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ABSTRACT The gut microbiome plays an essential role in host energy homeosta-
sis and influences the development of obesity and related conditions. Studies
demonstrate that nicotinamide riboside (NR) supplementation for diet-induced
obesity (DIO) reduces weight gain and increases energy expenditure in mice. NR
is a vitamin B3 derivative and an NAD1 precursor with potential for treating
human diseases arising from mitochondrial degeneration, including obesity and
type 2 diabetes. Gut bacteria produce vitamin B3 in the colon and are capable of
salvaging and metabolizing vitamin B3 and its derivatives. However, it is unknown
how dietary supplementation of NR alters the microbiome and if those alterations
contribute to deflection of weight gain. In this study, we fed C57BL/6J male mice
a high-fat diet (HFD) supplemented with or without NR and performed a fecal
material transfer (FMT) to establish a link between NR-conditioned microbiota
and NR-induced deflection of weight gain. FMT from NR-treated donors to naive
mice fed a HFD was sufficient to deflect weight gain by increasing energy ex-
penditure. We also investigated the effects of NR on the microbiome by using
metagenomics sequencing. We found that NR-treated mice displayed an altered
gut microbial composition relative to controls and that fecal transplant resulted
in a distinct functional metabolic profile characterized by enrichment of butyr-
ate-producing Firmicutes. NR-treated donors and subsequent FMT recipients
share a similar enrichment of metagenomic biomarkers relative to controls.
These findings suggest that microbial factors contribute to the beneficial effects
of dietary NR supplementation, which may be useful to enhance the therapeutic
effects of NR.

IMPORTANCE With obesity and type 2 diabetes (T2D) at epidemic levels, we need to
understand the complex nature of these diseases to design better therapeutics. The
underlying causes of both obesity and T2D are complex, but both are thought to de-
velop, in part, based on contributions from the gut microbiota. Nicotinamide ribo-
side is a gut-derived vitamin B3 derivative and NAD1 precursor which has the poten-
tial to treat and prevent metabolic disorders by ameliorating mitochondrial
dysfunction. Understanding how NR affects the gut microbiome and whether NR-
conditioned microbiota contributes to weight loss in the host would (i) improve di-
agnosis and treatments for obesity and other metabolic pathologies, (ii) tailor treat-
ments to satisfy the needs of each individual moving toward the future of precision
medicine, and (iii) benefit other scientific fields that currently investigate the effects
of NR in other disease pathologies.
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In 2016, the Centers for Disease Control and Prevention (CDC) reported that the prev-
alence of obesity in the United States was 39.8% in adults and 18.5% in children (1).

Obesity is defined as a body mass index (BMI) of 30 or more (2) and results from an
energy imbalance leading to excessive accumulation of fat (1, 3). This disease arises
through a combination of genetic and environmental factors, including dietary inter-
ventions and sedentary lifestyles, and is still not well understood. People who are
obese often develop comorbidities such as type 2 diabetes (T2D), cancer, hypertension,
and cardiovascular diseases (4). Currently available treatments for obesity include sig-
nificant lifestyle changes, gastric bypass surgery, and the use of dietary supplements.
However, these interventions have not decelerated the obesity epidemic, and thus,
there is an urgent need to develop new antiobesity therapies.

The gut microbiome is a metabolic organ (5) because it aids the host in many proc-
esses that modulate host physiology and metabolism (6), such as digestion, vitamin and
specialized metabolite production, and xenobiotic detoxification. Subsequently, altera-
tions to taxonomic composition and functional profiles of the gut microbiota are linked
to metabolic syndrome and associated disorders, including obesity (7–9). Decreased mi-
crobial gene diversity is observed in patients with obesity in comparison with lean
patients (10). Furthermore, a fecal material transfer (FMT) from obese to germfree mice is
sufficient to induce an obesity phenotype in the recipient (9, 11, 12). Therefore, bacteria
play a direct role in the development of obesity in the host.

Nicotinamide riboside (NR) is a vitamin B3 derivative and NAD1 precursor that has
been the subject of recent studies and clinical trials as a potential treatment for human
diseases that arise from mitochondrial degeneration, such as obesity and T2D (13). NR
is found in our diet (13, 14) and can be synthesized by the gut microbiota. In a mouse
model of diet-induced obesity, male mice fed a 60% high-fat diet (HFD) supplemented
with NR had a reduction in diet-induced weight gain due to increased energy expendi-
ture and had improved obesity-related conditions (15). A mechanistic model was pro-
posed in which NR supplementation increases NAD1 in key metabolic tissues, activat-
ing a class of NAD-dependent deacetylases known as sirtuins, which further modulate
key metabolic regulators to increase energy expenditure (15, 16). However, there
remains the likelihood of additional underlying mechanisms by which NR could alter
host metabolism and physiology.

Some bacteria produce and modify B vitamins and their derivatives in the colon. As
an example, from the suggested 15 mg/day of niacin (nicotinamide and nicotinic acid),
27% (4.05 mg/day niacin) is predicted to be synthesized by gut microbes (17).
Additionally, some gut bacteria can salvage vitamin B3 derivatives such as NR using
dedicated transporters for NAD1 synthesis (13, 18). Because some gut bacteria are ca-
pable of importing and metabolizing NR, we hypothesize that dietary NR supplementa-
tion alters the gut microbiome to subsequently mediate some of the benefits seen in
the host.

To test this hypothesis, we fed male C57BL/6J mice a 60% HFD supplemented with
or without NR and then performed a fecal material transfer into naive recipients.
Throughout the experiment, we monitored weight gain, collected fecal samples for
microbiome analysis, and assessed energy balance. We found that dietary NR supple-
mentation alters the gut microbiome compositional and functional profiles, corre-
sponding to a reduction in HFD-induced weight gain and decreased energy efficiency,
relative to controls. Transfer of fecal material from NR-treated donors into naive recipi-
ents was sufficient to reduce HFD-induced weight gain, decrease energy efficiency,
and increase the relative abundance of Firmicutes predicted to be butyrate producers.
We conclude that NR-conditioned microbiota are capable of affecting the overall meta-
bolic status of the host.

