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Abstract: Building upon the resounding therapeutic success of monoclonal antibodies, and supported
by accelerating progress in engineering methods, the field of multispecific therapeutic antibodies
is growing rapidly. Over 140 different molecules are currently in clinical testing, with excellent
results in recent phase 1–3 clinical trials for several of them. Multivalent bispecific IgG-modified
formats predominate today, with a clear tendency for more target antigens and further increased
valency in newer constructs. The strategies to augment anticancer efficacy are currently equally
divided between disruption of multiple surface antigens, and additional redirection of cytotoxic T
or NK lymphocytes against the tumor. Both effects complement other modern modalities, such as
tyrosine kinase inhibitors and adoptive cell therapies, with which multispecifics are increasingly
applied in combination or merged, for example, in the form of antibody producing CAR-T cells and
oncolytics. While mainly focused on B-cell malignancies early on, the contemporary multispecific
antibody sector accommodates twice as many trials against solid compared to hematologic cancers.
An exciting emerging prospect is the targeting of intracellular neoantigens using T-cell receptor (TCR)
fusion proteins or TCR-mimic antibody fragments. Considering the fact that introduction of PD-(L)1
inhibitors only a few years ago has already facilitated 5-year survival rates of 30–50% for per se highly
lethal neoplasms, such as metastatic melanoma and non-small-cell lung carcinoma, the upcoming
enforcement of current treatments with “next-generation” immunotherapeutics, offers a justified
hope for the cure of some advanced cancers in the near future.

Keywords: bispecific antibodies; multispecific antibodies; monoclonal antibodies; therapeutic
antibodies; antibody engineering

1. Introduction

The tortuous, 2.5 billion-years-long path from immunoglobulin (Ig)-like domains of
archaeal flagellins to the antibodies (Ab) of jawed vertebrates is one of the most intriguing
discoveries in evolutionary biology [1–3]. Equally impressive are the accomplishments
of modern genetic engineering, whose further variation of basic Ig building blocks could
produce over 40 different molecular formats of therapeutic antibodies during the last two
decades [4]. As times change, priorities shift, and pathogen defense has today largely been
succeeded by a much more challenging task: the fight against cancer [5].

The concept that antibodies could be used as “magic bullets” against human maladies
dates back to their discovery in the late 19th century [6] and the gradual recognition
that they can bind a virtually unlimited number of antigens with a high specificity and
affinity [7]. However, it was not until discovery of the “hybridoma” technology in 1975 [8],
complemented by various humanization techniques a few years later [9], that scientists
managed to harness this power: monoclonal antibodies could now be produced in large
quantities after injecting a mouse (later, rat or other mammal) with the desired antigen,
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and fusing the respective splenocytes with suitable myeloma cell lines [10]. In the next step,
two hybridomas were fused (“hybrid hybridoma”, aka “quadroma”) to produce bispecific
antibodies without the protein denaturation steps necessary for chemical cross-linking,
which could potentially adversely affect binding properties [11,12].

Improved function is the main incentive behind development of multispecific con-
structs. For every antibody, the “classic” mode of action falls into two broad categories: (i)
“disruptive” with respect to the epitope-bearing target molecule, i.e., blocking or activating
signals, neutralizing antigens, or causing internalization and degradation of surface re-
ceptors and (ii) “recruiting”, i.e., activating immune cells and/or other effector molecules,
like the complement [13]. OKT3 (aka “muromonab-CD3”), for example, the first mono-
clonal antibody to ever achieve regulatory approval in 1986, is a typical product of the
first category, used to suppress T-cell function in patients with glucocorticoid-resistant
rejection of allogeneic renal, heart and liver transplants [14]. Rituximab, on the other hand,
a CD20-specific monoclonal antibody still widely used since its approval in 1997, kills B-
cells by combining signaling-induced death with cellular and complement-mediated cyto-
toxicity [15]. Compared to monospecific monoclonal antibodies, multispecific constructs
potentiate antibody-mediated effects, for example, they can potentially “disrupt” multiple
instead of one tumor-associated antigens (TAA) owing to more antigen-binding regions,
and/or they can “recruit” and activate immune cells even stronger, since they use dedicated
antigen-binding sites for this. The functional augmentation facilitated by multispecificity
is clinically relevant: it translates into improved response rates, for example, approxi-
mately 50% with the newer anti-CD20/CD3 bispecific antibodies as monotherapy in B-cell
non-Hodgkin’s lymphomas (B-NHL) which do not respond to rituximab any more [16],
can delay development of resistance, and simplifies drug development compared to the
more complicated, expensive and time-consuming procedures necessary for launching of
multiple monospecific products instead [4].

Wide adoption of genetic engineering facilitates today’s exploitation of the huge poten-
tial inherent in multispecific antibodies: suitable polypeptide chains are designed in silico
and expressed in various host systems, most frequently CHO cells and E. coli, followed by
purification and assembly of the various components in vitro [17–19]. Appropriate antigen-
binding properties, high yield, high thermal and chemical stability, good solubility, and low
viscosity have key importance for large-scale production and clinical applicability [20,21].
The biochemical basis of these characteristics and our ability to manipulate them lie rooted
in the modular antibody structure (Figure 1a).
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Figure 1. Multispecific antibody formats in clinical trials: (a) Basic IgG structure; (b) Main antibody components (detailed
in Section 2 of the main text); (c) IgG-like “two-halves” bispecific formats (following the order of Section 3.1 and Table 1);
(d) IgG-modified (appended and/or substituted, Fc-based) bispecific and multispecific antibodies (following the order of
Sections 3.2 and 4, as well as Table 1); (e) Fragment-based (Fc-free) bispecific and multispecific antibodies (following the
order of Sections 3.3 and 4, as well as Table 1); (f) IgG fusion protein; (g) Bi-/multispecific constructs for payload delivery
(following the order of Section 5 and Table 1). For the abbreviations, please see the respective section in the main text.
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Table 1. Multispecific antibody formats in clinical trials by structure, mode of action and start year of first study.

Class Specificity/
Valence Action (C/R) Format No. of Clinical

Trials Comment First Clinical
Trial

Fc
-b

as
ed

IgG-like
(Section 3.1)
(Figure 1c)

2/2 R TrioMab 9 “two-halves”
formats

2004
2/2 C/R FAE 36 2010
2/2 C/R common light chain 19 2014
2/2 C κλ-body 2 2019
2/2 C/R CrossMab 1:1 12 2012

IgG-modified
(Section 3.2 &

Section 4)
(Figure 1d)

2/2 C/R scFv-Fab-Fc 18 scFv-monosubstituted 2016
2/2 R HLE-BiTE 11 scFv-bisubstituted 2015
2/2 R DART-Fc 2 Db-bisubstituted 2014
2/2 R Fab-VH-Fc ** 3 VH-monosubstituted 2021
2/4 R IgG-IgG 15 IgG-IgG 2004
2/3 R Fab3-Fc 1 Fab-appended 2018
2/3 R CrossMab 2:1 10 2014
2/4 C CrossMab 2:2 1 2015
2/4 C/R FIT-Ig (Fabs-in-Tandem) 3 2018
2/3 R Fab2-scFv-Fc 2 scFv-appended 2020
2/4 C/R IgG(H)-scFv2 19 2017
2/4 C scFv2-(H)IgG 1 2014
2/4 R IgG(L)-scFv2 2 2019
2/4 C DVD-IgG 1 V-appended 2013
2/4 R scFv2-Fc-scFv2 2 scFv-multisubstituted 2015
4/8 R scFv6-IgG 2 2020
2/4 C DART-Fc 3 Db-multisubstituted 2017
2/4 C VHH4-Fc 5 V-multi substituted 2019
2/3 C/R Fab-VH2-Fc ** 4 2019
3/3 R Fab-CODVFab-Fc 1 2020

2/3-4 * C IgG-fusion proteins 55 Fusion moiety 2015
2/4 C IgG(H)-Fcab2 3 Fc-modified 2018

Fc
-f

re
e

Fv-based $

($ Section 3.3 &
Section 4)

($ Figure 1e)

2/2 R BiTE 20 scFv-based 2008
2/2 C/R other scFv2 in tandem 6 2005

2/2 * R ImmTAC 5 2015
3/3 * R TriKE 1 2020
3/3 C scFv3 1 2020
2/2 R DART 6 Db-based 2014
2/4 R TandAb 6 2010
3/3 R TriTAC 4 2018
3
4 * C DARPin 5 Ankyrin-based 2014

Fab-based $ 2/2 C Fab2 2 Fab-based 1997

with payload
(Section 5)
(Figure 1f)

2/2 # C Fc-based ADC/EDV 4 IgG-based 2014
2/2 # C Fc-free FDC/EDV 3 Fragment-based 2013

2/2-3 (#) C ±pretargeting (±imaging) 4 2004

Formats are ordered as in Figure 1 and the corresponding sections of the main text; C: classical mode of action; R: immune-cell redirecting;
for the explanation of other abbreviations, please see the main text; * one binding site does not rely on typical antigen-antibody interaction
(bispecifics described in Section 3.4, while trispecifics in Section 4); ** human VH or VHH; # with payload; $ details in Sections 3.3 and 4,
as well as Figure 1e.

