTYH somatic mutations have been described in Lynch syndrome patients and in
patients whose tumors demonstrate mismatch repair deficiency but carry no mismatch
repair germline mutation [39]. Outside of colon cancer, somatic MUTYH mutations have
also been described in breast cancers [40,41] and in 0.24% of ovarian cancer samples [37].

2.4. MUTYH Mutation and Mechanism for Oncogenesis

While somatic and biallelic MUTYH mutations are associated with an increased
risk of ovarian cancer, the majority of mechanistic studies have been performed in colon
cancer model systems. Due to the critical role MUTYH plays in base excision repair,
DNA with functional loss of MUTYH leads to an excess of 8-oxoguanine (8-oxo-G) which
results in inappropriate G:C > T:A transversions in MAP colorectal tumors [18,20,42]
(Figure 2). Without active MUTYH activity, 8-oxoguanine glycosylase (OGG1), a DNA
glycosylase enzyme involved in base excision repair, may identify and remove 8-oxo-G
in an inappropriate 8-oxo-G:A pairing resulting in another mechanism for incorrect G:C >
T:A transversions; competition between MUTYH and OGG1 has demonstrated in a mouse
model [21,43].
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Figure 2. Failure of MUTYH’s base excision repair mechanism and resultant G > T transversion.

The somatic G > T transversions seen in MAP tumors are likely the result of unre-
paired DNA damage from reactive oxygen species [18]. Over time, increasing numbers of
G > T transversions in somatic tissues are likely to impact various oncogenes and tumor
suppressor genes and lead to cancer [21,44,45]. For example, MAP colon tumors demon-
strate a high prevalence of somatic APC [20,42] and Kirsten rat sarcoma (KRAS) [42] G>T
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transversions. MAP colon tumors have also demonstrated somatic G > T transversions
in mismatch repair genes MLH1 [46], MSH2, and MSH6 [47], resulting in microsatellite
instability and mimicking Lynch syndrome [46,47].

In addition to carcinogenesis resulting from failed base excision repair, tumorigenesis
may result from the failure of damaged cells to undergo apoptosis [24]. Oka and colleagues
(2014) demonstrated that MUTYH knockdown colorectal cancer cells exposed to oxidative
stress failed to undergo PARP-mediated apoptosis, resulting in aberrant cell growth and
risk for tumorigenesis [24]. The tumor suppressor protein, p53 [26], regulates this pro-
cess: the same aberrant cell growth was identified with either p53 deficiency or MUTYH
knockout [24]. Although no studies have investigated the effect of mutant MUTYH in
ovarian cancer cells, the mechanism for ovarian cancer oncogenesis is likely similar to that
of colorectal cancer carcinogenesis as both of these cancers are established in the MAP
phenotype. Furthermore, impaired MUTYH function in human keratinocyte HaCaT and
human embryonic kidney HEK293 cells fail to phosphorylate ATR/CHEK1 [28]. Failure to
prompt DNA repair and/or apoptosis [30] may shift cell checkpoint messages to CHEK2
control. Although there is significant overlap in CHEKI and CHEK?2 functions [28], without
CHEKI1 control, cells exposed to DNA damaging ionizing radiation fail to arrest in the G2
phase, leaving the possibility of survival and replication of damaged DNA and another
potential mechanism for tumorigenesis [48]. Although these findings suggest carcinogenic
plausibility, future research may test this hypothesis in ovarian cancer cell lines.

3. Role of MUTYH in Ovarian Cancer
3.1. Ovarian Cancer Risk

The genetic pathophysiology of ovarian cancer is complex. Kurman and Shih (2016)
described common somatic genetic alterations driving ovarian cancer and these varied by
histologic subtype [49]. For example, p53 pathway inactivation is common in high grade
serous ovarian carcinomas, KRAS is implicated in mucinous and low grade serous ovarian
carcinomas, and mismatch repair deficiency is involved in endometrioid ovarian carcino-
mas [49]. The MUTYH mutated ovarian tumors curated by COSMIC have demonstrated
adenosquamous and serous histology; however, the sample size is limited [37]. Due to the
multitude of DNA damage repair mechanisms controlled by MUTYH, it is reasonable to
suspect that multiple ovarian cancer histologies may be associated with this alteration.

