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ABSTRACT We studied the association of several eucaryotic viral and cellular mRNAs with 
cytoskeletal fractions derived from normal and virus-infected cells. We found that all mRNAs 
appear to associate with the cytoskeletal structure during protein synthesis, irrespective of 
their 5' and 3' terminal structures: e.g., poliovirus that lacks a 5' cap structure or reovirus and 
histone mRNAs that lack a 3' poly A tail associated with the cytoskeletal framework to the 
same extent as capped, polyadenylated actin mRNA. Cellular (actin) and viral (vesicular 
stomatitis virus and reovirus) mRNAs were released from the cytoskeletal framework and their 
translation was inhibited when cells were infected with poliovirus. In contrast, actin mRNA 
was not released from the cytoskeleton during vesicular stomatitis virus infection although 
actin synthesis was inhibited. In addition, several other conditions under which protein 
synthesis is inhibited did not result in the release of mRNAs from the cytoskeletal framework. 
We conclude that the association of mRNA with the cytoskeletal framework is required but is 
not sufficient for protein synthesis in eucaryotes. Furthermore, the shut-off of host protein 
synthesis during poliovirus infection and not vesicular stomatitis virus infection occurs by a 
unique mechanism that leads to the release of host mRNAs from the cytoskeleton. 

Initiation of translation in eucaryotes is far more complex 
than in procaryotes. At least eight initiation factor activities 
along with several auxiliary factors and ATP have been dem- 
onstrated to be involved in the initiation process in eucaryotes 
in vitro, as compared with just three initiation factors and an 
ATP-independent mechanism in procaryotes. It seems plau- 
sible that this complex complement of eucaryotic initiation 
factors might reflect an involvement in the more intricate 
patterns of regulation of translation that occur in the eucar- 
yotic system (1). 

Besides the greater complexity of the factors mentioned 
above, the cellular architecture might also play a significant 
role in eucaryotic translation. There is evidence that eucar- 
yotic mRNAs are translated only when associated with an 
elaborate network of filaments which extends throughout the 
cell and is referred to as "the cytoskeleton" (2). This fibrous 
network is composed of three distinct but interconnected 
filament systems, namely, the micro filaments, microtubules, 
and intermediate filaments, and other components. Wolosew- 
ick and Porter (3) have shown by high-voltage electron mi- 

croscopy of intact cells that polysomes are clustered in the 
vicinity of the cytoskeleton structure. Subsequently, Lenk et 
al. (4) developed a procedure to fractionate cells into a deter- 
gent-resistant fraction which contains the cytoskeletal ele- 
ments and a soluble fraction (containing soluble proteins, 
tRNA, monosomes, and other components) and found that 
polysomes invariably were associated with the cytoskeleton 
fraction. In further experiments, Cervera et al. (5) have shown 
that vesicular stomatitis virus (VSV) ~ mRNAs are translated 
only when associated with the cytoskeleton. Furthermore, 
these authors showed that dissociation of polysomes by high 
salt or heat treatment did not result in the release of mRNA 
from the cytoskeletal fraction, indicating a direct association 
between mRNA and the cytoskeleton which does not require 
mRNA-ribosome interaction. However, Howe and Hershey 
(6) have recently shown that ribosomal subunits can remain 

~ Abbreviations used in this paper: CBP, cap binding protein; DME, 
Dulbecco's modified Eagle's medium; FBS, fetal bovine serum; SSC, 
standard saline-citrate buffer; VSV, vesicular stomatitis virus. 
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associated with the cytoskeleton after mild RNase treatment 
to disaggregate polysomes. 

It has been reported that shut-off of host protein synthesis 
in poliovirus-infected HeLa ceils is accompanied by the re- 
lease of host mRNAs from the cytoskeleton (7) followed by 
the association of virus-specific polysomes. Similarly, it has 
been shown that infection of human KB cells by adenovirus 
resulted in the shut-off of host protein synthesis with concom- 
itant release of host mRNA from the cytoskeleton (8). In light 
of these observations which demonstrate a direct correlation 
between virally induced dissociation of host mRNAs from 
the cytoskeleton and cessation of host protein synthesis, it has 
been argued that fractionation of mRNA with the cytoskel- 
eton reflects an involvement of cytoskeletal components in 
translation. 

Immediate questions concern, on the one hand, the identity 
of the particular cytoskeletal components involved and on 
the other, structural features of mRNA and/or the involve- 
ment of soluble factors in the association. Consequently, we 
wanted to extend previous studies by using other viral systems 
in an attempt to address the following pertinent questions: (a) 
Are viral mRNAs generally associated with the cytoskeleton, 
irrespetive of the nature of their terminal structures? It has 
been suggested that two essentially ubiquitous structural fea- 
tures of eucaryotic mRNA, namely the cap structure 
[m7GpppX(m)] and the 3' poly A tail, might be implicated 
in this attachment (references 9 and 10, respectively). We 
used cDNA probes to three different viral mRNAs to follow 
their subcellular fractionation: (i) poliovirus RNA does not 
contain a 5' cap structure but does contain a 3' poly A tail 
(l l), (ii) VSV mRNAs that are capped and polyadenylated 
( 11 ), or (iii) reovirus mRNAs that are not polyadenylated (12) 
and apparently do not contain a cap structure at late times 
postinfection in L cells (13). (b) What is the degree of corre- 
lation between shut-off of host protein synthesis after viral 
(poliovirus, VSV, and reovirus) infection and release of host 
mRNAs from the cytoskeleton? 

MATERIALS AND METHODS 

Cells and Virus: cv-  1 (African green monkey kidney cells) were grown 
in monolayers with Dulbecco's modified Eagle's medium (DME) supplemented 
with 5% fetal bovine serum (FBS). Cells were infected with poliovirus type 1 
(Mahoney strain) at a multiplicity of infection of 200 plaque forming units/ 
cell as described by Doyle and Holland (14) or with VSV, heat-resistant strain 
(HR) of indiana serotype, obtained from C. P. Stanners (McGill University, 
Montreal, Qu6bec) (15) at an MOI of 10 plaque forming units/cell, or with 
reovirus type 3 (Dearing strain) at an MOI of 50 plaque forming units/cell. 