2. Antibody Structure and Approaches to Multispecificity

The typical structure of human antibodies is represented by the IgG isotype, which
is the most prevalent class [22]. X-ray crystallographic and electron-microscopic studies
have revealed this to be a heterotetrametric, roughly Y-shaped protein with axial symmetry,
which consists of two identical heavy (“H”, approximately 50 kDa each), and two identical
“light” (“L”, approximately 25 kDa each) polypeptide chains, linked together by disulfide
bonds (Figure 1a) [23–25]. Basic building block for both chain types is the “Ig domain”, aka
“Ig fold”, which is a sandwich-like structure formed by two sheets of 7–9 antiparallel β-
strands arranged with a Greek-key topology [26]. This basic motif appears to be conserved
throughout the evolution of life, presumably because its efficient and compact folding
provides a suitable substrate for numerous essential recognition, binding and adhesion
processes carried out by members of the large Ig protein superfamily [1]. Each human
antibody heavy chain consists of four domains, three constant ones (termed CH1, CH2
and CH3) and one variable (VH), while the light chains consist of one constant (CL) and
one variable domain (VL) each. Limited digestion with the cysteine protease papain splits
the IgG antibody in three equal-sized portions, namely two antigen-binding fragments
(Fab), each consisting of one light chain bound with the VH and CH1 domains of its
partner heavy chain, and one crystallizable fragment (Fc), which contains the remaining
constant domains of the heavy chain (CH2 and CH3, Figure 1a) [27]. Within the Fab region,
the side-by-side arrangement of the VL and VH domains brings discrete amino acid loops
between their β-sheets (“complementarity-determining regions”, CDR) together to form
the antigen-binding site at the outer tip (Figure 1a). Direct linking of VL and VH by a
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peptide chain creates the single-chain variable fragment (scFv), an artificial construct that
can also effectively bind antigens (Figure 1b) [28]. Interestingly, the antigen specificity of
most antibodies shows a predominant dependence on the CDRs contributed by mainly
the VH rather than the VL domain, which takes an extreme form in the heavy chain-only
antibodies naturally produced by camelids and sharks [29], and is exploited by “single-
domain antibodies” (sdAb), also referred to as nanobodies, consisting of a single VHH
(variable heavy chain homodimer) thereof (Figure 1b) [30].

Due to its axial symmetry, the IgG can bind two identical epitopes with two binding
sites (“paratopes”), one on each Fab arm, i.e., it is “monospecific”, but “bivalent” [31].
Generally, the valency of an antibody refers to the total number of epitopes that it can bind,
and its specificity to the number of different structures among them. Naturally occurring
antibodies are generally monospecific, which allows them to cross-link large numbers of
antigen molecules and thus amplify the immune response against them [22]. Nonetheless,
for IgG4 and possibly also other Ig subclasses, reducing conditions in the blood or cell
surfaces can break up disulfide bonds and facilitate Fab-arm exchange (FAE) which gives
chimeric bispecific antibodies with anti-inflammatory activity (Figure 1c) [32,33]. Genera-
tion of the first artificial bispecific antibodies in 1961 mimicked this naturally occurring FAE:
by reducing and reoxidizing the F(ab’)2 fragments derived by peptic digestion of two differ-
ent antibodies, their univalent Fab were recombined into new F(ab’)2 molecules that could
precipitate a mixture of their cognate antigens, but neither of them in pure form [34,35].
After 1975, “quadromas” became a relatively easy method to generate full IgG-like bispe-
cific molecules (Figure 1c), but the low yield of the desired antibody (12.5% with random
pairing of heavy and light chains), together with the difficulty to isolate it from the closely
related mispaired contaminants, remained a significant problem [36]. Over the following
decades, many different methods within the constraints of the classical “IgG-like” format
were devised to overcome or circumvent the “mispairing” problem of heavy and light
chains produced by quadromas or genetic engineering (Figure 1c): rat/mouse quadromas,
which took advantage of the species-restricted heavy/light chain pairing and the differ-
ential affinity of protein A for mouse and rat heavy chains (“TrioMabs”) [37,38]; various
“knobs-into-holes” (KiH) or other techniques of inducing complementary mutations in
the sequences of heavy and/or light chains in order to force the desired heterodimeriza-
tion [39–42] or facilitate controlled FAE (“Duobodies”) [43]; “common-light-chain” antibod-
ies, in which the two distinct paratopes on each Fab arm utilize the same light chain paired
with a different heavy chain in order to bind its target antigen [44]; “κ-λ” bodies, which
utilize the same heavy, but different light chains for the two paratopes, in order to obviate
the need for artificial mutations or linkers that may result in poor stability and increased
potential immunogenicity [45]; “CrossMabs”, with swapping of either the variable or the
constant domains between light and heavy chains to create two asymmetric Fab arms that
force the desired light chain pairing, while preserving the binding properties of the respec-
tive paratope [46,47]; electrostatic steering effects [48,49]; IgG/A chimeras, aka “strand
exchange engineered domain bodies” (“SEEDBodies”) [50]; the proprietary “Azymetric”
heterodimeric Fc [51]; “dual action Fab” (DAF, aka “two-in-one” antibodies), which use
the same heavy and light chains to recognize two unrelated antigens via differential use of
their two paratopes [52,53]; “DutaMabs” or “DutaFabs”, in which each Fab arm contains
two different paratopes, each utilizing only 3 out of the 6 available CDRs [54].

“IgG-modified” formats (Figure 1d) provide additional solutions to this problem, e.g.,
in “dual-variable-domain” (DVD) antibodies, each chain contains two variable domains,
so that bispecificity is ensured irrespective of light chain pairing [55]. Moreover, using
genetic engineering, the antigen-binding moieties Fab, Fv and VHH can be combined freely
with each other, or linked to IgGs, resulting in huge structural variability (Figure 1d,e and
Table 1) [4,56]. In addition, monospecific and bispecific formats can be combined in order to
increase specificity, valency, or both; for example a highly active tetravalent and tetraspecific
“four-in-one” antibody against EGFR, HER2, HER3 and VEGF was generated by combining
the DVD, CrossMab and KiH technologies [57]. It should also be noted that the functionality
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of multispecifics can further be extended through fusion with other non-Ig proteins; for
example, the T-cell receptor (TCR) [58], the TGFβ receptor [59], an IL-15 moiety in case of
Trispecific Killer Cell Engagers (TriKEs) [60], various payloads [61], and by conjugation
with Engeneic Delivery Vehicles (EDV), i.e., bacterially-derived nanocells coated with
bispecific antibodies for the targeted delivery of cytotoxics, siRNA and other cargo to the
tumor cells (Figure 1f) [62,63].