The risk for the development of ovarian cancer in patients with biallelic MUTYH
germline mutations has been evaluated in two studies. In both studies, index cases were
identified in patients with colon cancer who were enrolled in a cancer registry study
and the association of MUTYH mutations with non-colonic tumors in affected family
members was assessed. Among biallelic carriers, the risk of ovarian cancer was 10-14%
by age 70 or 75 [13,14]. Monoallelic carriers did not demonstrate an increased risk of
ovarian cancers, although numbers were relatively small and by design. all participants
had a family history of colon cancer [13]. Minion and colleagues (2015) demonstrated
1.9% (9/466) of patients with ovarian cancer harbored a monoallelic MUTYH germline
mutation [36], which is consistent with the estimated carrier rate [31-34]. It is possible that
MUTYH carriers may progress to ovarian cancer if somatic MUTYH mutations co-occur,
resulting in a homozygous somatic state, consistent with the well-established “two-hit
hypothesis [50]. This combination of germline and somatic events was demonstrated by
Thibodeau and colleagues (2019) and by Nones and colleagues (2019) in breast cancer
patients [40,41]. Although COSMIC has identified somatic MUTYH mutations in 0.24%
(3/1229) of curated ovarian cancers [37], many oncology practices only test ovarian cancer
patients with next-generation sequencing for somatic BRCA1/2 mutations or mismatch
repair deficiency [51,52], suggesting this rate may be an underestimate.

MUTYH may contribute to the development of sporadic ovarian cancer via the well-
described “incessant ovulation” hypothesis [53], “gonadotropin hypothesis” [54], or serous
tubal intraepithelial carcinoma (STIC) hypothesis [55]. The “incessant ovulation” hy-
pothesis suggests that more epithelial ovarian cell division during ovulation confers an
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increased opportunity for a somatic mutation predisposing to ovarian cancer [53,56]. MU-
TYH plays a more convincing role in the “gonadotropin hypothesis” paradigm. Pingariho
and colleagues (2012) demonstrated that MUTYH may repair DNA damage induced by the
carcinogenic metabolite glycinamide in human leukocytes [57] via base excision repair [58].
Glycinamide is the toxic metabolite of acrylamide, present in tobacco smoke and as a food
and cosmetic contaminant [57]. Acrylamide is associated with increased follicle-stimulating
hormone levels in premenopausal women [59], oxidative stress in rat gonads [60], and
an increased risk of ovarian cancer [61]. More recently, p53 mutated lesions on fallopian
tubal epithelium have been described as a precursor for many high grade serous ovarian
cancers [62,63]. These STIC precancerous lesions were first described in BRCA1/2 mutated
patients [62] and given the interaction between p53 and MUTYH, carcinogenesis via this
pathway seems to be a possible mechanism in MUTYH patients; however, additional
research is needed.

3.2. Early Detection and Prevention of Ovarian Cancer

As ovarian cancer screening programs have not demonstrated benefit for asymp-
tomatic women [51,64], the best option for early detection and prevention of ovarian cancer
is the identification of families and patients at risk. Women who carry a biallelic germline
mutation may consider similar preventative measures as patients with other mutations
that confer risk. Consistent with the “incessant ovulation” hypothesis of ovarian cancer
pathogenesis, a decreased risk of ovarian cancer has been demonstrated in the BRCA1/2
mutated [65] and general populations [66] who have used oral contraceptives. This chemo-
prevention strategy may reduce the risk of ovarian cancer in populations with varying
levels of pre-existing risk, including those with biallelic MUTYH germline mutations;
however, prospective studies are needed.

The National Comprehensive Cancer Network recommends consideration of a risk-
reducing salpingo-oophorectomy for patients with certain germline mutations that pre-
dispose them to ovarian cancer [67]. The recommended timing of this procedure varies
and is dependent on the time in which ovarian cancer presents with that specific mutation.
Data regarding the utility of this procedure for patients with germline mutations other
than BRCA1/2 that confer ovarian cancer risk are insufficient and require a personalized
approach [67]. Data suggest a lifetime risk of ovarian cancer in biallelic MUTYH mutation
carriers approximates 14% [13] and the median age of ovarian cancer diagnosis in this
population is estimated at 51 years [14]. It seems reasonable to consider risk-reducing
salpingo-oophorectomy for these patients at age 45-50. The definitive timing of this proce-
dure must be individualized and consider each patient’s family history and risk factors.
Although data are limited, patients with biallelic MUTYH mutations who are not yet ready
for risk-reducing salpingo-oophorectomy (e.g., not yet completed childbearing or not yet
ready for surgery) may undergo surveillance using a combination of serial transvaginal
ultrasonography and serum cancer antigen 125 [68]. Additional studies with long-term
follow-up are needed to determine the optimal surveillance protocol in this population.