RESULTS
NR supplementation reduces weight gain caused by a HFD. Nicotinamide ribo-

side (NR) is known to deflect weight gain in response to a high-fat diet (HFD) in mice
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(15). However, the mechanisms affecting weight gain in response to NR remain
unknown. Because gut bacteria have been implicated in affecting body mass in multi-
ple studies (8, 12, 19–24), we hypothesized that gut flora is partially responsible for the
response to NR in HFD mice. To test this, we fed male C57BL/6J mice a 60% HFD sup-
plemented with 0.4% NR or vehicle (water), measured weight gain (Fig. 1A), and col-
lected fecal samples for both sequencing and subsequent transfers (see below).
Supplementation with 0.4% NR was chosen based on previous studies demonstrating
beneficial metabolic effects (15, 25–27). After 144 days, the increase in body mass for
NR-treated mice was significantly less than that of controls and continued to the end
of the experiment (Fig. 1B). After 168 days of treatment, there was a 4.9 g difference
between the groups (Fig. 1C; *, P , 0.05). At day 0, there was no statistically significant

FIG 1 Dietary NR supplementation deflects HFD-induced weight gain. (A) Six-week-old male C57BL/6J
mice were placed on a high-fat diet (HFD) when they arrived and were on a baseline period for 2
weeks. Mice were weight matched, randomized, and divided into groups. NR-treated mice were
supplemented with 0.4% NR, whereas for the control group, the diet was mixed with water (vehicle).
Mice were housed in metabolic cages (M) during baseline and at the end of the experiment. Feces
were collected for shotgun metagenomic sequencing at day 168. (B) NR-treated mice (red, n = 8)
exhibited a statistically significant reduction in weight gain compared to control mice (cyan, n = 8).
Data were analyzed by two-way ANOVA (*, P , 0.05). (C) After 168 days of NR treatment, there was a
weight gain difference of 4.9 g between treatment groups. Data were analyzed by an unpaired t test
with Welch’s correction (*, P , 0.05). (D) At day 0, no statistically significant differences in body mass
were found between groups, but after 168 days of treatment, there was a significant reduction in
body mass in NR-treaded mice relative to control mice. Data were analyzed by an unpaired t test
with Welch’s correction (*, P , 0.05). All data are represented as the mean 6 SEM.
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difference in body mass between groups. After 168 days of NR treatment, there was a
significant reduction in body mass compared to that of the control, which resulted in a
113.03% and 97.28% increase in body mass in control and NR-treated mice, respec-
tively (Fig. 1D; *, P , 0.05). The observed 15.75% reduction in weight gain for NR-
treated mice was accompanied by a reduction in fasting blood glucose levels (see
Fig. S1 in the supplemental material).

NR supplementation alters the gut microbiota. To assess changes in the gut
microbiota functional capacity in response to NR treatment, we extracted DNA from
fecal samples of NR-treated and control mice (n = 6) and subjected it to paired-end
shotgun metagenomic sequencing using the NovaSeq Illumina platform (see Materials
and Methods). Eighty-eight metagenome-assembled genomes (MAGs) were generated
using CONCOCT, followed by manual refinement (Table S1). Based on available sam-
ples from all cohorts on day 168, we found that NR-treated mice exhibited a unique
gut microbiota composition in comparison to controls (Fig. 2A; permutational multivar-
iate analysis of variance [PERMANOVA], *, P, 0.05).

To further discern the microbiome taxonomical differences, we used the linear dis-
criminant analysis (LDA) effect size (LEfSe) algorithm to determine discriminatory MAGs
enriched in each treatment group. Two MAGs belonging to the phyla Proteobacteria (P)
and Actinobacteria (A) were enriched in control-treated mice (Unknown_Burkholderiales
and Atopobium, respectively), whereas the NR-treated mice exhibited enrichment of 12
MAGs, all belonging to the Firmicutes (Fig. 2B; Fig. S2).

Firmicutes are major butyrate producers in the gut, whereas members of the
Proteobacteria are known to oxidize butyrate for growth (28, 29). This led to the hy-
pothesis that dietary NR supplementation enriches for Firmicutes capable of butyrate
synthesis. To test this, we searched for KEGG orthology genes (KOs) involved in butyr-
ate biosynthesis pathways in the enriched MAGs of each treatment group (Fig. S3),
and we found a total of 27 KOs. The enriched Firmicutes MAGs within the NR-treated
group included KOs from the acetyl coenzyme A (acetyl-CoA) butyrate synthesis
pathway (Fig. S3). For the MAGs enriched in control mice, we identified only the hbd
gene from the acetyl-CoA pathway and the genes etfA and etfB, which catalyze the
conversion of crotonoyl-CoA into butyryl-CoA, a common step among the four
known butyrate synthesis pathways (29).

Based on the observed enrichment for butyrate biosynthetic genes, we predicted
that stool might contain elevated butyrate in NR-treated animals. Thus, we conducted
liquid chromatography-mass spectrometry (LC-MS) metabolomics profiling to deter-
mine short-chain fatty acid (SCFA) levels in stool. We found a significant increase in
fecal propionate, butyrate, valerate, and isobutyrate in NR-treated mice compared to
that in controls (Fig. 2C), whereas no significant differences between treatment groups
were found in fecal acetate, isovalerate, caproate, and heptanoate (Fig. S4). Together,
these results indicate that dietary NR supplementation enriches for butyrate-producing
Firmicutes.

Considering that NR-treated mice exhibited significant compositional differences
regarding butyrate biosynthetic genes and composition, we searched for additional
functional differences by implementing the LEfSe algorithm at the category 3 pathway
level (Fig. 2D). We found 11 pathways enriched in NR-treated MAGs, including ABC
transporters, two-component systems, transporters, flagellar assembly, prokaryotic
defense systems, quorum sensing, pentose and glucuronate interconversions, protein
kinases, inositol phosphate metabolism, and biofilm formation pathways also found in
Escherichia coli and Pseudomonas aeruginosa. In control mice, we found 11 pathways
enriched, including amino acid-related enzymes, alanine, aspartate, and glutamate me-
tabolism, arginine biosynthesis, aminoacyl tRNA biosynthesis, tRNA biogenesis, mRNA
biogenesis, glyoxylate and dicarboxylate metabolism, pantothenate and CoA biosyn-
thesis, RNA degradation, translation factors, and one carbon pool by folate.