Among the numerous possible variations, the single most important structural charac-
teristic of multispecific antibodies is whether they contain an Fc region or not. Fc-based
constructs are generally larger, have longer half-lives (typically a few weeks) due to re-
cycling by the neonatal Fc receptor (FcRn) and glomerular preservation [64,65], show
improved solubility and stability, trigger cytotoxic [66] and T-cell priming effects [67],
and can be purified using established affinity chromatography workflows [68]. In contrast,
Fc-free, antibody fragment-based constructs are usually rapidly cleared from the blood
(within minutes), which necessitates either administration by continuous infusion, or fu-
sion with carrier moieties, such as human serum albumin (HSA) or polyethylene glycol
(PEG), in order to extend their half-lives [69–71]. At the same time, specific advantages of
smaller multispecifics can be better diffusion into the tumor tissue, higher potency due
to closer proximity of interactions in the two paratopes, ease of large-scale production in
microbial systems, and less immune-related adverse effects due to lack of Fc [72–74].

In terms of functionality, the basic distinction is between the “classic” and the “recruit-
ing” or “redirecting” mode of antibody action, in which at least one binding site engages
invariable immune cell receptors, for example, CD3 on T, or CD16 on NK cells. The
combined structural (“Fc-based” vs. “Fc-free”) and functional (“classic” vs. “recruiting”)
characterization is a useful framework to contextualize multispecific constructs (Table 1).

3. Bispecific Antibodies

The resounding therapeutic success of monoclonal antibodies, such as rituximab,
trastuzumab, cetuximab and bevacizumab, the preclinical superiority of multispecific con-
structs, and technical advances in antibody engineering have facilitated rapid growth in the
field during the last decade [75]. While only two bispecific antibodies are approved by the
U.S.A. Food and Drug Administration (FDA) and the European Medicines Agency (EMA)
at present, blinatumomab (Amgen) and emicizumab (Roche), more than 120 candidates are
in clinical testing, and the market opportunity of multispecifics is estimated to exceed USD
18 billion until 2028 [76]. Autoimmune diseases (arthritis, asthma, diabetes), Alzheimer’s,
infections (pneumonia) and hemophilia combined are easily dwarfed by oncology, which is
the intended field for approximately two-thirds of these drugs, and builds the main scope
of this review [77].

Clinical trials were identified by searching the ClinicalTrials.gov database on 26 April
2021 using the keywords “bispecific antibody”, “trispecific” and “oncology”, followed
by manual verification of results and additional search of pharmaceutical companies’
pipelines. Overall, 324 trials were identified, using 146 different multispecific antibodies in
40 different molecular formats (Table 1, Figure 2 and Supplementary Table S1). Constructs
with a “classical” and “redirecting” mode of action were balanced (156 vs. 166), while
multispecific and multivalent formats increased over time (Figure 2a). Trials in solid tumors
(n = 223) outnumbered trials in hematologic malignancies (n = 101) by a ratio of 2:1.
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Figure 2. Landscape of clinical trials using multispecific antibodies in oncology: (a) Longitudinal changes in the cumulative
number of initiated clinical trials since 1997 for each of the main categories according to Table 1, as well as in the ratios of
constructs with “redirecting”/”classical” mode of action, and ≥trispecific/bispecific (×10), or ≥trivalent/bivalent formats
in 1997–2005, 2006–2013, and 2014–2021. The search strategy is described in Section 3. For 2021, only studies until April
were considered, and their number was corrected for the smaller time duration (4/12 months); (b–d) Distribution of clinical
trials among individual formats, according to the classification in Table 1. Fab-arm-exchanged constructs dominate among
IgG-like formats, IgG(H)-scFv2 or scFv-Fab-Fc, and multivalent constructs dominate among IgG-modified formats, while
BiTEs dominate among fragment-based formats. The numbers are shown in Table 1, the structural details in Figure 1, while
the complete list of trials is given in the Supplementary Table S1 (n = 324, of which 309 with reported molecular formats).
Fusion proteins were excluded from this analysis.
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3.1. IgG-Like Antibodies

The first bispecific antibody approved by the EMA in oncology was the chimeric
TrioMab (Figure 1c, Table 1) catumaxomab (Removab) in 2009, half anti-CD3 rat IgG2b, half
anti-EpCAM mouse IgG2a, for intraperitoneal treatment of patients with malignant ascites
(Figure 1c, Table 1) [78]. In a pivotal clinical study of 258 patients with recurrent malignant
ascites (NCT00836654), catumaxomab could significantly prolong the median puncture-
free survival to 52 days for ovarian and 37 days for other cancers vs. 11 and 14 days
in controls, respectively [79]. In 2017, it was withdrawn from the European market for
commercial reasons [80], but will probably soon return, as the Chinese biopharmaceutical
company Lintonpharm recently announced a phase 3 trial of catumaxomab for patients
with advanced gastric cancer with peritoneal carcinomatosis in China (NCT04222114),
while phase 1 and 2 clinical trials in patients with non-muscle-invasive bladder cancer are
planned both in China and in Germany (NCT04799847, NCT04819399). Notably, several
other similar TrioMab antibodies developed by Trion Pharma and Fresenius according to
the same principle, e.g., the HER2-directed etumaxomab, and the CD20-directed FBTA05,
failed [81,82].

Today, the most common principle behind “two-halves” bispecific antibodies in clin-
ical trials is the controlled FAE (Figure 1c, Table 1, Figure 2). One very efficient method
is the proprietary DuoBody platform of Genmab in collaboration with Janssen, which
utilizes matched and destabilizing mutations in CH3 to increase FAE yield >95% and
was used to generate the bispecific, Fc-silenced anti-EGFR/cMet antibody Amivantamab
(JNJ-61186372) [43]. Amivantamab‘s mode of action combines EGFR/MET downmodu-
lation and NK/macrophage-dependent cancer-cell killing with minimal toxicity [83,84].
Based on very promising results of the Chrysalis phase 1/2 study for non-small-cell
lung cancer (NSCLC) with EGFR Exon20 insertions (Ex20+, NCT02609776), an applica-
tion for accelerated approval was filed by the FDA and EMA in late 2020, while the
drug is already available through an international compassionate use program for these
patients [85]. In addition, amivantamab is currently being tested in combination with
platinum/pemetrexed as first-line therapy for EGFR Ex20+ NSCLC in the phase 3 PAPIL-
LON trial (NCT4538664), in combination with the third-generation EGFR tyrosine kinase
inhibitor (TKI) lazertinib as first-line therapy for NSCLC with EGFR Ex19 deletions or
p.L858R mutations in the phase 3 MARIPOSA study (NCT04487080) [86], and for subcu-
taneous administration (NCT04606381). Another DuoBody is GEN3009, which targets
two different paratopes of the B-cell antigen CD37 [87], shows hexamerization and en-
hanced complement-dependent cytotoxicity (CDC) due to an artificial E430G mutation
in its Fc region (“DuoHexaBody”) [88], and is currently in phase 1 testing for r/r B-NHL
(NCT04358458).

Several further Duobodies are T-cell redirecting. Epcoritamab (GEN3013), targeting
CD20/CD3, is administered subcutaneously [89] and is currently in phase 3 testing for r/r
diffuse large B-cell lymphoma (DLBCL, NCT04628494) after inducing remissions in the
majority (67–100%) of r/r B-NHL in a previous phase 1/2 trial (NCT03625037), including
patients failing CAR-T cells [90]. Adverse effects are well-manageable, the most common
being fever, local injection site reactions and fatigue, without any incidence of grade
3-4 cytokine-release syndrome (CRS) [90]. Teclistamab (JNJ-64007957) is an anti-CD3/B-
cell maturation antigen (BCMA) Duobody currently in phase 2 testing in r/r multiple
myeloma (MM) (NCT04557098) [91,92], as is also Talquetamab (JNJ-64407564), an anti-
GPRC5D/CD3 DuoBody (NCT04634552). In the myeloid space, the anti-CD3/CD33
Duobody JNJ-67571244 is in phase 1 testing for r/r acute myeloid leukemia (AML) and
high-risk myelodysplastic syndromes (MDS) (NCT03915379) [93,94]. A slightly different
mode of action is employed by the anti-PD-L1/4-1BB DuoBody GEN1046, which activates
T-cells and NK cells by simultaneously blocking PD-L1 on tumor tissue and triggering the
co-stimulatory checkpoint 4-1BB [95]. Across various r/r solid malignant tumors, it showed
a disease control rate of 66% (40/61) in an ongoing phase 1/2 trial (NCT03917381), while
it has hepatitis, hypothyroidism, and fatigue as the main adverse events [96]. “Two-half”
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antibodies have also been developed using other platforms, for example, the biparatopic
anti-HER2 antibody MBS301 by Mabworks currently in phase 1 (NCT03842085), the anti-
BCMA/CD3 Elranatamab (PF-06863135) by Pfizer in phase 2 for r/r MM (NCT04649359),
the anti-PD1/PD-L1 IBI318 by Innovent in several phase 1/2 trials for advanced tumors,
alone or combined with lenvatinib or chemotherapy (see Supplementary Table S1), and the
anti-PD1/PD-L1 LY3434172 based on Zymeworks’ Azymetric platform in phase I testing
also for advanced cancers (NCT03936959) [97].