3.3. Chemotherapeutic Considerations

Like many solid tumors, the majority of ovarian cancers require treatment with
platinum-based chemotherapeutic agents [51]. The primary mechanism of action of
platinum-based chemotherapeutics includes the creation of DNA-platinum adducts, lead-
ing to activation of DNA damage response system pathways, and ultimately cellular apop-
tosis [69,70]. Activated platinum reacts with purine DNA bases resulting in cross-linking
of adjacent guanines. This DNA lesion is either repaired by one of the many DNA damage
response mechanisms or deemed unrepairable prompting cellular apoptosis [70]. Although
most ovarian cancer patients initially respond to platinum-taxane based chemotherapy,
most recur, develop resistance, and endure a poor prognosis [51]. Platinum resistance
mechanisms include: decreased intracellular accumulation, inactivation by glutathione,
increased DNA repair, and failure of cells to undergo apoptosis [70].
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As MUTYH mutations may drive some ovarian cancers, it is critical to anticipate how
these tumors may respond to these therapies. Guo and colleagues (2019) demonstrated
that esophageal squamous cell carcinoma cells with downregulated MUTYH activity
contributed to cisplatin resistance via a Twist mediated epithelial-mesenchymal transi-
tion [71]. Similar to ovarian cancers, esophageal cancers are initially sensitive to upfront
platinum-based chemotherapy; however, platinum resistance often ensues with contin-
ued treatment [71]. This similar treatment phenomenon suggests a similar mechanism
could be involved in MUTYH-mutated ovarian cancers. Furthermore, tumors deficient
in mismatch repair genes, including MLH1 and MSH2, are less likely to recognize DNA
adducts and undergo apoptosis when exposed to cisplatin [72]. Because MUTYH’s base
excision repair mechanism functions in concert with the MSH2 /MSH6 heterodimer [19],
tumors deficient in MUTYH may demonstrate similar resistance to platinum-based agents.
Although the scientific community is gaining an understanding of the importance of the
epithelial-mesenchymal transition and other mechanisms of platinum resistance [70,73],
clinically possible methods to circumvent this problem have not been identified.

Although evidence suggests downregulated MUTYH activity may confer resistance
to platinum-based chemotherapeutics, Jansson and coworkers (2013) demonstrated that
Myhl/Radl homolog (Radl) double mutant Schizosaccharomyces pombe (fission yeast)
cells were more sensitive to cisplatin than either the Myh1 or Radl mutant alone [22].
Radl, a tumor suppressor gene, is a component of the Rad9-Rad1-Husl complex, which
senses DNA damage [74] and stimulates base excision repair [75]. Although studies
investigating the response of human MUTYH mutant cells to various chemotherapeutic
agents are lacking, the use of S. pombe cells may serve as a model to identify genomic
markers of chemosensitivity or chemoresistance [76]. This model suggests that an isolated
monoallelic MUTYH mutation may confer resistance to platinum-based chemotherapeutics;
however, biallelic MUTYH mutations or a monoallelic MUTYH mutation that coincides
with another DNA repair gene mutation may confer sensitivity. A similar phenomenon has
been demonstrated in patients harboring germline BRCA1/2 mutations. Ovarian cancer
patients with germline BRCA1/2 mutations are sensitive to platinum-based therapies
and demonstrate improved survival [77]; however, if they develop a secondary somatic
BRCA1/2 mutation, platinum-resistance ensues [78].

Although alkylating agents are rarely used as first-line therapy for ovarian cancer,
they may be used in salvage regimens [51]. Alkylating agents confer cytotoxicity by
forming DNA crosslinks [69]. Fry et al. (2008) demonstrated MYH glycosylase activity
in lymphoblastoid cells conferred sensitivity to alkylating agent N-methyl-N’-nitro-N-
nitrosoguanidine and importantly determined that MYH knockout cells were resistant
to this therapy and escaped cell death [16]. Evaluation of genomic predictors of cancer
treatment efficacy and resistance often begins with lymphoblastoid cells [79]. This finding
suggests that tumors with impaired MUTYH activity may be less responsive to alkylating
chemotherapeutic agents; however, human studies are lacking to support this hypothesis.