Cytoskeleton Extraction: Extraction conditions were as described 
by Cervera et al. (5) except that Ca ++ was omitted from the extraction buffer 
and 0.1% Triton X-100 was used throughout the experiments. Cells grown on 
petri dishes were treated with extraction buffer (10 mM PIPES, pH 6.8, 100 
mM KCI, 2.5 mM MgCl2, 0.3 M sucrose, and 0.1% Triton X-100) at 4"C for 
l rain, followed by one wash with cold extraction buffer without Triton X-100. 
All subsequent manipulations were performed at 4"C. The material obtained 
from the cells under these conditions was referred to as the soluble fraction. 
The cell remnants were collected with a policeman and centrifuged at 2,000 
rpm. The pellet was resuspended in 20 mM HEPES (pH 7.5) buffer containing 
0.5 M NaCI, 30 mM Mg(OAc)2, 0.5% deoxycholate, and 1% Tween 40 and 
left for 5 rain on ice, and the suspension was passed through a low-gauge 
needle. The suspension was then centrifuged for 5 min in an Eppendorf 
microfuge; the supernatant is referred to as the cytoskeletal fraction whereas 
the pellet contained mostly the nuclear matrix with associated DNA and 
heterogeneous nuclear RNA (see Results). 

RNA Isolation and Analysis: Soluble and cytoskeletal fractions 
were treated with proteinase K (200 ~g/ml) at 37"C for 30 min and RNA was 
extracted with phenol/chloroform/isoamyl alcohol (24:24:1) and ethanol pre- 
cipitated. For dot-blot analysis, RNA was resuspended in 50 #l of H20 followed 
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by the addition of 30 #l of 20 x standard saline-citrate buffer (20 x SSC, 3 M 
NaC1, 0.3 M Na citrate, pH 7.0) and 20 zl of 37% (wt/wt) formaldehyde. RNA 
was denatured by incubation at 65°C for 15 min. RNA from equivalent amount 
of cells was twofold serially diluted in 15 x SSC and spotted on GeneScreen 
(New England Nuclear, Boston, MA [NEN]) or nitrocellulose paper (Schleicher 
& Schuell, Inc., Keene, NH), which had been presoaked consecutively in H20 
and 20 x SSC, using a BRL-dot blot apparatus (Bethesda Research Laboratories, 
Inc.. Gaithersburg, MD). Hybridization to cDNA probes was done as described 
by Lesure et al. (16) with modifications. Blots were baked for 2 h at 80"C and 
prehybridized with 6 x SCP buffer (20 x SCP: 2 M NaCl, 0.01 M EDTA, 0.6 
M Na2HPO4, pH 6.2), 1% sarcosyl, 2.5% dextran sulfate, and 100 ~g/ml of 
carrier DNA for 2 h at 65"C. Blots were then hybridized in 6 x SCP buffer 
with l x l06 cpm of nick-translated cloned cDNA probes (labeled to a specific 
activity of 1-3 x l0 a cpm/~g with a-32p-dATP according to Rigby et al. [17] 
and boiled for 10 rain and cooled down before hybridization). After hybridi- 
zation at 65"C overnight, blots were washed twice for 10 min with 2 x SSC 
buffer containing 0.1% SDS followed by 0.1 x SSC buffer containing 0.1% 
SDS at room temperature. Alternatively, RNA from equal amount of cells was 
analyzed on 1% agarose gels containing 5 mM methyl mercury hydroxide (18). 
RNA from gels was transferred to GeneScreen sheets by electrophoresis over- 
night at 150 mA in 25 mM sodium phosphate buffer (pH 5.5). Hybridization 
to cDNA probes was performed as for the dot blot-analysis except that blots 
were washed with 2 x SSC buffer containing 0.1% SDS and 0.1% Na pyro- 
phosphate twice for 15 rain at 65"C and twice for 15 rain at room temperature. 
Dried blots were exposed against XAR-5 Kodak film with Cronex Hi plus 
intensifying screens (DuPont Co., Wilmington, DE) for 1-2 days and dot or 
band intensity was quantified by soft laser densitometry (LKB Instruments, 
Inc., Gaithersburg, MD). Probes used for hybridization were: pBR322 contain- 
ing the cloned poliovirus genome (pVRl04, reference 19) obtained from V. 
Racaniello (Columbia University); pBR322 containing the cloned genome 
encoding the VSV G protein (pGl, reference 20) and M protein (pM309, 
reference 20) provided by J. K. Rose (Salk Institute); chicken ~-actin gene 
cloned in pBR322 (21) from S. Farmer (Boston University); and a mouse 
histone 3-2 gene cloned in pLLl0 (pRAH3-2, reference 22) from W. Marzluff 
(Florida State University at Tallahassee). A clone of reovirus $4 cDNA in 
pBR322 was a generous gift from Rhonda BasseI-Duby of this laboratory. 

RESULTS 

Previous studies characterizing the association of polysomes 
with the cytoskeleton were performed primarily with HeLa 
and KB tumor cell lines (4-8). These cell lines do not exhibit 
anchorage-dependent growth properties (in contrast to normal 
cells) and their rate of protein synthesis does not respond to 
changes in cell shape and surface contact signals (23). There- 
fore, these cells might have lost important features related to 
the regulation of protein synthesis. We chose to use an African 
green monkey kidney cell line, CV-l, which is fibroblastic in 
nature, exhibits anchorage-dependent growth properties, and 
can be infected by poliovirus type 1. 