Another “two-halves” IgG-like format frequently utilized in contemporary clinical tri-
als are bispecific antibodies with common light chains (CLC, Figure 1c, Table 1), which, like
TrioMabs, require multiple purification steps in order to isolate the desired bispecific anti-
body from the 2 contaminating monospecific antibodies [98]. Navicixizumab (OMP-305B83)
which targets the Notch/Delta-like ligand 4 (DLL4) and the vascular endothelial growth
factor (VEGF), showed a disease control rate (DCR) of 32% as monotherapy in a phase
1a trial (NCT02298387) of various solid tumors, and the phase 1b results in combination
with chemotherapy are pending (NCT03030287) [99,100]. Odronextamab (REGN1979) is an
anti-CD3/CD20 bispecific antibody with comparable efficacy as Epcoritamab in r/r B-NHL,
and also very good tolerability (NCT02290951) [101], for which a phase 2 trial is currently
ongoing (NCT03888105). Regeneron is also developing REGN5458 and REGN5459, both
anti-BCMA/CD3 tested for multiple myeloma (NCT03761108, NCT04083534), and several
other CLC antibodies for various solid tumors (please see Supplementary Table S1).
The CLC technology is also used by Merus with the anti-HER2/HER3 Zenocutuzumab
(MCLA-128) in phase 1/2 testing for tumors with NRG1 fusions (NCT02912949) as flag-
ship product, by Alphamab with the biparatopic anti-HER2 KN026 in phase 1/2 testing
for breast and other HER2+ solid cancers (7 active studies, listed in the Supplementary
Table S1), and by Chugai Pharmaceutical with the GPC3/CD3 ERY974, whose target
Glypican3 is a membrane-bound heparan sulfate proteoglycan expressed in 70–80% of
hepatocellular carcinomas and various other human cancers [102] (NCT02748837, please
see Supplementary Table S1).

To simplify the purification steps necessary for CLC, but still benefit from the IgG-like
format, κλ-bodies (Figure 1c, Table 1) were developed, which have common heavy, rather
than light chains. In this case, two monospecific and one bispecific antibody are also
produced, but the purification follows three simple steps using affinity resins binding
to (1) constant regions of the heavy chains, then (2) to the constant regions of the κ,
and (3) λ chains [45]. TG-1801 (of TG Therapeutics, formerly NI-1701 by Novimmune),
an anti-CD47/CD19 antibody blocking the CD47 checkpoint on CD19-positive cells to
induce antibody-dependent cellular phagocytosis (ADCP) and cell-mediated cytotoxicity
(ADCC), is currently in phase 1 testing for r/r B-NHL (NCT03804996, NCT04806035) [103],
while other κλ bodies are still in preclinical development.

The CrossMab platform (CrossMab 1:1, Figure 1c, Table 1) by Roche reduces mispaired
contaminants by swapping domains between the light and heavy chains, and has generated
several promising antibodies. Most advanced is the anti-CD20/CD3 Mosunetuzumab
(RG7828), which is currently in phase 3 testing for r/r B-NHL (NCT04712097) [104]. More-
over, the anti-PD-1/TIM-3 bispecific RO7121661 is being currently evaluated in a phase 1
trial (NCT03708328) of various solid tumors, however, Vanucizumab, an anti-Ang2/VEGF-
A CrossMab, failed in the phase 2 McCAVE trial (NCT02141295) of colorectal carcinoma
and was discontinued [105].

3.2. IgG-Modified Bispecific Antibodies, Bivalent or Multivalent

“Two-halves” IgG-like formats are broadly used and very successful, however, addi-
tional structural variation offers important advantages in manufacturing and therapeutic
application, so that IgG-modified formats are the dominant class today (Figure 2a). Most
popular is the Fab-scFv-Fc format, that introduces a second specificity by substituting one
Fab region of an IgG mAb with a synthetic scFv (scFv-Fab-Fc, Figures 1d and 2b). A promi-
nent example is the biparatopic anti-HER2/HER2 antibody Zanidatamab (ZW25), based on
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the Azymetric platform, in which FcγR-binding has been abrogated through “Fc-silencing”
mutations to reduce ADCC and side effects from normal tissues [106]. Zanidatamab was
granted FDA breakthrough therapy status for advanced biliary tract cancers in late 2020,
while it is also evaluated for other HER2-positive advanced solid tumors either alone,
or in combination with other treatments (NCT02892123, NCT03929666, NCT04224272,
NCT04276493) [107,108]. Further clinical grade mono-scFv-substituted constructs are being
based on Xencor’s and Amgen’s heterodimeric platform XmAb, which utilizes engineered
Fc isoelectric point differences and amino acid substitutions to achieve heterodimer yields
over 95% [109]: the anti-PD-1/CTLA-4 XmAb717 (NCT03517488) and anti-CTLA4/LAG-3
XmAb841 (NCT03849469) for advanced solid tumors, the anti-SSTR2/CD3 XmAb18087
(aka Tidutamab, NCT04590781) for advanced small-cell lung cancer (SCLC) and Merkel
cell carcinoma, and the anti-CD20/CD3 XmAb13676 (aka Plamotamab, NCT02924402)
for r/r B-NHL. Other similar platforms with clinical grade constructs are Wuhan YZY
Biopharma’s YBODY and Glenmark’s BEAT (see Supplementary Table S1) [110,111]. On
the other hand, substitution of both Fab-regions with scFv gives rise to the half-life ex-
tended (HLE) BiTE (Figure 1d, Table 1) and bivalent dual-affinity re-targeting proteins
(bi. DART)-Fc (Figure 1d, Table 1), which are also very popular, because they combine
the advantages of fragment-based bispecifics with the longer half-life of Fc-based con-
structs [112,113]. Contemporary HLE BiTEs (Amgen) are Fc-based and have, with dosing
every 4–5 days, an efficacy similar to that of daily administered canonical BiTEs, but better
than earlier HSA-based HLE BiTE [113]. AMG 673, targeting CD33/CD3, was the first
HLE BiTE to enter clinical testing in 2017 for r/r AML (NCT03224819), showing promising
efficacy and acceptable toxicity [114]. Currently, at least 8 different HLE BiTEs are in
phase 1 trials for hematological and solid cancers (see Supplementary Table S1). On the
other hand, Fc-based DARTs (MacroGenics) are also dosed in extended intervals, weekly
or 3-weekly, in clinical trials since 2014, when the anti-gpA33/CD3 MGD007 entered
phase 1 study for advanced colorectal cancer, first alone (NCT02248805), and later in
combination with the PD-1 inhibitor MGA012 (NCT03531632) [112]. Another bivalent
DART-Fc, the anti-CD19/CD3 MGD011, showed also preclinical potency and favorable
pharmacokinetics allowing weekly dosing [115], but was suspended due to neurotoxicity
(NCT02454270). Alternatively, the Fab region of IgG can be substituted with a single
domain, i.e., VHH (Fab-VH-Fc, Figure 1d), which is more stable under denaturing condi-
tions and less likely to aggregate when multiple fragments are fused together [116,117].
First constructs in the Fc-silenced Fab-VH-Fc format by the proprietary platform UniAbs
(Teneobio) entered clinical testing recently, with anti-CD19/CD3 TNB-486 targeting B-NHL
(NCT04594642) and anti-PSMA/CD3 TNB-585 targeting prostate cancer (NCT04740034).
In preclinical evaluation, both antibodies displayed half-lives similar to IgG antibodies and
encouraging efficacy with reduced cytokine release symptoms [118,119].