Given that NR supplementation causes major functional alterations in the murine
gut microbiome, we investigated discriminant features by implementing LEfSe on the
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FIG 2 NR supplementation alters the gut microbiota compositional and functional profiles. To study the gut microbiota composition, feces from
NR-treated (n = 6) and control (n = 6) mice were collected and subjected to shotgun metagenomic sequencing. (A) Principal-coordinate analysis

(Continued on next page)
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KOs from the enriched pathways (Fig. 2D). We identified 90 discriminant genes, which
were then used to generate a distance matrix and gene network. We used Cytoscape
to visualize, annotate, and apply the compound spring embedded (CoSE) layout. We
found higher correlation values between KOs enriched within the same treatment
group. In this manner, we found 41 enriched KOs in the NR-treated group and 49 dis-
criminant KOs in the control group (Fig. 2E). These results further illustrate that dietary
NR supplementation alter the murine gut microbiome compositional and functional
profiles.

NR-conditioned FMT reduces weight gain caused by a HFD. Butyrate producers
are known to decrease weight gain when used as a supplement in a diet-induced obe-
sity (DIO) mouse model (30). Furthermore, because NR treatment increases energy ex-
penditure (15, 16) and leads to an enrichment of butyrate producers, we hypothesized
that the NR-conditioned microbiota contributes to the amelioration of high-fat diet
(HFD)-induced weight gain. To test this hypothesis, we performed a fecal material
transfer (FMT) from control or NR-treated donors into a cohort of naive recipients fed
the same 60% HFD (Fig. 3A). An FMT from NR-treated mice into naive recipients (FMT-
NR) was sufficient to reduce the HFD-induced weight gain (Fig. 3B). In contrast to die-
tary supplementation, a significant body weight difference of 2.2 g was observed at
35 days following the FMT from NR donor mice relative to controls (Fig. 3C). Mice
receiving NR-conditioned FMT had a 22.33% increase in body mass compared to a
28.85% increase for the FMT-control group (Fig. 3D). These results indicate that the
microbiota from NR-treated mice is sufficient to reduce HFD-induced weight gain by
6.52%. It is worth noting that in contrast to NR supplementation, the FMT from NR-
treated mice did not influence fasting blood glucose levels (Fig. S1).

NR-conditioned FMT remodels the gut microbiome similarly to NR
supplementation. Because NR supplementation altered the gut microbiota and the
FMT was effective in ameliorating weight gain, we assessed the microbiome after
35 days of FMT. By following the same approach described for the dietary supplementa-
tion, we performed shotgun metagenomic sequencing to assess the overall functional
capacity of the resulting microbiota. We used the Illumina NovaSeq technology with
paired-ended reads and a target of 10 million reads. Seventy-eight MAGs were gener-
ated using CONCOCT, followed by manual refinement (Table S2). We found that mice
receiving the FMT from NR-treated donors (FMT-NR) exhibited a unique gut microbiota
composition compared to mice receiving the FMT from control donors (FMT-control) at
day 35 (Fig. 4A; PERMANOVA, *, P, 0.05).

To investigate taxonomical differences between treatment groups, we imple-
mented LEfSe and identified 21 discriminatory MAGs (Fig. 4B and Fig. S2). The MAGs
Burkholderiales and Lachnospiraceae_bacterium_28_4 were enriched in FMT-control
mice, which belong to the Proteobacteria and Firmicutes phyla, respectively. For the
FMT-NR mice, we found 19 discriminatory MAGs all belonging to Firmicutes, with vari-
ous predicted butyrate producers. These results suggest that as with dietary NR sup-
plementation, FMT-NR treatment enriches for members of the Firmicutes, with butyr-
ate production capability.

FIG 2 Legend (Continued)
(PCoA) plot of Bray-Curtis distances illustrating differences in the gut microbiome between treatment groups at day 168. By implementing shotgun
metagenomic sequencing, we found that NR-treated mice (red) exhibited a unique gut microbiome (PERMANOVA; *, P , 0.05) compared to
control mice (cyan). (B) Anvi’o plot illustrating the relative abundance of 14 discriminatory MAGs identified by linear discriminant analysis effect
size (LEfSe). The LEfSe analysis was performed using all 88 MAGs. MAGs are ordered by phylogenetic tree. Taxon names highlighted in cyan
represent MAGs enriched in control mice, whereas the taxon names highlighted in red were found enriched in NR mice. The majority of MAGs belong
to the Firmicutes phylum, whereas the MAGs Unknown_Burkholderiales and Atopobium belong to Proteobacteria and Actinobacteria, respectively. (C)
Fecal SCFA concentrations. NR-treated mice exhibited a significant increase in fecal propionate, butyrate, valerate, and isobutyrate compared to control
mice. All values were normalized by milligram of feces. Data were analyzed by an unpaired t test with Welch’s correction (*, P , 0.05). All data are
represented as the mean 6 SEM. (D) Discriminant KEGG pathways enriched in NR-treated mice and control mice. The Q2Q3 coverage (defined by anvi’o
as the average depth of coverage excluding nucleotide positions with coverages in the 1st and 4th quartiles) of KEGG pathways was analyzed using
LEfSe. The significant LDA scores are colored cyan for the control group, whereas the scores for the NR-treated mice are colored red. (E) Network
visualization of discriminant KOs enriched in NR-treated and control mice. We performed LEfSe on all KOs from enriched pathways and found 90
discriminant KOs. The network was visualized and annotated in Cytoscape. Node size represents LDA scores from discriminant KOs, whereas the edge
width represents r values calculated from Pearson correlations (0.8 cutoff). The compound spring embedded (CoSE) layout was applied to the network.
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FIG 3 NR-conditioned fecal material transfer reduces HFD-induced weight gain. (A) Six-week-old male C57BL/6J
mice fed a 60% HFD were on a baseline period for 3 weeks. Mice were weight matched, randomized, and
divided into groups. Mice received 0.1 g feces/mL PBS from either NR-treated or control donors daily via oral
gavage. Mice were housed in metabolic cages (M) during baseline and at the end of the experiment. Feces
were collected for shotgun metagenomic sequencing at day 35. (B) Naive mice treated daily with feces from NR-
treated donors (FMT-NR, red, n = 9) exhibited a reduction in weight gain relative to naive mice receiving feces
from control donors (FMT-control, cyan, n = 9). Data were analyzed by two-way ANOVA (*, P , 0.05). (C) At day
35, there was a weight gain difference of 2.2 g between groups. Data were analyzed by an unpaired t test with
Welch’s correction (*, P , 0.05). (D) At day 0, no statistically significant differences in body mass were found
between groups. After 35 days of FMT-NR treatment, there was a significant reduction in body mass relative to
that of the control. Data were analyzed by an unpaired t test with Welch’s correction (*, P , 0.05). All data are
represented as the mean 6 SEM.
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FIG 4 NR-conditioned fecal material transfer remodels the gut microbiome similarly to NR supplementation. (A) Principal-
coordinate analysis (PCoA) plot of Bray-Curtis distances illustrating differences in the gut microbiome at day 35 from shotgun