3.4. Potential Targeted Therapeutics

In light of advancing knowledge about mechanisms for carcinogenesis and molecular
pathways that drive the progression of cancers, significant advances have been made in
developing targeted therapies for ovarian cancer. Although large clinical trials evaluating
targeted MUTYH-therapies in ovarian cancer are unlikely, understanding the mechanisms
involved in oncogenesis and successful treatments in other tumor types can help identify
pathways that may be targeted with newer therapeutic agents (Figure 3).
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Figure 3. Molecular aberrations, their associated histologic subtypes, potential targeted therapeutics, and origin of

treatment considerations.

Like other microsatellite unstable tumors, which are common in those that harbor
mismatch repair mutations, MAP colon tumors display signs of an active immune re-
sponse [80]. This is not altogether unexpected given the intimate association between the
MSH?2 / MSH6 heterodimer and MUTYH. Furthermore, MAP tumors have demonstrated
somatic G > T transversions in MSH2 and microsatellite instability [47]. The presence of
tumor-infiltrating lymphocytes in ovarian cancer is reported in tumors with endometrioid
histology, mismatch repair deficiency, microsatellite instability, and increased expression
of program death 1 (PD-1)/programed death ligand 1 (PD-L1) [81]. Tumors that demon-
strate microsatellite instability or mismatch repair deficiency may be treated with immune
checkpoint (PD-1/PD-L1) inhibitors [82]; however, not all microsatellite unstable tumors
are responsive to this therapy [83]. Although a MUTYH mutation may not currently be
a specific indication for the use of PD-1/PD-L1 inhibitors, Volkov and colleagues (2020)
demonstrated a pronounced tumor response in a MAP colorectal cancer patient treated
with this therapy [84]. We recommend performing immunohistochemistry for mismatch re-
pair protein expression and/or PD-1/PD-L1 expression testing on tumors of patients with
MUTYH germline mutations as evidence suggests tumors driven by MUTYH mutations
may be responsive to PD-1/PD-L1 inhibitors [85].

Another potential targeted therapy for ovarian cancers resulting from MUTYH mu-
tations includes PARP inhibitors. Much of the research on the role of PARP inhibitors in
ovarian cancer have been undertaken on patients with BRCA1/2 mutations and deficien-
cies in the homologous recombination repair pathway [5]. CHEK1 is a tumor suppressor
involved in the homologous recombination repair pathway [86] and is activated and phos-
phorylated by MUTYH in response to DNA damage [28]. Even though the primary role
of MUTYH is to maintain DNA integrity via base excision repair, it seems to play at least
an indirect role in homologous recombination repair. CHEKI mutations have conferred
susceptibility to PARP-inhibitors due to its role in homologous recombination repair [87].
Furthermore, results from the PRIMA /ENGOT-OV26/GOG-3012 trial demonstrated ni-
raparib efficacy for BRCA1/2 wildtype patients and patients with intact homologous
recombination repair in addition to efficacy for BRCA1/2 mutated and homologous recom-
bination repair-deficient ovarian cancer patients [88]. We hypothesize the benefit of PARP
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inhibition may be similar to those with homologous recombination repair deficiency and
should be considered in this population.

KRAS G:T transversions are common in MAP tumors and the success of colorectal
cancer treatment options depends on KRAS mutational status [89,90]. Although a KRAS
mutation confers resistance to panitumumab, a human monoclonal antibody against
epidermal growth factor receptor in colorectal cancer [89], oncogenic KRAS mutations may
be sensitive to mitogen-activated protein kinase kinase (MEK) inhibitors in other solid
tumors [91], including ovarian cancer [92]. Although none of these inhibitors are currently
available for use in ovarian cancer outside of a clinical trial, many are under investigation
and may be options in the near future [93]. We anticipate that as we learn more about
MEK inhibitor usage in ovarian cancer, somatic testing for this gene, especially in patients
with MUTYH germline mutations, may aid treatment decisions as it does in colorectal
cancer [90].

4. Conclusions

Biallelic MUTYH mutation is associated with an increased risk of ovarian cancer.
Understanding the function of MUTYH and its associated partners is critical for deter-
mining screening, risk reduction, and therapeutic approaches for MUTYH-driven ovarian
cancers. Much of the existing literature on MUTYH function comes from colorectal cancer;
however, this data provides foundational information that is critical for understanding its
role in ovarian cancer. Although tumors driven by MUTYH may be resistant to common
chemotherapeutic approaches, including platinum-based agents and alkylating agents, the
role of PD-1/PD-L1 inhibitors and PARP inhibitors in these tumors seems promising.
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