An important advantage and reason for the upsurge of IgG-modified formats currently
(Figure 2a), is the ability to increase the number of binding sites, i.e., valency for the TAA,
which translates to increased avidity, enhanced specificity, and the ability of these constructs
to compete with monospecific naturally bivalent antibodies (shaded part of Figure 1d, and
highlighted in Figure 2b). In fact, multivalent (≥trivalent) formats predominate in clinical
trials currently (Figure 2b). The simplest way to produce a multivalent antibody is by
chemical cross-linking of two different IgG antibodies (IgG–IgG, Figure 1d and Table 1).
Very early trials used such IgG-IgG anti-CD3/CD20 antibodies to “arm” autologous T-
cells ex vivo against neoplastic B-cells (e.g., NCT00244946, see Supplementary Table S1),
while recent studies have expanded this principle to EGFR- or HER2-positive solid tumors
using anti-CD3/EGFR or anti-CD3/HER2 antibodies, alone or with immune checkpoint
inhibitors (e.g., NCT01420874 and NCT03406858, see Supplementary Table S1). Today, with
increasing use of genetic engineering, most multivalent antibodies are generated by adding
antigen-binding elements, either as (multiple) substitutes for one or more Fab arms, or as
appendages to any basic bivalent format.
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Fab appendages are a relatively simple and popular way to achieve the aforemen-
tioned. Celgene’s CC-93269 combines 2 anti-BCMA with 1 anti-CD3 Fab (Fab3-Fc, Figure 1d
and Table 1), and has showed promising preliminary efficacy results in a phase 1 trial
of r/r MM (NCT03486067) [120]. Besides, trivalent 2:1 and tetravalent 2:2 CrossMabs
contain additional Fab or a CrossFab fused to either the C- or N-terminus of the heavy
or light chains [121]. The clinically most advanced CrossMab 2:1 (Figure 2 and Table 1)
is the anti-CD20/CD3 Glofitamab, where a CrossFab is inserted between the Fc region
and one of the Fab fragments [122]. It is currently entering phase 2, based on a half-life of
6–11 days, similar to Mosunetuzumab, and an overall response rate (ORR) of 66%, with
57% complete response in r/r B-NHL patients who received the recommended phase
2 dose (NCT03075696, NCT04703686) [123,124]. Another CrossMab 2:1 is Cibisatamab,
an anti-CEA/CD3 antibody for treatment of solid tumors (see Supplementary Table S1).
CrossMab 2:2 (Figure 1d and Table 1) is represented by RO6874813, where two anti-FAP
CrossFabs are fused to the C-terminus of Drozitumab, an anti-DR5 antibody [125]. FIT-Ig
(Fabs-in-tandem, Figure 1d and Table 1) is another Fab-bisubstituted format, in which the
light chains of the additional Fabs are fused in tandem with the heavy chains of the core
IgG construct (Figure 1d) [126]. Three FIT-Ig antibodies are currently in phase 1/2 clinical
trials (see Supplementary Table S1).

Even more frequent are scFv-appended formats (Figure 1d). The XmAb AMG 509
features an additional anti-CD3 scFv alongside two identical anti-STEAP1 Fab regions
(Fab2-scFv-Fc, Figure 1d and Table 1), showed 50-fold more potent lysis of prostate cancer
cells in vitro than XmAb with a single anti-STEAP1 domain [127], and its safety and efficacy
in humans is being evaluated in an ongoing phase 1 trial (NCT04221542). Predominant
are formats with two additional scFv, which can be attached to various positions on the
heavy or light chains. Akeso’s TETRABODY AK104 (anti-PD-1/CTLA-4) is appended at
the C-terminus of the heavy chain (IgG(H)-scFv2, Figure 1d and Table 1) and has currently
several active clinical trials for various solid tumors (see Supplementary Table S1). In a
phase 1b/2 study for untreated patients with inoperable gastric or gastroesophageal cancer,
it showed an ORR of 60%, a DCR of 93% (n = 7/15) in combination with chemotherapy,
and acceptable safety [128]. The scFv fragments can also be appended to the N-terminus
of the heavy chains (scFv2-(H)IgG, Figure 1d and Table 1), as in the case of LY3164530
from Eli Lilly [129], an anti-EGFR/cMet antibody that was suspended due to significant
toxicity in the phase 1 trial (NCT02221882) [130]. One example of scFv appended on
the C-terminus of the light chains (IgG(L)-scFv2, Figure 1d and Table 1) is Nivatrotamab
(anti-GD2/CD3) [131], which is based on the GD2-antibody Naxitamab and is being
currently assessed in phase 1/2 trials for various solid tumors and specifically metastatic
SCLC (NCT03860207, NCT04750239), while constructs appended at the N- terminus of the
light chains are in preclinical stage only [4]. The addition of two variable domains pairs
(DVD-Ig, Figure 1d and Table 1) creates 4 binding sites and was originally developed to
overcome the chain mispairing problem (see Section 2) [55]. Anti-VEGF/DLL4 Dilpacimab
(previously ABT-165) is one such antibody. After encouraging efficacy and safety outcomes
in preclinical models [132], it advanced and completed phase 1 testing for various advanced
solid tumors (NCT01946074), but the phase 2 study for colon cancer in combination with
FOLFIRI is currently on hold (NCT03368859).

Increasingly popular are variable domains as multiple substitutions for one or more
Fab arms. Aptevo’s ADAPTIR antibodies contain 2 scFv pairs joined with a silenced IgG1
Fc (each linked to the N- or C-terminus, scFv2-Fc-scFv2, Figure 1d and Table 1) [133].
In preclinical studies, the anti-PSMA/CD3 construct APVO414 (aka ES414, MOR209)
displayed reduced CRS and a prolonged half-life compared to antibody fragments, allowing
for the consideration of weekly doses [133]. However, interim data from the phase 1
trial argue for continuous IV administration, because this decreases formation of anti-
drug antibodies [134]. Another similar ADAPTIR antibody is APVO436, directed against
CD3/CD123 in phase 1 testing against AML and r/r high-risk MDS (NCT03647800).
Alternatively, 2 DARTs attached to an Fc region (tetra-DART-Fc, Figure 1d and Table 1)
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result in bivalence for each target [135]. Such constructs in clinical trials currently are
the anti-PD-1/CTLA-4 MGD019 (NCT03761017) [136], and the anti-PD1/LAG-3 MGD013
(Tebotelimab) in various advanced solid tumors (NCT03219268), both with acceptable
safety profiles and very promising activity in the respective phase 1 results published
in 2020 [137,138]. A functionally similar result can be achieved by attaching 2 pairs of
nanobodies to Fc in a symmetric manner (VHH4-Fc, Figure 1d and Table 1), as is the case for
both INBRX-105 (ES101 in China) and KN046. INBRX-105 is an Fc-silenced anti-PD-L1/4-
1BB antibody, and KN046, an anti-PD-L1/CTLA-4 antibody, both in several early trials for
various metastatic solid tumors (see Supplementary Table S1) [139,140]. Substitution of
one Fab arm with one pair of identical nanobodies (Fab-VH2-Fc, Figure 1d and Table 1)
is the format of the trivalent bispecific IBI322 targeting CD47(Fab)/PD-L1(VH2) [141],
for which clinical trials were very recently launched in the USA and China (NCT04338659,
NCT04328831). TNB-383B is a similar anti-CD3(Fab)/BCMA(VH2) construct by TeneoBio
based on the UniAbs platform, which has demonstrated very low CRS rate, solely grade
1–2 occurring in only 21% of the patients (n = 38) enrolled in a phase 1 trial [142,143].