(Continued on next page)
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By following the same analysis workflow as with the dietary NR supplementation,
we searched for KOs in butyrate-producing pathways within the enriched MAGs.
Overall, we found a total of 33 KOs that are part of the butanoate metabolism pathway.
The most common butanoate KOs found within the enriched Firmicutes MAGs belong
to the acetyl-CoA pathway (Fig. S3). For the Proteobacteria MAG, we found only the
genes etfA and etfB, which convert crotonoyl-CoA into butyryl-CoA.

As described above, we conducted LC-MS metabolomics profiling to determine
SCFA levels in stool following fecal material transfer from donors. In contrast to the
observations for NR-supplemented mouse stool samples which were used as donor
material, no significant differences for the recipients were identified for fecal SCFAs,
including propionate, butyrate, valerate, and isobutyrate (compare Fig. 2C and Fig. 4C),
nor for acetate, isovalerate, caproate, and heptanoate (Fig. S4). Together, these results
suggest that daily FMT from NR-treated donors results in enrichment of genes for bu-
tyrate production in Firmicutes, but there were no significant differences in SCFA levels.

Considering that daily FMT-NR treatment caused taxonomical differences, we
hypothesized that the FMT-NR mice would also exhibit functional differences com-
pared to FMT-controls. To test this hypothesis, we performed a functional analysis at
the category 3 pathway level using the LEfSe algorithm. We found 10 pathways
enriched in FMT-NR mice, including bacterial motility, flagellar assembly, two-compo-
nent systems, quorum sensing, biofilm formation, vancomycin resistance, porphyrin
and chlorophyll metabolism, DNA replication proteins, transcription machinery, and
bacterial secretion systems (Fig. 4D). For the FMT-control, we found six pathways
enriched, including ribosome production, homologous recombination, lipopolysaccha-
ride (LPS) biosynthesis, galactose metabolism, fatty acid biosynthesis, and amino sugar
and nucleotide sugar metabolism (Fig. 4D). These results suggest that daily FMT-NR
treatment alters the functional profile of the murine gut microbiome in comparison to
that of controls.

Lastly, since FMT-NR supplementation causes major functional alterations in the
murine gut microbiome, we investigated discriminant features by implementing LEfSe
with the KOs from the enriched pathways (Fig. 4D). We identified 72 discriminant
genes, which were then used to generate a distance matrix and gene network.
Furthermore, we used Cytoscape to visualize, annotate, and apply the compound
spring embedded (CoSE) layout. Similar to the results shown in Fig. 2E, we found
higher correlation values between KOs enriched within the same treatment group.
Specifically, we found 28 discriminant genes in the FMT-control mice and 44 discrimi-
nant genes in FMT-NR mice (Fig. 4E). These results further demonstrate that daily FMT-
NR treatment alters the murine gut microbiome compositional and functional profiles.

NR supplementation decreases energy efficiency in mice fed a high-fat diet.
Studies have shown that NR treatment significantly increases energy expenditure and
induces thermogenesis in mice (15, 16). To probe the underlying mechanism of weight
gain in our study, we assessed energy intake as described previously (31, 32). Mice
were housed in metabolic cages to allow quantitative measurements of food and

FIG 4 Legend (Continued)
metagenomic sequencing. By implementing shotgun metagenomic sequencing, we found that FMT-NR-treated mice (red)
exhibited a unique gut microbiome (PERMANOVA; *, P , 0.05) in comparison to FMT-control mice (cyan). (B) Anvi’o plot
illustrating the relative abundance of 21 discriminatory MAGs identified by LEfSe. The analysis was performed using all 78 MAGs.
MAGs are ordered by phylogenetic tree. Taxon names highlighted in cyan represent MAGs enriched in FMT-control mice, whereas
the taxon names highlighted in red were found enriched in FMT-NR mice. The majority of MAGs belong to the Firmicutes phylum,
whereas the Burkholderiales MAG belongs to the Proteobacteria phylum. (C) Fecal SCFA concentrations. No significant differences
between FMT-NR-treated and FMT-control mice were found in fecal propionate, butyrate, valerate, and isobutyrate. All values were
normalized by milligram of feces. Data were analyzed by an unpaired t test with Welch’s correction (*, P , 0.05; ns,
nonsignificant). All data are represented as the mean 6 SEM. (D) Discriminant KEGG pathways enriched in FMT-NR-treated mice
and FMT-control mice. The Q2Q3 coverage of KEGG pathways was analyzed by LEfSe. The significant LDA scores are shown in
cyan for pathways enriched in the FMT-control mice, whereas the pathways enriched in FMT-NR mice are shown red. (E) Network
visualization of KOs enriched in FMT-NR-treated and FMT-control mice. We performed LEfSe on all KOs from discriminant pathways
and found 72 discriminant KOs. The network was visualized and annotated in Cytoscape. The node size represents LDA scores
from discriminant KOs, whereas the edge width represents r values calculated from Pearson correlations (0.7 cutoff). The
compound spring embedded (CoSE) layout was applied to the network.
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water intake and fecal and urine output. Feces were collected and combusted using a
bomb calorimeter to determine fecal energy content and to calculate calories
absorbed and digestive efficiency. The results indicate that NR-induced deflection of
weight gain was not due to significant differences in food consumption (Fig. 5A), calo-
ries absorbed (Fig. 5B), or digestive efficiency (Fig. 5C). However, an NR-dependent
reduction in energy efficiency, the rate of weight gain per calorie absorbed throughout
the intervention period of time, was observed (Fig. 5D; P = 0.05). Since both groups
consumed the same amount of food, absorbed the same number of calories, and
exhibited similar digestive efficiencies, we conclude that NR-treated mice gain less
weight due to an increased energy expenditure. In other words, NR-treated mice burn
more calories than control mice, thus gaining less weight. Our results are consistent
with dietary NR supplementation reducing HFD-induced weight gain likely through an
increase in energy expenditure.