Initial experiments were performed to establish optimal 
conditions for cytoskeleton extraction. These conditions spec- 
ify that most of the soluble components are removed from 
the cytoskeleton whereas polysomes are retained. We lysed 
cells with an extraction buffer similar to that described by 
Cervera et al. (5), except that the concentration of Triton X- 
100 was reduced from 0.5 to 0.1%, since we found that at the 
higher concentration, a significant percentage of polysomes 
was released from the cytoskeleton. In addition, we changed 
the protocol of Cervera et al. (5) for the separation of the 
cytoskeleton fraction from the nuclei. Instead of using ho- 
mogenization in the presence of deoxycholate and Tween 40, 
we treated the cells with high concentrations of NaC1 (0.5 M) 
in the presence of the two detergents and passed the suspen- 
sion through a low-gauge needle. We found that under these 
conditions we obtained consistently better recovery of poly- 
somes in the cytoskeletal fraction. However, by this proce- 
dure, the nuclei are disrupted and the fraction termed cyto- 
skeleton in our studies, contains in addition to cytoplasmic 



cytoskeletal components, nuclear proteins. The fraction 
termed nuclei (Table I) contains mainly DNA and RNA 
which are stably associated with the nuclear matrix (24-26). 
This explains the low percentage of proteins (2%, Table I) in 
the nuclear fractions as compared with other reports (e.g., 
Ben-Ze'ev et al., reference 27). The amount of protein ap- 
pearing in the soluble fraction reached a maximum of 74% 
of the total protein content after 2 min of extraction, while at 
the same time the percentage of protein in the cytoskeletal 
fraction decreased to 24% of total protein (Table I). A similar 
kinetic pattern was also observed for RNA fractionation (Ta- 
ble I), whereby the RNA extracted in the soluble fraction 
reached a maximum o f -50% after 2 min of incubation with 
extraction buffer while the amount of RNA in the cytoskeletal 
fraction reached ~25%. The unchanged percentage of the 
uridine-labeled material in the nuclei indicates that although 
the nuclei were broken during extraction, most if not all of 
the heterogeneous nuclear RNA was pelleted together with 
the nuclear matrix. This explanation is also consistent with 
our finding that after a short pulse with [3H]uridine, most of 
the labeled material is associated with the nuclear matrix (data 
not shown). 

We wanted to examine the distribution of polysomes be- 
tween the cytoskeletal and soluble fractions as a function of 
extraction time. Fig. 1 shows the profiles of polysome distri- 
bution after an extraction time of 1 min. The results indicate 
that under these conditions almost all of the polysomes are 
associated with the cytoskeletal fraction (Fig. I A). In this 
experiment, cells were incubated in the presence of low con- 
centrations of cycloheximide to recruit most of the mRNA 
into polysomes. This might also explain the lack of mono- 
somes in the soluble fraction (Fig. 1 B), since most ribosomes 
are associated with mRNAs to form polysomes. Breakdown 
of monosomes to subunits in the cytoskeletal fraction (Fig. 
1 A) is probably due to the high concentration of salt used 
during the extraction. Extraction times of >1 min generally 
resulted in the dissociation ofpolysomes from the cytoskeletal 
fraction (data not shown). Consequently, we chose an extrac- 
tion time of I min for our experiments. 

We first wished to determine mRNA distribution in the 
cell using cDNA probes for a cellular mRNA. In addition, we 
wanted to analyze the effect ofpoliovirus infection on cellular 
mRNA distribution, since it has been reported that infection 
causes release of cellular mRNAs from the cytoskeleton (7). 
We used as a probe for cellular mRNA, chicken actin cDNA 
cloned in pBR322 (provided by S. Farmer), which was shown 

to react specifically with chicken actin mRNA by Northern 
blotting and is not species specific since it cross-hybridizes 
with/3- and -r-actin mRNA sequences from mouse (28). The 
relative amounts of actin mRNA in the cytoskeleton and 
soluble fractions were determined by extraction of total RNA 
and hybridization to 32p-nick translated cDNA probe. The 
results of such a dot-blot experiment performed at 3 h post- 
infection (Fig. 2) show that -90% of actin mRNA (based on 
densitometry tracings of spots obtained at the different dilu- 
tions) fractionated with the cytoskeleton in uninfected cells, 
whereas in poliovirus-infected ceils only ~30% was in the 
cytoskeletal fraction. We were unable to demonstrate the 
release of more than ~80% of actin mRNA or other host 
(e.g., tubulin) or viral mRNAs (see below) even after longer 
periods of infection, although the inhibition of the synthesis 
of the corresponding proteins was >90%, as determined by 
[35S]methionine incorporation into proteins and analysis by 
SDS PAGE, One possible explanation is that the fraction of 
actin mRNA not released from the cytoskeleton upon polio- 
virus infection represents nonspecific entrapment of mRNA 
in the cytoskeletal pellet. In any event, the results demonstrate 
that our system resembles previously described systems (4-8), 

~0,08 
t- 

IF) 
o,I 0.06 

~ 0,04 

0 

e~ 0,02 

o 

FIGure 1 

,4 
sedirnentotion 

D 

B 

Volume collected ( m l )  

Polyribosome distribution between cytoskeleton and 
soluble fractions in CV-1 cells. Cells (5 x 106) grown in DME were 
incubated with 50/~g/ml cycloheximide for 30 min and fractionated 
as described in Materials and Methods. The soluble and cytoskel- 
eton fractions were layered on 15-40% sucrose gradients contain- 
ing 500 mM NaCl, 20 mM HEPES (pH 7.5), 30 mM Mg(OAc)2, and 
50 ~,g/ml cycloheximide. Gradients were centrifuged for 150 min 
in an SW40 rotor at 35,000 rpm at 4°C and absorbance was 
recorded with an ISCO spectrophotometer flow cell (ISCO Lincoln, 
NE) at 250 nm. (,4) Cytoskeletal fraction; (B) soluble fraction. 