A completely different strategy has been implemented by F-star, whose mAb2 tech-
nology introduces two new binding sites directly in the Fc region (IgG(H)-Fcab2, Figure 1d
and Table 1), while simultaneously maintaining Fc binding to the Fcγ and FcRn recep-
tors [144]. In a phase 1 trial of the FS118 directed against PD-L1(Fab)/LAG-3(Fcab2),
disease stabilization was observed in a subset of patients who had acquired resistance
to PD-(L)1 therapy, but not in patients with primary resistance (NCT03440437) [145,146].
Treatment-related adverse events were more frequently of grades 1–2. Other antibodies
of the same format are also under phase 1 evaluation in advanced malignancies (FS120
directed against CD137(Fab)/OX40(Fcab2), NCT04648202, and FS222 directed against
anti-PD-L1(Fab)/CD137(Fcab2), NCT04740424).

3.3. Fragment-Based Bispecific Antibodies (Fc-Free), Bivalent or Multivalent

Among fragment-based, Fc-free bispecifics, the tandem scFv-based BiTEs (Figure 1e
and Table 1) predominate (Figure 2b). The anti-CD19/CD3 BiTE blinatumomab was a
first-in-class construct and remains the only approved bispecific in oncology, used for
r/r or minimal residual-disease (MRD)-positive B-ALL [147,148]. A feasibility study to
evaluate outpatient treatment of MRD-positive patients is about to start recruiting in May
2021 (NCT04506086). Besides, the anti-BCMA/CD3 BiTE AMG-420, formerly known as
BI 836909, has shown promising activity in r/r MM, including MRD-negative complete
responses (NCT02514239) [149], with an ongoing expansion study (NCT03836053), while
the anti-CD33/CD3 BiTE AMG-330 is currently in phase 1 testing (NCT02520427) [150].
Another elegant platform is GEMoaB’s “affinity-tailored adaptors for T-cells” (ATAC) fully
humanized tandem scFv platform, which employs high binding affinity to TAA and lower
affinity to CD3, thus preventing T-cell auto-activation in preclinical models [151]. Two
ATACs are currently in clinical testing with no published results yet: the anti-CD33/CD3
GEM333 for r/r AML (NCT03516760), and the anti-PSCA/CD3 GEM3PSCA for various
advanced solid tumors (NCT03927573). At the same time, MM-111, consisting of human
anti-HER2 and anti-HER3 scFv linked by modified HSA [152], is currently held in reserve
by Elevation Oncology, which acquired it from Merrimack in 2019 after a negative phase 2
trial in HER2-positive gastric and esophageal tumors (NCT01774851), but currently pushes
development of seribantumab (MM-121, a monospecific HER3-monocloncal antibody also
acquired from Merrimack at the same time) for tumors harboring NRG1-fusion.

On the other hand, the diabody-based DART format (Figure 1e and Table 1) was devel-
oped with the goal of improving the geometry of bispecific interactions. It has a very com-
pact and stable structure, due to cross-linking of VH and VL chains of different specificities
as well as stabilization by disulfide bridges, and could indeed demonstrate stronger redi-
rected T-cell-mediated killing of CD19-expressing malignant B-cells in vitro [153]. DART
development is currently focused on the half-life extended bivalent and tetravalent DART-
Fc (presented in Section 3.2), so that the only canonical DART in phase 1/2 testing today
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is the anti-CD123/CD3 Flotetuzumab (MGD006) for r/r AML (NCT02152956), with ORR
of 24%–30% [154]. Common adverse events were infusion-related reactions: CRS (96%),
nausea (26%), and cytopenia [154].

The main strategy to increase valency in fragment-based bispecifics are tandem di-
abodies (TandAb, Figure 1e and Table 1), i.e., are tetravalent bispecific molecules result-
ing from the non-covalent homodimerization of two single-chain diabodies [155,156].
Currently, the only TandAb in active clinical testing is AFM13, an NK-cell redirecting
anti-CD30/CD16A TandAb for the treatment of lymphomas, while the anti-CD19/CD3
AFM11was suspended due to side effects (NCT02106091). The safety profile of AFM13
was acceptable with a frequency of grade ≥3 adverse events at 29% in the phase 1 trial
(NCT01221571). The mean terminal half-life 9 to 19 h at a size of 104 kDa [155,157] permits
weekly dosing in the current phase 2 trial (NCT04101331), after the continuous 5-day-long
infusions weekly in a previous phase 2 trial (NCT02321592) had prohibited sufficient
recruitment [158]. Combination of AFM113 with the PD-1 inhibitor pembrolizumab ap-
pears to increase efficacy and warrants further evaluation [159], while a trial assessing
administration of AFM113 with autologous NK cells after fludarabine/cyclophosphamide
conditioning is ongoing (NCT04074746).

An earlier Fab-based (Table 1) anti-EGFR/anti-FcγRI bispecific construct did not
show clinically relevant activity against advanced solid tumors [160]. Another tandem
F(ab′)2 fragment against CD28 and a melanoma-associated proteoglycan synthesized by
chemical hybridization in the Tübingen University was also abandoned after phase 1
testing (NCT00204594) [161]. Bispecific nanobodies lacking an Fc region have not found
their way to clinical trials, possibly because of poor pharmacokinetics due to their very
small size.

3.4. Antibody-Based Bispecific Fusion Proteins

Antibodies can acquire additional functionality through conjugation with additional
moieties. One main trend is inhibition of TGFβ signaling using TGFβ-traps (Figure 1f
and Table 1), with the most advanced being Merck’s bintrafusp alfa (aka M7824, overall
>40 trials, see Supplementary Table S1), a fusion protein that contains the extracellular
domain of TGFBR2 fused to an anti-PD-L1 IgG1 [162]. It has shown promising activity in
phase 1 testing for several solid cancers [163], but did not meet the efficacy threshold in
a phase 2 trial for advanced biliary cancer (NCT03833661) [164]. Besides, GS-1423 is an
anti-CD73 IgG, whose Fc region is linked with two TGFβ-traps in the form of the TGFβRII
extracellular domain [59], and is currently undergoing testing against various solid tumors
(NCT03954704), while BCA101, an EGFR-specific antibody with two TGFβ-trap moieties,
is tested against solid tumors in a phase 1 trial (NCT04429542). Additional TGFβ-trap fu-
sion proteins are in preclinical development, e.g., TST005 with two stable TGFβ-traps, each
linked on the heavy chain C-terminus of an anti-PD-L1 IgG [165]. Less frequently, other
fused moieties are employed, for example, AMG 256 is a PD-1 inhibitor with an Fc-linked
IL-21 receptor agonist, currently tested in various solid tumors (NCT04362748) [166], while
IMM0306, an anti-CD20 IgG linked to SIRPα [167], is tested for r/r B-NHL (NCT04746131).

Undoubtedly, the most significant bispecific fusion protein format currently are Im-
munocore’s immune-mobilizing monoclonal T-cell receptors against cancer (“ImmTACs”,
Figure 1e and Table 1). These are 75 Da molecules that combine a high-affinity, HLA-A*0201-
restricted TCR specific for TAA peptides presented on MHC (p.MHC) with a humanized
scFv against CD3, and redirect T-cells against intracellular antigens [58]. Most advanced
is IMCgp100, aka tebentafusp, which recognizes a gp100-derived peptide, and recently
demonstrated prolongation of overall survival as first-line monotherapy for patients with
metastatic uveal melanoma in a randomized phase 3 trial (NCT01211262) [168]. Tebenta-
fusp is expected to achieve regulatory approval soon and is already accessible within
an international compassionate use program. Two other ImmTACs are in phase 2 test-
ing, namely IMC-C103C for MAGE-A4-derived peptides [169] (NCT03973333), and IMC-
F106C for “preferentially expressed antigen in melanoma” (PRAME [170])-positive tumors
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(NCT04262466), both exploiting the HLA-A2 background present in approximately 50% of
Caucasian patients [171].