NR-conditioned FMT increases energy expenditure. While NR supplementation
has been shown to increase energy expenditure in mice (15, 16), the relationship
between the gut microbiome and energy expenditure is not well understood. Our lab-
oratory demonstrated previously that an FMT from risperidone-treated mice into naive
recipients is sufficient to suppress energy expenditure through a reduction in nonaero-
bic resting metabolic rate (19). In contrast, the short-chain fatty acid (SCFA) butyrate
prevents diet-induced obesity and insulin resistance and is thought to do so by pro-
moting energy expenditure (33). Because NR treatment led to an enrichment of butyr-
ate producers, we hypothesized that the NR-conditioned microbiota contributes to the
amelioration of HFD-induced weight gain via increased energy expenditure. Following
the same methodology as that described in the legend to Fig. 5, we employed meta-
bolic cages and bomb calorimetry to measure energy efficiency in the FMT cohort. We
did not find significant differences between treatment groups in food consumption
(Fig. 6A), calories absorbed (Fig. 6B), or digestive efficiency (Fig. 6C). However, FMT-NR-
treated mice exhibited a statistically significant decrease in energy efficiency compared

FIG 5 NR supplementation decreases energy efficiency in HFD-fed mice. To understand the underlying
mechanism of weight gain, mice were housed in metabolic cages to quantitatively assess food and
water intake and urine and fecal output. Feces were subjected to bomb calorimetry. No significant
differences between treatment groups were found in food consumption (A), energy absorbed (B), or
digestive efficiency (C). (D) NR-treated mice exhibited a decrease in energy efficiency compared to
control mice (P value = 0.05). All data are represented as the mean 6 SEM. Data were analyzed by an
unpaired t test with Welch’s correction (*, P , 0.05).
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to FMT-control mice (Fig. 6D), suggesting that the reduction in HFD-induced weight
gain is likely due to an increase in energy expenditure, similar to that with dietary NR
supplementation (Fig. 5D). These results suggest that NR-conditioned FMT is sufficient
to increase energy expenditure and deflect HFD-induced weight gain.

NR-conditioned FMT alters NADH/NAD+ ratios in the cecum. The gut microbiota
metabolizes dietary components and xenobiotics and produces SCFAs, vitamins, and
other metabolites that are taken up by the host. A recent study showed that the colonic
microbiota influences systemic NAD1 metabolism by boosting the hepatic NAD1 biosyn-
thesis in mice treated with NR (34). Furthermore, NR, which can be metabolized and pro-
duced by bacteria (13, 35–38), increases NAD1 levels in metabolic tissues and subse-
quently improves host metabolism (15, 25, 26). Thus, to evaluate how FMT-NR influences
host and microbial metabolism, we assessed NAD1 and NADH levels in the gut. We
selected the cecum because it has a high bacterial density and serves as a major site of di-
etary fermentation, which makes it an important metabolic organ (39–41). We harvested
the ceca, separated the cecal contents from the tissue, and assessed the NAD1 and
NADH levels of the cecal tissue (as a readout for host metabolism) and cecal contents (as
a readout for bacterial metabolism) using a colorimetric kit (see Materials and Methods)
(Fig. 7A). We found no statistical differences in the NAD1 or NADH levels in the cecal tis-
sue (Fig. 7B). In the cecal contents, there were no significant differences in NAD1 levels
between treatment groups; however, there was a significant increase in the NADH level
in FMT-NR mice (Fig. 7C). These results demonstrate that daily NR-conditioned fecal mate-
rial transfer is capable of altering microbial metabolism in the cecum.

DISCUSSION

In this study, we employed a diet-induced obesity (DIO) mouse model to investigate
whether the benefits of dietary nicotinamide riboside (NR) supplementation are, in
part, mediated through the gut microbiota. For decades, mouse DIO models have

FIG 6 NR-conditioned fecal material transfer decreases energy efficiency. To understand the underlying
mechanism of weight gain, mice were housed in metabolic cages and feces were subjected to bomb
calorimetry. No significant differences between treatment groups were found in food consumption (A),
energy absorbed (B), or digestive efficiency (C). (D) FMT-NR-treated mice (red) exhibited a statistically
significant decrease in energy efficiency compared to FMT-control mice (cyan). This suggests that the
reduction in weight gain is likely due to an increase in energy expenditure. Data are represented as the
mean 6 SEM. Data were analyzed by an unpaired t test with Welch’s correction (*, P , 0.05).

NR-Conditioned Microbiota Deflects Weight Gain in Mice

January/February 2022 Volume 7 Issue 1 e00230-21 msystems.asm.org 11

https://msystems.asm.org


been used, as they closely mimic the pathophysiological progression of obesity in
humans. We used the D12492 diet to induce obesity in mice, which has 60% of the die-
tary energy coming from fat. Both dietary NR supplementation and NR-conditioned
fecal material were sufficient to deflect weight gain induced by the high-fat diet. The
observed reductions, in both experiments, are attributable to reduced energy effi-
ciency (Fig. 5D and 6D): there was no significant difference in food intake, calories
absorbed, or digestive efficiency. Thus, reduced weight gain in response to NR treat-
ment or to the FMT from NR donors occurs by an increase in energy expenditure for
the host. Furthermore, because there were no significant differences observed for
SCFAs in the FMT recipients, the observed weight reduction may not depend on the
SCFA metabolites per se but on other factors attributable to altered microbial composi-
tion. Overall, the NR-conditioned microbiota appears to be a reservoir for potential
therapeutics to curb diet-induced obesity and should be explored in further detail.