TABLE I 

Percentage Distribution of Proteins and RNA as a Function of Extraction Time* 

Extraction time (rain) 

0 1 2 3 5 

Fractions Protein RNA Protein RNA Protein RNA Protein RNA Protein RNA 

Cytoskeleton 93 83 45 46 24 26 22 22 24 29 
Soluble 2 2 51 31 74 51 76 62 73 53 
Nuclei 5 15 4 23 2 23 2 16 3 18 

* To radiolabel proteins, CV-1 cells grown in 60-mm petri dishes (3 x 106 cells/dish) were incubated with 20/~Ci/ml of [3SS]methionine (>I,000 Ci/mmol, NEN) 
overnight in MEM lacking methionine supplemented with 10% FBS, To label RNA, cells were incubated with 5 ~Ci/ml of [3H]uridine (40 Ci/mmol, NEN) 
overnight in DMF supplemented with 10% FBS. Cells were extracted and fractionated as described in Materials and Methods for the indicated periods of 
lime. Aliquots from [3H]uridine-labeled cells were precipitated with cold 10% trichloroacetic acid for 20 min on ice, collected on GF/C filters, rinsed with 
ethanol, dried, and counted in a toluene-based scintillation fluid. Aliquots from [3sS]methionine-labeled cells were spotted on a 3-MM paper and boiled in 
10% trichloroacetic acid for 10 min, followed by successive washes in 5% trichloroacetic acid, ethanol, ethanol/ether (I :I), and ether. Filters were dried and 
counted in a toluene-based scintillation fluid. Time 0 values were determined by the addition to cells of extraction buffer without Triton X-100 followed 
immediately by centrifugation of the cells and further manipulations (see Materials and Methods). 
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diograph shown in Fig. 3. From Fig. 3 it is also evident that 
poliovirus-directed protein synthesis in VSV preinfected cells 
was significantly lower (~30-fold) than in cells infected by 
poliovirus alone (compare Fig. 3, lanes 4 and 3). Conse- 
quently, poliovirus-superinfected cells synthesize more VSV 
proteins than poliovirus protein. These findings differ from 
those in previous studies (14, 31), which showed that polio- 
virus protein synthesis is normal in poliovirus-infected, VSV 
pre-infected cells, and therefore were repeated several times 

FIGURE 2 Dot-blot analysis of actin mRNA distribution in mock 
and poliovirus-infected CV-1 cells. Cells grown in 150-mm petri 
dishes (1.1 x 107 cells/dish) were infected with poliovirus or mock- 
infected as described in Materials and Methods. After infection for 
3 h at 37°C, cells were extracted with cytoskeleton extraction 
buffer, RNA was purified, and dot-blot analysis was performed at 
twofold serial dilutions on nitrocellulose paper (Schleicher & 
Schuell, Inc.) by hybridization with 32p-labeled nick translated actin 
cDNA. Dried blots were autoradiographed and quantif ied by soft 
laser densitometry as described in Materials and Methods. Fractions 
analyzed are indicated in the figure, csk, Cytoskeletal fraction; so/, 
soluble fraction. 

in which the majority of host mRNAs are normally found 
attached to the cytoskeleton framework and are released as a 
consequence of poliovirus or adenovirus infection. 

We chose two other viral systems to examine the correlation 
between the ability of viruses to shut-offhost protein synthesis 
and the effect on host mRNA association with the cytoskeletal 
framework. Infection with certain strains of VSV (e.g., HR 
strain of Indiana serotype) results in drastic shut-off of host 
protein synthesis (29), and although the molecular mechanism 
for the inhibition has not been established, there are some 
indications that inactivation of elF-2 is involved (30). When 
VSV-infected cells are superinfected with poliovirus, there is 
a precipitous inhibition of VSV-directed protein synthesis (14, 
31). Thus, the mechanisms of inhibition of protein synthesis 
induced by VSV and poliovirus are apparently different. 
Consequently, it was of interest to determine the cellular 
distribution of host mRNAs following VSV infection and the 
distribution of VSV mRNAs following poliovirus superinfec- 
tion. 

CV-I cells were infected with VSV alone or were superin- 
fected with poliovirus after 2 h of VSV infection. Proteins 
were labeled with [35S]methionine 2 h after poliovirus infec- 
tion and resolved on SDS polyacrylamide gels. The profile of 
synthesized proteins shown in Fig. 3 indicates that VSV 
infection of CV-1 cells resulted in a dramatic inhibition of 
host protein synthesis (compare Fig. 3, lanes 1 and 2). After 
5 h of infection, the only proteins synthesized were VSV 
encoded. Poliovirus infection of CV-I cells caused similar 
repression of host protein synthesis followed by exclusive 
synthesis of poliovirus-coded polypeptides (Fig. 3, lane 3). 
When VSV-infected cells were superinfected with poliovirus, 
VSV-programmed protein synthesis was reduced significantly 
(compare lane 4 with lane 2 in Fig. 3). However, translation 
of the different VSV polypeptides was inhibited to different 
extents; while translation of the G and M mRNAs was reduced 
by 95%, translation of N+NS proteins was reduced by only 
~60% as determined by densitometric tracing of the aurora- 
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FIGURE 3 SDS polyacrylamide gel analysis of proteins synthesized 
in VSV-infected (lane 2), poliovirus-infected (lane 3), or VSV-in- 
fected, poliovirus-superinfected (lane 4) cells. CV-1 cells grown in 
60-mm petri dishes (3 x 106 cells/dish) were mock-infected (lane 
1) or infected with VSV. After adsorption for 45 min at 37°C in 0.5 
ml of DME, 4 ml of DME supplemented with 2% heat-inactivated 
FBS was added and cells were incubated for 2 h at 37°C. 2 h after 
VSV infection, VSV-infected cells were washed with cold PBS and 
mock-infected or superinfected with poliovirus. Alternatively, 
mock-infected cells were infected with poliovirus. Adsorption of 
poliovirus for 45 min at 37°C in 0.5 ml DME was fol lowed by the 
addit ion of 4 ml DME supplemented with 2% heat-inactivated FBS. 
[35S]Methionine was added 2 h after poliovirus infection to a final 
concentration of 50 #Ci/ml in 4 ml of Eagle's minimal essential 
medium wi thout  methionine and supplemented with 2% heat- 
inactivated FBS. Labeling for 30 min at 37°C was fol lowed by cell 
lysis in cytoskeletal extraction buffer containing 1% Nonidet P-40 
and 1 mM phenylmethylsulfonyl fluoride. Lysates were centrifuged 
at 2,000 g for 10 min and the supernatant was used for further 
analysis. Samples obtained from the same number of cells were 
resolved on a 7.5 15% gradient SDS polyacrylamide gel, which was 
dried and autoradiographed. Numbers at left represent molecular 
weight × 10 -3 . 