4. Trispecific and Other Multispecific Antibodies

Further increase of antibody specificity can potentially result in even higher efficacy
compared to mono- and bispecific antibodies. Indeed, several multispecifics have already
shown promising data and are entering clinical testing [172]. The main application field
remains oncology, with generally at least one of the three specificities intended to redirect
T- or NK cells, and the other two targeting TAA. Some of them are not stricto sensu
trispecific antibodies: for example, the scFv-based TriKEs (Figure 1e and Table 1) bind one
TAA and CD16, while their third moiety is IL-15, which activates the recruited NK cells
through cross-linking of their IL-15 receptors without involvement of an antibody-antigen
interaction (Figure 1e) [173]. Nevertheless, since they are antibody molecules working by
triple interaction, they will be considered here, as well.

Currently, there are several such trispecifics in clinical trials, most of which are immune
cell engaging. The TriKE GTB-3550, developed by GT Biopharma, targets CD33 and is cur-
rently tested in a phase 1/2 study for r/r high-risk myeloid malignancies (NCT03214666).
Of note, GT Biopharma is also developing two TriKEs against solid tumors: GTB-4550
targeting PD-1, and GTB-5550 targeting B7H3 [174]. Additional TriKEs are in preclinical
stage, such as 161,533 targeting CD33 [175], or a slightly different construct targeting B7-H3
and using an sdAb to bind CD16 [176]. Another related variant are trispecific “NK-cell
engagers” (NKCE), which recruit NK cells by using scFv or Fab against TAA, NKp46,
and CD16 [177]. Another trispecific developed by the Swiss company Numab, the scFv-
based NM21-1480 (scFv3, Figure 1e and Table 1) is not a classical T-/NK cell engager,
but rather activates immune cells by simultaneous binding of PD-L1, 4-1BB, and HSA (the
latter to prolong the half-life) and is currently in phase 1/2 testing against advanced cancers
(NCT04442126).

Four other constructs in phase 1/2 trials are diabody-based “Trispecific T-Cell activa-
tion Constructs” (TriTACs, Figure 1e and Table 1) developed by Harpoon Therapeutics,
which consist of a nanobody targeting the respective TAA, joined with an anti-CD3 scFv,
and a nanobody against HSA (serving to prolong the half-life). HPN 328 targets DLL-3
and is tested against small-cell lung cancer (NCT04471727), HPN217 targets BCMA and is
tested in r/r MM (NCT04184050), HPN424 targets PSMA and is tested in advanced prostate
cancer (NCT03577028), while HPN536 targets mesothelin (MSLN) and is tested in various
advanced solid tumors, including ovarian or pancreatic cancer, and malignant pleural
mesothelioma (MPM, NCT03872206). Another trispecific T-cell engaging antibody is the
IgG-like SAR442257, of which one Fab fragment targets CD38, while the second carries a
cross-over dual variable (CODV) region specific for CD3 and CD28 [178]. A first-in-human
study of SAR442257 in r/r MM and non-Hodgkin’s lymphoma is ongoing (NCT04401020).
Other TriTACs are in Harpoon’s pipeline, e.g., G3, G4, and G8 targeting FLT3 [179], while
first preclinical data also suggest synergy with PD-(L)1 inhibitors [180]. A novel platform
very similar to the TriTACs are designed ankyrin repeat proteins (DARPins, Figure 1e
and Table 1) developed by molecular partners in cooperation with Amgen. These are
antibody-mimetic 62 kDa polypeptide chains containing 4 ankyrin domains with specificity
against HSA (2×), and either two TAA (1× each), or one TAA (1×) and one T-cell antigen
(1×), and which can be easily produced in bacteria [181]. MP0250 targeting VEGF/HGF is
in phase 2 testing for r/r MM (NCT03136653), MP0310 (aka AMG 506) directed against
the fibroblast activation protein [182] (FAP)/4-1BB, and MP0274 targeting two different
HER2 epitopes are in phase 1 testing (NCT04049903, NCT03084926), while MP0317 target-
ing FAP/CD40, and various T-cell redirecting DARPins (CD3-engaging) are expected to
follow soon.

Several other trispecific platforms also exist, either bulkier, such as the older Dock-
and-Lock (DNL, Figure 1g) method based on the dimerization domain of cAMP-dependent
protein kinase A and the anchoring domain of an A-kinase anchoring protein [183,184],
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or the newer, more compact VHH-based trispecific constructs, which are still at the pre-
clinical stage [185]. In addition, IgG/scFV-based tetraspecifics (scFv6-IgG, Figure 1d and
Table 1), have recently crossed the border to clinical testing. GNC-038 and GNC-039 (for
“guidance, navigation and control”) of Bailey Pharmaceuticals and its subsidiary Sys-
timmune, employ a novel octavalent format to engage and activate T-cells by binding
CD3 and 4-1BB, while simultaneously also inhibiting PD-L1 on tumor cells and binding
a TAA, namely CD19 and EGFRvIII on r/r NHL and various solid tumors, respectively
(NCT04606433, NCT04794972). A third similar construct, GNC-035 targeted against the
oncoembryonic antigen ROR1 expressed by a variety of human cancers [186], is expected
to also enter clinical testing soon. It remains to be shown whether multispecific constructs
under development will surpass, in effectiveness, bispecifics and their combinations [172].

5. Payload Delivery Using Multispecific Constructs

The spectacular enhancement of monospecific antibody efficacy through conjugation
with toxins, as exemplified by trastuzumab emtansine [187], trastuzumab deruxtecan [188],
and brentuximab vedotin [189], has sparked great interest for multispecific antibody drug
conjugates (ADC, Figure 1g and Table 1). In addition, antibody-fragment-drug conjugates
(FDC, Figure 1g and Table 1) have emerged more recently as “next-generation ADC” par-
ticularly suited for treatment of solid tumors, building on the improved tissue penetration
of smaller molecules, and reduced payload exposure of normal tissues due to lack of
Fc-based interactions and the shorter half-lives [190]. Therefore, both Fc-based and Fc-free
multispecific formats are increasingly used for payload delivery, aiming for more precise
targeting of tumor cells and enhanced potency due to engagement of additional epitopes.

Currently, a few different bispecific antibodies for payload delivery are in clinical
testing. TargomiR EDVs coated with IgG-IgG (EDV, Figure 1g, anchored via S. Typhimurium
O-antigen on the minicell surface, and targeting EGFR) and loaded with a miR-16-based
miRNA-mimic were used against MPM and NSCLC in a phase 1 trial. Partial responses
were noted in 1/22 (5%) patients, and stable disease in 15 (68%), while dose-limiting
toxicities were infusion reactions, coronary ischemia, anaphylaxis, cardiomyopathy and
non-cardiac pain (NCT02369198) [191]. Another phase 1 study is testing an EGFR-directed
mitoxantrone-loaded EDV (EEDVSMit) in children with r/r solid tumors (NCT02687386).
A third clinical trial utilized EGFR(V)-EDV-Dox in patients with recurrent glioblastoma
(NCT02766699), after it had shown significant prolongation of overall survival in two
orthotopic human neuroblastoma xenograft models [192]. Eight of 14 patients completed
one cycle, four more than one cycle of therapy; median PFS was 1.6 months, 2/14 patients
had a PFS >6 months, and median OS was 9.7 months. Side effects like fever, nausea or
chills occurred but were manageable [193].

On the other hand, M1231 is a bispecific Fab/scFv ADC (Fc-based) directed against
EGFR/MUC-1 undergoing phase 1 testing for metastatic solid tumors (NCT0469584) [194],
while ZW49 is an ADC of the HER2-bispecific antibody Zanidatamab conjugated with a
novel auristatin payload using a cleavable linker, which is currently evaluated in advanced
HER2-expressing malignancies in a global phase 1 trial [195]. DT2219ARL, an immunotoxin
composed of CD19 and CD22 scFv linked to diphtheria toxin, is the only FDC developed for
hematologic malignancies, and has shown activity in phase 1/2 trials of r/r B-cell leukemia
or lymphoma (NCT00889408, NCT02370160) [196]. In 12 treated subjects, 4 achieved stable
disease and 1 had partial response [197].