Fecal material transfers (FMTs) have gained popularity due to their capability of restor-
ing a dysbiotic gut microbiota. However, the International Scientific Association for
Probiotics and Prebiotics (ISAPP) does not recognize the procedure as a probiotic due to
their uncharacterized and potentially hazardous composition (42, 43). In this study, we
employed an FMT approach to show that the gut microbiome contributes to the NR-de-
pendent reduction of HFD-induced weight gain. However, deep sequencing of the input
and output stool revealed valuable information about the taxonomic and functional
capacity of the NR-conditioned microbiota that could lead to the discovery of a defined
probiotic to curb HFD-induced weight gain. For example, NR supplementation leads to

FIG 7 NR-conditioned fecal material transfer alters NAD1/NADH ratios in the cecum. (A) Mouse ceca
were harvested, flash-frozen in liquid nitrogen, and stored at 280°C until processed. Cecal contents
were separated from the tissue, and these were processed separately. Samples were equally split in
half. To extract NAD1 and NADH metabolites, acidic and basic extractions were performed,
respectively, from both the cecal tissue and the cecal contents. (B) FMT-NR-treated mice (red squares)
and FMT-control mice (cyan squares) exhibited similar NAD+ levels in the cecal tissue. FMT-NR-
treated mice (red squares) and FMT-control mice (cyan squares) exhibited similar NADH levels in the
cecal tissue. (C) FMT-NR-treated mice (red squares) and FMT-control mice (cyan squares) exhibited
similar NAD+ levels in the cecal contents. FMT-NR-treated mice (red squares) exhibited a significant
increase in NADH levels in the cecal contents compared to FMT-control mice (cyan squares). Data are
represented as the mean 6 SEM. Data were analyzed by an unpaired t test with Welch’s correction
(*, P , 0.05).
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enrichment of butyrate-producing Firmicutes (Fig. 2B; see Fig. S3 in the supplemental ma-
terial). Bacterially produced butyrate is the primary energy source of colonocytes (44),
plays a role in cell differentiation (45, 46), is a histone deacetylase (HDAC) inhibitor (47),
and strengthens the epithelial gut barrier (48), among other functions. Further, we found
an enrichment of Romboutsia (Fig. 2B) in the feces of NR-treated mice, and Romboutsia
produces butyrate (49) and was found enriched when HFD-induced weight gain was
deflected with hydroxysafflor yellow A (safflomin A) (50). Therefore, Romboutsia spp.
could represent a probiotic candidate to ameliorate weight gain induced by HFD, perhaps
through the production of butyrate. Indeed, NR supplementation led to increased SCFAs
found in feces (Fig. 2C). However, the FMT-NR mice did not exhibit increased levels of
fecal butyrate or other SCFAs but displayed increased NADH levels in the cecal contents
(Fig. 7C). Overall, the results suggest that distinct gut microbial communities following NR
treatment or FMT from NR-treated donors alter gut flora to affect host energy efficiency
and corresponding changes in body mass.

Further mining of our metagenomics data sets allows us to speculate on additional
biological features that may play a role in reducing diet-induced weight gain. For
instance, the feces of NR-treated mice are enriched for KEGG identifiers K02052 and
K02055, which are annotated as a putative spermidine/putrescine ABC transporters.
Spermidine and putrescine are polyamines that can be synthesized de novo by gut
bacteria or host cells or can be acquired through the diet (51, 52). In fact, high levels of
polyamines in metabolically active tissues can stimulate energy expenditure and ameli-
orate diet-induced obesity (52–56). Further, administration of spermidine into diet-
induced obesity mouse models effectively decreases weight gain and ameliorates he-
patic steatosis (52–54). Therefore, we speculate that NR supplementation reshapes the
gut microbiome such that bacteria can produce and metabolize polyamines, which
might contribute to the reduced weight gain phenotype. In this context, bacterially
derived polyamines and respective transporter genes could be important bacterium-
specific targets for the development of antiobesity therapeutics.

Another example of NR-specific biological features that imply bacterially derived
molecules as potential contributors to the reduced weight gain phenotype are the
genes nisK, nisR, nukF, and nukG. The nis genes encode a two-component system (TCS)
for the autoregulation of nisin production, while the nuk genes encode members of
the self-protection system against the lantibiotic nukacin ISK-1. Both nisin and nukacin
ISK-1 are class I bacteriocins, or lantibiotics, known to have antimicrobial activity by in-
hibiting cell wall synthesis (57). We found an NR-dependent enrichment of these genes
(or its close relatives), which could indicate a survival advantage to sensing and pro-
ducing lantibiotics in the NR-treated gut. Several studies have suggested the use of
lantibiotics as tools for manipulation of dysbiotic microbiota that arises with metabolic
diseases, such as obesity and T2D (58–61). Therefore, lantibiotics and lantibiotic-pro-
ducing bacteria could be used to reshape the gut microbiota into a nondysbiotic state.
Together, our metagenomics data support the notion of NR reshaping the microbiota
to produce small molecules that further interact with the microbiota and the host to al-
ter metabolism and physiology.

Obesity arises from a chronic imbalance in energy, which in part can be modulated
by the gut microbiome through the metabolism of polysaccharides and other sub-
strates, thus contributing to digestive efficiency, a component of energy balance of the
host (62). In mice, the cecum, which accounts for approximately 1% of body mass (63),
is a major site for bacterial fermentation and production of SCFAs and other metabo-
lites. Furthermore, HFD feeding reduces cecal mass, alters bacterial physiology (64),
and reduces NAD1 levels, thus affecting energy homeostasis in key metabolic tissues
(15). In this study, we used NAD(H) metabolites as a proxy of host and microbial metab-
olism in the cecal tissue and cecal contents, respectively. While FMT-NR treatment
does not affect NAD1 or NADH levels of the cecum tissue, in the cecal contents of
FMT-NR mice, we found an increase in NADH levels, which suggests an altered micro-
bial metabolism. Our energy flux data do not show any differences in digestive
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efficiency between FMT-NR and FMT-control mice, but FMT-NR mice do show a reduc-
tion in energy efficiency. The fact that NR-conditioned microbiota is sufficient to
deflect weight gain and increase energy expenditure demonstrates that the gut micro-
biota may represent a thermogenic biomass itself (62). However, our experiments do
not distinguish between the host or the bacteria burning additional calories following
the NR-conditioned FMT. Additional experimentation is required to establish the fac-
tors responsible for the change in energy expenditure. Nevertheless, our results sup-
port the hypothesis that bacterial energy flux is changing and that modulation of bac-
terial energy expenditure contributes to the reduction in HFD-induced weight gain.
Furthermore, we conclude that the NR-conditioned fecal and cecal microbiota may be
a reservoir for potential therapeutics that can be used to enhance the beneficial effects
of NR and/or to curb diet-induced obesity.