with reproducible results. The most straightforward explana- 
tion of these differences might be that different strains of VSV 
were used in our studies and those of Doyle and Holland (14) 
and Ehrenfeld and Lurid (31). We used the HR strain of 
Indiana serotype of VSV which has been shown to induce a 
more precipitous shut-off of host protein synthesis than the 
other strains of Indiana serotype used by the latter investiga- 
tors (32). The lesion in initiation of protein synthesis caused 
by the HR strain has been traced to eucaryotic initiation 
factor 2 (30) which is required for ternary complex formation 
in the initiation step of protein synthesis and is most probably 
required for poliovirus protein synthesis. Consequently, it is 
not surprising that cells infected with the HR strain of VSV 
do not allow efficient translation of poliovirus mRNA. In 
addition, our experiments were conducted with CV-1 cells, 
while the previous studies were carried out with HeLa cells. 
This might also lead to different patterns of shut-off of host 
protein synthesis. 

To examine the relationship between the shut-off of host 
protein synthesis and cellular mRNA association with the 
cytoskeleton after VSV infection, we examined the subcellular 
distribution of actin mRNA by dot-blot analysis. Poly (A) + 
cellular RNA from mock-infected and VSV-infected cells was 
spotted on nitrocellulose filter paper followed by hybridization 
with 32p-nick translated cloned actin cDNA. The results in 
Fig. 4 show that actin mRNA was not released from the 
cytoskeleton after VSV infection. In both infected and mock- 
infected cells, ~80% of cellular actin mRNA was found 
associated with the cytoskeletal fraction. Despite the contin- 
ued association of actin mRNA with the cytoskeleton follow- 
ing VSV infection, the mRNA was not translatable, indicating 
that the mere association of mRNA with the cytoskeleton is 
not sufficient for translation. Furthermore, these results show 
that inhibition of host protein synthesis during viral infection 
does not necessarily lead to release of host mRNAs from the 
cytoskeleton as shown in the case of poliovirus infection. 

FIGURE 5 Viral mRNA distribution between cytoskeletal and sol- 
uble fractions of VSV-infected, poliovirus-infected, and VSV-in- 
fected, poliovirus-superinfected CV-1 cells. CV-1 cells grown in 75- 
cm 2 flasks (8 x 106 cells/flask) were infected with VSV or poliovirus 
or VSV-infected and poliovirus-superinfected as described in Fig. 
3, 3 h after poliovirus infection, cells were extracted with cytoskel- 
eton extraction buffer and RNA was prepared, run on an 1% agarose 
gel containing 5 mM methyl mercury hydroxide, transferred to 
GeneScreen paper by electrophoresis, and hybridized with a mix- 
ture of 32p-nick translated G and M VSV cDNAs and ~2P-nick 
translated poliovirus cDNA, as described in Materials and Methods. 
Blots were exposed against x-ray film and the autoradiograph is 
shown: (lane 1) total VSV mRNAs; (lane 2) poliovirus genomic RNA; 
(lane 3) cytoskeletal fraction from VSV-infected cells; (lane 4) soluble 
fraction from VSV-infected cells; (lane 5) cytoskeletal fraction from 
poliovirus-infected cells; (lane 6) soluble fraction from poliovirus- 
infected cells; (lane 7) cytoskeletal fraction from VSV-infected, 
poliovirus-superinfected cells; (lane 8) soluble fraction from VSV- 
infected, poliovirus-superinfected cells. 

FIGURE 4 Actin mRNA distribution between cytoskeletal and sol- 
uble fractions of mock and VSV-infected CV-1 cells. CV-1 cells 
grown in 150-mm petri dishes (1.1 x 107 cells/dish) were infected 
with VSV or mock-infected as described in Fig. 3. After adsorption 
for 45 min at 37°C in 4 ml of DME, 15 ml of DMF supplemented 
with 2% heat-inactivated FBS was added and cells were incubated 
at 37°C. 6 h after VSV infection, cytoskeleton and soluble fractions 
were extracted and RNA was prepared as described in Materials 
and Methods. Poly(A) + RNA was purified by one cycle of oligo (dT)- 
cellulose chromatography (33). Dot-blot analysis of actin mRNA 
performed at twofold serial dilutions, on nitrocellulose filters 
(Schleicher & Schuell, Inc.) by hybridization with 32P-labeled nick 
translated actin cDNA was fol lowed by autoradiography as de- 
scribed in Materials and Methods. The autoradiograph is shown. 
Fractions analyzed are indicated in the figure, csk, cytoskeletal 
fraction; sol, soluble fraction. 