Bispecific antibodies can also be used for pretargeted radioimmunotherapy (pRAIT).
TF2, a bispecific tri-Fab antibody, targeting HSG (1×, “histamine-succinyl-glycine”,
a unique synthetic hapten, which has been incorporated in several small peptides that can
be labeled with a wide range of radionuclides [198]) and CEA (2×), is produced with the
DNL method (DNL, Figure 1g). For pRAIT, first, the bispecific antibody TF2 is infused,
followed by infusion of the radiolabeled IMP-288 that binds to the TF2 on the cancer
cells. “Pretargeting” should lead to a stronger radiation signal, while reducing the dose
and toxicity of normal tissue [199]. Efficacy of TF2 in combination with Lu-177-labeled
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IMP-288 is evaluated in two clinical trials for colorectal or lung cancer (NCT00860860,
NCT01221675). Best results were achieved with a shorter pretargeting delay (24 h) and
higher dose (480 nmol/m2), but outcome has been mediocre: 4 patients were stable at
4 weeks, but progressive at 3 months, while 6 patients were progressive already after
4 weeks [200]. For pRAIT of medullary thyroid cancer, the chemically cross-linked hu-
man/murine bispecific anti-CEA/anti-DTPA antibody hMN-14 ×m734 [201] is tested in
combination with di-DTPA-131I (NCT00467506). Besides, pretargeting with bispecific anti-
bodies is also under investigation for imaging, e.g., IMP 205 ×m734 is infused, followed
by Indium-labeled IMP-205 for imaging of colorectal cancer (NCT00185081). An inter-
esting construct still at preclinical stage is the bispecific MaAbNA (multivalent antibody
comprised of nanobody and affibody moieties), built by an anti-EGFR sdAb and two anti-
HER2 affibodies, and conjugated with adriamycin [202]. Affibodies are engineered, small
(6.5 kDa), high affinity antibody-mimetics, which are based on the IgG binding domain of
staphylococcal protein A [203,204].

6. Challenges and Perspectives

While multispecific antibodies are a very dynamic and promising field, it still faces
some major challenges. The most serious difficulty is certainly the availability of suitable
target antigens for the majority of cancers. While some differentiation antigens expressed in
the hematologic lineages are dispensable, for example CD19, CD33, BCMA, and therefore
suitable for attack with exquisitely potent therapeutics, as are multispecifics, there is no
corresponding target that can be safely eliminated in epithelial tumors [205]. In addition,
it is estimated that only approximately 10% of human proteins are on the cell surface and
thus accessible to classical antibodies [206,207]. One important development in this respect
was the successful targeting of G12V and Q61H/L/R KRAS mutant cells using single-chain
diabodies specific for the respective HLA-A1/3-neopeptide complex and CD3, which
paves the way for therapeutic exploitation of intracellular neoantigens with multispecific
antibodies [208]. Other approaches to target neoantigens (“MANAbodies” for “mutation-
associated neoantigen-directed antibodies”) or intracellular TAA, utilize either ImmTACs
(described in Section 3.4 [58]), or suitable TCR-mimic mAb in the BiTE format [209]. An
alternative approach to overcome extracellular target scarcity are combinatorial formats in
preclinical stage; for example, hemibodies: two scFv, each directed against a different TAA
and linked with either the VH or the VL domain of a composite anti-CD3 Fv, become active
and engage T-cells when they join after encountering both TAAs on the same tumor cell
surface [210].

Beyond the problem of suitable antigens, several other reasons can result in failure of a
promising construct, as the several terminated clinical trials show (see Supplementary Table S1).
One main problem is the lack of efficacy, as with TrioMabs other than catumaxomab or with
vanucizumab (see Section 3.1), for which the target antigens chosen and/or effect strength
were not sufficient for clinically relevant benefit. Besides, toxicity can also be limiting
for some highly potent constructs, such as the anti-CD19/CD3 DART-Fc MGD011 (see
Section 3.2). Additionally, since the development costs of multispecifics are considerable,
slow accrual in a clinical trial, for example, due to complex logistics combined with a
very narrow patient population, can force the investigators to cancel the effort when
the sponsor or company producing the antibody run out of money (e.g., in the case of
FBTA05 administered with donor lymphocyte infusions after allogeneic hematopoietic cell
transplantation (alloSCT, NCT01138579), or IgG-IgGs administered with autologous T-cells
for EGFR- or HER2-expressing solid tumors (NCT02470559 and NCT02521090)).

Another important issue for immune-cell redirecting antibodies, such as BiTEs, is that
their mode of action is very similar to that of cell therapies, for example, chimeric-antigen-
receptor T (CAR-T) cells directed against the same antigen. One main advantage of
antibodies is broad, “off-the-shelf” availability, in contrast to CAR-T cells, which currently
require a several weeks-long and very expensive manufacturing process for each individ-
ual patient, some of which will not live to receive the cellular product [211]. In addition,
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multispecific antibodies appear to have better tolerability, since they do not require lym-
phodepletion prior to infusion, while cytokine-release syndrome (approximately 5% vs.
50%) and neurotoxicity (<10% vs. 12–32%) have generally been less frequent, less severe,
and better manageable with the short-acting CD19-specific BiTE blinatumomab than after
infusion of the long-persisting CD19-specific CAR-T cells [212]. On the other hand, effi-
cacy appears to be somewhat better with CAR-T cells than blinatumomab, with higher
response rates in r/r acute lymphoblastic leukemia (approximately 80% vs. 40%), especially
in cases of high tumor burden (e.g., bone marrow blasts >50%), extramedullary disease,
and central nervous system involvement [213]. Likewise, in r/r MM BCMA-specific CAR-T
cells achieve response rates >90%, while the response rate in the recent phase 1 trial of
a BCMA/CD3 bispecific was 33–75% [214,215]. In the r/r follicular lymphoma (FL) and
DLBCL, response rates also appear to be higher with Axi-cel (>90% and >70% respec-
tively, FDA-approved for both entities) than with blinatomumab (approximately 80% and
55%, respectively) [216,217]. However, cross-series comparisons may not be accurate due
to patient heterogeneity, while treatments are rapidly evolving; for example, the newer
CD20-specific bispecific antibody odronextamab (REGN1979) could recently also achieve
a response rate >90% in r/r FL [218]. Overall, multispecifics and CAR-T therapies both
represent major breakthroughs in cancer therapy and will probably become complementary
in the future, one example being BiTE-secreting CAR-T cells, which circumvent escape due
to antigen loss without detectable toxicity [219]. Of note, bispecific antibodies can also be
used to optimize the outcome of patients after alloSCT [220], which is still the mainstay of
treatment for many r/r or high-risk myeloid and lymphatic malignancies [221,222].

Along the same lines, multispecific constructs will probably need to be combined with
other immunotherapies, for example, immune checkpoint inhibitors [223] and oncolytic
viruses [224], in order to overcome the immune dysregulation of various cancers [225–229]
and maximize clinical benefit. Novel multispecific constructs have already incorporated
some essential synergistic effects, for example, “checkpoint-inhibitory T-cell engagers”
(CiTEs) are BiTEs equipped with an additional moiety blocking the PD-1/PD-L1 axis or an-
other immune checkpoint [230], while “simultaneous multiple interaction T-cell engagers”
(SMITEs) are the combined administration of different BiTEs in order to target multi-
ple TAAs and/or turn tumor-cell inhibitory (e.g., from PD-L1) into T-cell costimulatory
(e.g., via CD28) signals [231,232]. The development of such multimodal constructs di-
rected against intracellular neoantigens could become a turning point in the treatment of
solid cancers.

7. Conclusions

Multispecific antibodies are a rapidly growing field with huge therapeutic potential.
Accumulating preclinical and early clinical data provide ample evidence on how targeting
multiple tumor cell antigens and additional recruitment of effector lymphocytes increase
therapeutic efficacy and could further improve clinical outcomes. Considering the fact
that introduction of PD-(L)1 inhibitors a few years ago has already facilitated 5-year
survival rates of 30–50% for patients with per se highly lethal neoplasms, such as metastatic
melanoma and non-small-cell lung carcinoma [233,234], the upcoming complementation
of current strategies with “next-generation” immunotherapeutics, such as multispecific
antibodies and cell therapies, offers a justified hope for the cure of some advanced cancers
in the near future.
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