MATERIALS ANDMETHODS
Animal experiments. (i) Dietary NR supplementation experiment. Six-week-old male C57BL/6J

mice from the Jackson Laboratory were individually housed at the Medical College of Wisconsin (MCW)
in a standard 12-h dark–12-h light cycle with ad libitum access to a 60% high-fat diet (Research Diets;
D12492) and sterile water. Mice were weight matched, randomized, and divided into two treatment
groups, control or NR. To prepare NR food, 4 g NR chloride (Niagen; ChromaDex, Inc.) was dissolved in
40 mL of sterile water and mixed with 1 kg of diet. Food was placed in ice cube trays and frozen at
280°C. To control for food processing, 1 kg of HFD control food was mixed with 40 mL of water and
processed in the same fashion without the addition of NR.

(ii) Fecal material transfer experiment. Six-week-old C57BL/6J male mice from the Jackson Laboratory
were individually housed at MCW in a standard 12-h dark–12-h light cycle with ad libitum access to a 60%
high-fat diet (Research Diets; D12492) and sterile water. Mice were weight matched, randomized, and di-
vided into two treatment groups, FMT-NR and FMT-control.

Fresh fecal slurries were prepared daily using 0.1 g of donor stool/mL sterile PBS, which was homog-
enized and spun down at 1,000 � g for 5 min. One hundred microliters of supernatant was transferred
via oral gavage.

(iii) Ethical approval. All procedures were approved by the Medical College of Wisconsin Animal
Care and Use Committee in compliance with the National Institutes of Health Guide for the Care and Use
of Laboratory Animals. The NR-HFD supplementation experiment was performed once due to the time
required to induce statistically significant differences in weight relative to controls. These mice served as
fecal donors for naive recipients in the FMT experiment.

Fasting blood glucose. After the mice were fasted for 6 h, a small incision was made in the tail vein
and a drop of blood was applied to a glucometer (OneTouch Ultra 2; LifeScan) to determine blood glu-
cose concentration.

DNA extraction and metagenomics sequencing and analyses. (i) Fecal collection and DNA
extraction. Mice were individually placed in sterile 500-mL beakers for 2 h to collect fresh stool. Eight
pellets of stool were subjected to DNA extraction using the PowerSoil DNA isolation kit (QIAGEN) by fol-
lowing the manufacturer's instructions.

(ii) Shotgun metagenomics. Twenty-four fecal samples from the dietary and FMT experiments were
subjected to 2 � 150 paired-end shotgun metagenomics sequencing using the Illumina NovaSeq plat-
form by the University of Wisconsin–Madison Biotechnology Center (Table 1). Generated reads were
trimmed using Trimmomatic (version 0.38) (65) to remove low-quality reads. Forward and reverse reads
were merged using Illumina-utils (version 1.5.0) (66) and then subsampled to the lowest number of

TABLE 1Metagenomics analysis pipeline resultsa

Step

Value for:

Dietary expt (12 samples
from day 168)

FMT expt (12 samples
from day 35)

Total raw reads (no.) 171,675,983 184,716,444
Surviving reads (no.) 165,049,327 177,226,972
Merged reads (no.) 70,902,004 75,781,814
Subsampled merged reads
(no. of reads/sample)

5,420,903 4,990,676

Total contigs (no.) 78,360 69,790
N50 (bp) 6,873 6,657
Genomes (no.) 88 78
aTotal raw reads were trimmed using Trimmomatic to remove low-quality reads. The surviving forward and
reverse reads were merged using Illumina-utils and then subsampled to the lowest number of reads per sample
using Mothur. After coassembly, HMMs were implemented to estimate the number of unique genomes present
in each data set.
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reads per sample using Mothur (version 1.35.1) (67). Reads from all samples were coassembled using
MegaHit (version 1.1.1) (68, 69), resulting in a single contigs file. The contigs file was simplified using the
anvi-script-reformat-fasta, which is part of Anvi’o (version 5.4) (70), and was then indexed using Bowtie2
(version 2.2.8) (71). Individual sample read files were mapped back to the contigs file, also using Bowtie2
(71) and samtools (version 1.3) (72). The resulting BAM files provided sample information in comparison
to the whole. Anvi’o was used to create a contigs database, which calculated k-mer frequencies for each
contig, identified open reading frames (ORFs) using Prodigal (73), and split the contigs into 20,000-bp
regions (70). Anvi’o was used to run hidden Markov models (HMMs), which searched for single-copy
genes to predict the number of total genomes present (70). Protein annotation was added using COGs
(74), Pfam (75), and InterproScan (76). Taxonomic identity was added using KAIJU (version 1.7.2) (77).
Profile databases were generated for each sample using Anvi’o; these databases store sample-specific in-
formation about the contigs, such as mean coverage, standard deviation of coverage, and single nucleo-
tide variant information (70). The individual profiles were merged into one profile with hierarchical clus-
tering. Downstream visualization, binning, and analyses were performed using Anvi’o (70). Automatic
binning of splits into population genomes was performed using CONCOCT (version 0.4.1) (78). Bins (.2-
Mb long) were manually curated to decrease redundancy (,10%) and increase completion (.50%) of
metagenome-assembled genomes (MAGs). We assessed the quality of these MAGs using the four previ-
ously published bacterial single-copy core gene collections found in Anvi’o (79).

(iii) LEfSe analysis. MAGs were subjected to the LDA effect size (LEfSe) (80) algorithm to identify dis-
criminant features. The alpha value for the factorial Kruskal-Wallis test among classes and for the pairwise
Wilcoxon test between subclasses was set to 0.05. The threshold on the logarithmic LDA score for discrimi-
native features was set to 2.0. The analysis was run on the https://huttenhower.sph.harvard.edu/galaxy/ site.

(iv) KEGG functional analysis. The mean coverage of genes and functional annotations were
exported from Anvi’o as tables. Using in-house python scripts, we matched the mean coverage to the
corresponding gene annotations (KEGG database) and normalized it to mapped reads per sample. The
data were formatted to have the features (pathways and KOs) as rows and the subjects as columns. We
removed category 3 pathways that did not belong to bacterial annotations, and the remaining ones
were analyzed using LEfSe. The KOs from enriched pathways were analyzed using LEfSe.