The fate of VSV mRNAs after poliovirus infection was 
determined by Northern blotting after resolution of total RNA 
from the cytoskeletal and soluble fractions on methyl mercury 
hydroxide gels and probing with cDNA clones of poliovirus 
RNA and VSV G and M mRNAs. The results (Fig. 5) show 
that in VSV-infected cells, ~70% of G and M mRNAs were 
found associated with the cytoskeletal fraction (Fig. 5, lanes 
3 and 4) and 75% of poliovirus RNA in poliovirus-infected 
cells was associated (compare Fig. 5, and lanes 5 and 6). 
Moreover, almost all of the VSV virion 42S RNA was asso- 
ciated with the cytoskeleton (Fig. 5, lane 3) as previously 
observed (5). When VSV-infected cells were superinfected 
with poliovirus, the great majority of G and M VSV mRNAs 
were released from cytoskeleton, as these mRNAs were found 
in the soluble fraction (Fig. 5 lanes 7 and 8; 97 and 88% of G 
and M mRNAs, respectively, were in the soluble fraction). 
Poliovirus RNA, under these conditions, remained associated 
with the cytoskeleton (75%; lanes 7 and 8) as was the case 
after poliovirus infection alone (Fig. 5, lanes 5 and 6). It is 
noteworthy that the 42S VSV minus strand RNA association 
with the cytoskeleton was not affected by superinfection with 
poliovirus (Fig. 5, lanes 7 and 8), indicating that there is 
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preferential release of mRNAs and that the release of VSV 
mRNAs from the cytoskeleton following poliovirus infection 
is not due to nonspecific interference with RNA-cytoskeleton 
association. This experiment was performed with total cellular 
RNA and therefore poliovirus RNA migrating at 35S included 
both plus and minus strands, which can hybridize to 32p-nick 
translated cDNA. However, further experiments with oligo 
(dT)-selected RNAs gave similar results in which most polio- 
virus poly (A) ÷ RNA was associated with the cytoskeleton 
under the different conditions described above (data not 
shown). One finding in Fig. 5 deserves further consideration. 
Although poliovirus protein synthesis was significantly lower 
in poliovirus-superinfected, VSV-infected cells as compared 
with cells infected by poliovirus alone, the fraction of polio- 
virus RNA bound to the cytoskeleton in both cases was similar 
(~75%; note the reduced level in the amount of poliovirus 
RNA in Fig. 5 lane 5 compared with lane 7. This reduction 
is particular for this experiment and might be due to loss of 
material). This result is further evidence that the association 
of mRNA with the cytoskeleton by itself is not a sufficient 
prerequisite for protein synthesis, consistent with the results 
shown in Fig. 4. 

Similar experiments were performed to examine the asso- 
ciation of reovirus $4 mRNA with the cytoskeleton and to 
analyze the effects of reovirus infection on host mRNA sub- 
cellular distribution and host protein synthesis. None of the 
l 0 reovirus mRNAs contain a poly A tail (12) and it has been 
reported that at late times after infection of L cells, reovirus 
mRNAs do not possess a cap structure, either (13). The latter 
findings were not corroborated in another study using a 
different mouse cell line, SC- 1 grown in monolayers, in which 
it was suggested that reovirus mRNAs are capped at late times 
postinfection (34). We first determined the kinetics of reovirus 
protein synthesis in CV-I cells and found that synthesis of ~3 
reovirus protein (which is the major viral protein synthesized) 
begins - 6  h after infection and then levels off ~ 12 h postin- 
fection (Fig. 6). It is also clear from Fig. 6 that host protein 
synthesis is not inhibited even at 12 h postinfection when 
reovirus-directed protein synthesis is maximal. This pattern 
of protein synthesis is similar to the one previously observed 
in reovirus-infected mouse SC- 1 monolayer cells, where host 
protein synthesis is not shut-off after reovirus infection (35). 
This is in contrast to the significant inhibition of host protein 
synthesis observed in reovirus-infected L cells (l 3). Superin- 
fection of reovirus-infected CV- 1 cells with poliovirus results 
in the reduction of reovirus and host protein synthesis. [35S]- 
Methionine-labeled proteins at 3 h after poliovirus infection 
were resolved on a 10% SDS polyacrylamide gel followed by 
autoradiography. The results (Fig. 7) show that when cells 
were superinfected by poliovirus from 6 h up to 15 h after 
reovirus infection, synthesis of reovirus and host proteins was 
inhibited. These results indicate that poliovirus shuts off 
reovirus and host protein synthesis by the same mechanism. 

To analyze the subcellular distribution of reovirus and host 
mRNAs after reovirus infection, we probed with a cDNA 
clone to $4 mRNA (prepared by R. Bassel-Duby, unpublished 
data), and mRNA levels were determined by dot-blot hybrid- 
ization analysis (Fig. 8). More than 90% of reovirus $4 mRNA 
was bound to the cytoskeleton in reovirus-infected cells at 12 
and 18 h postinfection. (Dot-blot analysis was also performed 
at 6 h postinfection but the signal was too weak for accurate 
analysis). Following poliovirus infection for 3 h, ~50% of 
reovirus $4 mRNA present at 12 h after reovirus infection 
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FiGure 6 SDS polyacrylamide gel analysis of proteins synthesized 
in mock-infected or reovirus-infected cells. CV-1 cells grown in 60- 
mm petri dishes (2 x 106 cells/dish) were mock-infected or infected 
with reovirus. After adsorption for 1 h at 37°C in 0.5 ml PBS, 4 ml 
of DME supplemented with 2% heat-inactivated FBS was added 
and cells were labeled after various periods of incubation, as 
indicated in the figure, with [35S]methionine for 30 min and ex- 
tracted as detailed in Fig. 3. Samples obtained from the same 
number of cells were resolved on a 10% SDS polyacrylamide gel 
which was dried and autoradiographed. /, Infected; m, mock- 
infected; PI, postincubation. 

was released from the cytoskeleton, while 70% of the cyto- 
skeleton-associated $4 mRNA from 18 h postinfected cells 
was released. Actin cDNA clone was used as a probe for 
cellular mRNA distribution between the cytoskeletal and 
soluble fractions in reovirus-infected and poliovirus-superin- 
fected cells (Fig. 8). As one would predict from the pattern of 
actin protein synthesis in reovirus-infected cells (which is not 
changed during infection [Fig. 7]), actin mRNA was associ- 
ated with the cytoskeleton in reovirus-infected cells, but was 
released from the cytoskeleton after poliovirus infection in 
agreement with the results in Fig. 2. These results demonstrate 
that infection of cells with a virus that does not shut off host 
protein synthesis also does not cause the release of host 
mRNA from the cytoskeleton. In addition, the association of 
reovirus $4 mRNA with the cytoskeleton indicates that the 
poly A tail is not implicated in this interaction. Nevertheless, 
it is possible that reovirus has evolved an alternative mecha- 
nism for attachment of mRNA to the cytoskeleton. Conse- 
quently, we wanted to examine the cytoskeleton association 
of a cellular mRNA that does not contain a poly A tail. 

For a cellular mRNA that does not contain a 3' poly A 
tail, we chose histone mRNA (22) and probed for mRNA 
distribution between the cytoskeletal and soluble fractions 
with a mouse H3-2 histone cDNA clone which we assumed 
would behave in a manner similar to the rest of the histone 
mRNAs. To obtain higher levels of histone mRNAs to facil- 



itate their quantitation by hybridization, we treated CV- 1 cells 
with the drug aphidicolin, which synchronizes cells by arrest- 
ing them at the GffS boundary (36). Removal of the drug 
allows the cells to proceed into the S phase. It has been shown 
that the level of histone mRNAs at the S phase is 100-fold 
higher than at the G~ phase of the cell cycle (37). The dot- 
blot analysis of RNA from the cytoskeletal and soluble frac- 
tions from the S phase (Fig. 9) gave results similar to those 
obtained with actin mRNA (Fig. 2), showing that most of the 
histone mRNA (-80%) is found associated with the cytoskel- 
eton. Moreover, this association is characteristic of that of 
actin mRNA in that it is sensitive to poliovirus infection, 
resulting in the release of the mRNA (-50% released) from 
the cytoskeleton (compare Figs. 2 and 9). Thus, the presence 

FIGURE 7 SDS polyacrylamide gel analysis of proteins synthesized 
in reovirus-infected and reovirus-infected poliovirus-superinfected 
cells. CV-1 cells grown in 60-ram petri dishes (2 x 106 cells/dish) 
were infected with reovirus or mock-infected as described in the 
legend to Fig. 6. After infection for different periods, as indicated 
in the figure, cells were either mock-infected or infected with 
poliovirus as described in Materials and Methods. After adsorption 
for 1 h at 37°C in 0.5 ml of PBS, 4 ml of DME (supplemented with 
2% heat-inactivated FBS) was added and cells were incubated for 
3 h at 37°C. Cells were then incubated with [3SS]methionine and 
lysed as described in the legend to Fig. 3. Samples obtained from 
the same number of cells were resolved on a 10% SDS polyacryl- 
amide gel, which was dried and autoradiographed. R, Lanes con- 
tained material from reovirus-infected cells. S, Lanes contained 
material from reovirus-infected, poliovirus-superinfected cells. Lane 
7 (indicated by M) contained material from mock-infected cells. 
Black arrowheads (in lanes 2, 4, and 6) point to poliovirus-coded 
VPO polypeptide, and white arrowheads (in lanes 3 and 5) point to 
reovirus-coded a3 polypeptide. 
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of a poly A tail on either cellular or viral eucaryotic mRNAs 
does not correlate with their ability to associate with the 
cytoskeleton structure. 

Controlled release of mRNAs from the cytoskeleton as a 
means of decreasing protein synthesis is a very attractive idea 
and might be operative under different physiological condi- 
tions (e.g., mitosis). However, such a mechanism appears at 
the present time to be unique to certain viral infections (either 
poliovirus or adenovirus) because several treatments of cells 
that lead to inhibition of protein synthesis did not cause the 
release of cellular mRNAs from the cytoskeleton. For exam- 
ple, several inhibitors of initiation of protein synthesis do not 
induce the release of mRNAs from the cytoskeleton (5). We 
have confirmed these results in our system with specific cDNA 
probes. As shown in Fig. 10, VSV M and G mRNAs are not 
released from the cytoskeleton when cells are incubated in 
the presence of high salt (NaCI) concentrations which inhibit 
specifically the initiation step of protein synthesis (38), or in 
the presence of emetine which inhibits the elongation step of 
protein synthesis (39). 

DISCUSSION 

The results presented here are in agreement with earlier 
observations suggesting that eucaryotic mRNAs are associated 
with the cytoskeletal framework of the cell (4-8) and that this 
association has functional significance with respect to selec- 
tion of particular mRNAs for translation, under certain con- 
ditions (5-8). The data suggest an obligatory association of 
mRNAs with the cytoskeleton in order for protein synthesis 
to take place. However, although it seems that attachment of 
mRNA to the cytoskeleton is required for translation (5-8), 
this attachment by itself is not sufficient for translation. This 
can be concluded from several findings in this study. (a) Actin 
mRNA was not released from the cytoskeleton after VSV 
infection, yet it was apparently not translated (Figs. 3 and 4). 
(b) Although the amount of poliovirus mRNA made in VSV 
preinfected cells was not reduced compared with yields from 
cells not infected with VSV, and most of the poliovirus 
mRNA made in VSV-infected cells was cytoskeleton associ- 
ated, the translatability of poliovirus mRNA was clearly 
greatly reduced by VSV preinfection (Fig. 3). (c) Several 
different treatments of cells reduced protein synthesis without 
releasing mRNA from the cytoskeleton (Fig. 10). Further- 
more, we have recently found that upon suspension of an- 
chorage-dependent cells, mRNAs are not released from the 
cytoskeleton, although protein synthesis is greatly reduced 
(Darveau, A., unpublished data). 

On the basis of the aforementioned findings, it is reasonable 
to assume that the release of viral (VSV and reovirus) and 
cellular (actin) mRNAs from the cytoskeleton upon poliovirus 
infection cannot be explained as resulting from inhibition of 
protein synthesis but, rather, as resulting from a direct effect 
on the process by which mRNAs are attached to the cyto- 
skeleton. One attractive possibility is that poliovirus infection 
affects a cellular component that is involved in anchoring 
mRNAs to the cytoskeleton. 

It is conceivable that the poliovirus-induced inactivation of 
a cap-binding protein (CBP) complex (which interacts with 
the 5' cap structure of eucaryotic mRNAs) is directly or 
indirectly responsible for the dissociation of host mRNAs 
from the cytoskeleton. There is considerable evidence that a 
CBP complex is involved in the binding of capped mRNAs 
to ribosomes subsequently facilitating their translation. The 
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FIGURE 8 Cellular distribution of reovirus and actin mRNA in reovirus-infected cells or reovirus-infected, poliovirus-superinfected 
cells. CV-1 cells grown in 150-mm petri dishes (1.1 x 107 cells/dish) were mock-infected or infected with reovirus. After adsorption 
for 1 h at 37°C in 3 ml of PBS, 15 ml of DME supplemented with 2% heat-inactivated FBS was added and cells were incubated 
for 12 or 18 h at 37°C. Cells were then washed with PBS and mock-infected or super-infected with poliovirus as described in 
Materials and Methods. After adsorption for 45 min at 37°C in 3 ml of DME, 15 ml of DME (supplemented with 2% heat- 
inactivated FBS) was added and cells were incubated at 37°C. Cytoskeletal and soluble fractions were prepared 3 h postinfection 
with poliovirus, RNA was purified, and dot-blot analysis was performed at twofold serial dilutions on nitrocellulose paper (S&S) 
by hybridization with 32p-labeled nick translated reovirus $4 cDNA or actin cDNA as described in Materials and Methods. Blots 
were exposed against x-ray film and the autoradiograph is shown, csk, Cytoskeletal fraction; so/, soluble fraction. 

FIGURE 9 Histone mRNA distribution between cytoskeletal and 
soluble fractions of synchronized mock- or poliovirus-infected CV- 
1 cells. Subconfluent CV-1 cells, grown in 150-mm petri dishes, 
were incubated overnight at 37°C in DME without FBS. DME 
supplemented with 24% FBS containing 5/sg/ml of aphidicolin was 
added and cells were incubated for 20 h at 37°C. After removal of 
aphidicolin medium, cells were washed twice with PBS and polio- 
virus-infected or mock-infected as described in Fig. 3. 4.5 h after 
poliovirus infection, cells were extracted, the RNA of cytoskeletal 
and soluble fractions was purified, dot-blot analysis was performed 
at twofold serial dilutions with 32P-labeled mouse histone probe, 
and dried blots were autoradiographed and quantif ied as described 
in Materials and Methods. 

CBP complex is comprised of three major subunits of  
220,000, 50,000, and 24,000 mol wt (40, 41), and it has been 
established that in extracts from poliovirus-infected cells, the 
CBP complex is somehow inactivated as a consequence of 
the proteolysis of the 220,000 mol wt subunit (42). Further- 
more, a monoclonal antibody with anti-CBP activity has been 

shown to stain the cytoskeleton in immunofluorescence ex- 
periments, perhaps implicating some form of CBP in anchor- 
ing mRNAs to the cytoskeleton (9). Whether CBP is indeed 
involved in such a phenomenon and whether the activity of 
CBP is regulated in other cases (e.g., during normal physio- 
logical functioning of the cell) remains to be investigated. 

We tried to address the question of which structural deter- 
minants of  mRNA might be involved in mRNA cytoskeleton 
association. The best candidates for such structures are the 
conserved termini, i.e., the 5' cap structure and the 3' poly A 
tail. However, the results presented here demonstrate that 
mRNA association with the cytoskeleton can occur in the 
absence of these structures. Viral mRNA (reovirus) that does 
not contain a 3' poly A tail is found associated with the 
cytoskeleton under conditions in which poly (A) ÷ mRNAs 
(e.g., actin) are also associated (Figs. 2 and 8). In addition, we 
found that an histone mRNA (also lacking a 3' poly A tail) 
associates with the cytoskeleton (Fig. 9). Furthermore, Ben- 
Ze'ev et al. (27) have reported that poly (A)- subsets of SV40 
mRNAs are associated with the cytoskeleton. Because cellular 
mRNA lacking a cap structure has not been found to date, 
we used the naturally uncapped poliovirus RNA to probe 
involvement of the cap structure in cytoskeletal attachment. 
Our results corroborate the findings of Lenk and Penman (7) 
who showed by pulse labeling that poliovirus RNA associates 
with the cytoskeleton during translation. Although our results 
do not support the notion that either the poly A tail or the 
cap structure are involved in the attachment of mRNA to the 
cytoskeleton, the possibility that the relatively small number 
of mRNAs without a 5' cap structure or a 3' poly A tail have 
evolved an alternative structure to serve in attachment to the 
cytoskeleton is not precluded. 

It might be argued that the release of host mRNAs from 
the cytoskeleton upon poliovirus-infection reflects a change 
in the cytoskeleton fractionation properties because of viral- 
induced cell injury. However, this possibility appears unlikely 
because polyribosomes that translate poliovirus RNA frac- 
tionate with the detergent-resistant material defined as the 
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Note added in proof After this manuscript was accepted for publi- 
cation, we came across a report by W. R. Jeffrey (1984, Dev. Biol., 
103:482-492) in which the author concludes that actin and histone 
mRNAs are associated with the cytoskeletal framework in ascidian 
eggs during development. 
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