(v) Cytoscape network analysis. The discriminant KOs identified by LEfSe were used to generate a
network analysis using the following python modules: pandas, numpy, matplotlib.pyplot, and network.
The network was reformatted and imported into Cytoscape, where the compound spring embedded
(CoSE) layout was applied. The node size represents the LDA score (LEfSe analysis), and the edge width
represents the r value (Pearson’s correlation). We set a cutoff of 0.7 for the r values to decrease the num-
ber of edges and improve the visualization of the network.

(vi) Butyrate KO analysis. We annotated microbial genes using Kyoto Encyclopedia of Genes and
Genomes (KEGG) orthology (KEGG orthology genes [KOs]). To identify discriminant KOs from butyrate
production pathways in the enriched MAGs, we implemented LEfSe on the following KOs: K00004,
K00019, K00074, K00100, K00132, K00169, K00170, K00171, K00172, K00174, K00175, K00209, K00239,
K00240, K00241, K00244, K00246, K00626, K00634, K00656, K00823, K00929, K01027, K01029, K01034,
K01035, K01039, K01040, K01580, K01615, K01640, K01641, K01715, K03366, K03737, K04072, K04073,
K07246, K07250, K07516, K14534, K17865, K18118, K18119, K18120, K18121, K18122, K18366, K19709,
K20509, K23351, K23352, K00248, K03522, and K03521.

NAD(H) levels of cecal tissue and cecal contents. Ceca were harvested, flash-frozen in liquid nitro-
gen, and stored at 280°C until processed. Cecal tissue was separated from the cecal contents by push-
ing out the feces and washing the tissue in sterile ice-cold phosphate-buffered saline (PBS). Cecal tissue
and cecal content samples were split in half, and these metabolites were extracted in either acidic
(NAD1) or basic (NADH) buffers by following the manufacturer’s protocol (EnzyChrom NAD/NADH;
BioAssay Systems).

Energy flux assessment. Mice were singly housed in metabolic cages (Nalgene) for 3 to 4 days to
monitor daily water, food intake, and urine and fecal output. Feces were collected and combusted in a
bomb calorimeter to calculate the digestive efficiency and energy efficiency.

The caloric densities of food and feces were determined using a 50 mg semi-micro bomb calorimeter
(19, 31). The following formula was used to calculate energy absorption:

calories absorbed ¼ energy consumed2 fecal energy

Energy consumed was calculated by multiplying the dry mass of food by the caloric density of dry
food, whereas fecal energy was calculated by multiplying the dry mass of feces by the caloric density of
desiccated feces.

The following formulas were used to calculate digestive and energy efficiencies:

digestive efficiency ¼ calories absorbed
calories consumed

energy efficiency ¼ DbodymassX
calories absorbed

Measurement of SCFAs. (i) Sample preparation. Samples were analyzed for short-chain fatty acids
(SCFAs) using a modified version of a previously described protocol (81). Approximately 50 mg of fecal
material was weighed into a tared 1.5-mL Eppendorf tube. Two hundred forty microliters of water and
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560 mL of acetonitrile containing internal standards (500 mM D4-acetic acid, 250 mM D7-butyric acid,
and 6.25mM D11-hexanoic acid) were added to each sample. Samples were homogenized by probe sonica-
tion for 20 s using a Branson 450 Sonifier set at power level 4, duty cycle 40%. Samples were centrifuged at
15,000 relative centrifugal force (rcf) at 4°C for 10 min, and 80 mL of supernatant was transferred to a 1.8-
mL glass autosampler vial. To this vial was added 15 mL of 200 mM 3-nitrophenylhydrazine (3-NPH) in 1:1
acetonitrile-water and 15 mL of 120 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in 1:1 acetonitrile-
water with 6% pyridine. Samples were capped, vortexed, and placed in a warming oven at 40°C for 30 min.
Once derivatization was complete, the samples were cooled and diluted by the addition of 800mL of 90/10
water-acetonitrile; the samples were recapped and submitted to LC-MS analysis. A standard curve was pre-
pared identically to that for cecal samples, with substitution of 80 mL volatile fatty acid mix (Sigma
CRM46975) diluted to concentrations ranging from 3mM to 3,000mM.

(ii) LC-MS analysis. Samples were analyzed using an Agilent (Santa Clara, CA) 1290 liquid chromato-
graph (LC) coupled to an Agilent 6490 triple quadrupole mass spectrometer (MS). The chromatographic
column was a Waters (Milford, MA) HSS T3, 2.1 mm by 100 mm, with a 1.7-mm particle size. Mobile phase
A was 0.1% formic acid in water; mobile phase B was 0.1% formic acid in methanol. The gradient was as
follows: linear ramp from 15% to 80% B from 0 to 12 min; step to 100% B from 12 to 12.1 min; hold
100% B from 12.1 to 16 min; step to 15% B from 16 to 16.1 min; hold 15% B from 16.1 to 20 min. The
injection volume was 5 mL, and the column temperature was 55°C. MS parameters were as follows: gas
temp, 325°C; gas flow, 10 L/min; nebulizer, 40 lb/in2; capillary voltage, 4,000 V; scan type, MRM; nega-
tive-ion mode, delta EMV 600. Quantitation was performed using Agilent MassHunter Quantitative
Analysis software version 8.0 by measuring the ratio of peak area of the 3-NPH derivatized SCFA species
to its closest internal standard (by retention time). Linear standard curves were used to estimate SCFA
concentrations in the extract, which were normalized to the measured mass of fecal contents.

Statistics. Weight gain progression was analyzed using two-way analysis of variance (ANOVA) with
repeated measures, followed by Tukey’s multiple-comparison procedures. We implemented an unpaired
t test with Welch’s correction for weight gain, body mass comparisons, metabolic assessment, and NAD
(H) levels. Significance was assigned at a P of ,0.05 (indicated by an asterisk in figures). Data are
reported as the mean 6 standard error of the mean (SEM).

Data availability. Raw reads for shotgun metagenomes are available in the Sequence Read Archive
under accession no. PRJNA704567. The bioinformatics workflow document and scripts used can be
found in the GitHub repository at https://github.com/val92loz/HFD-NR_microbiome.git.
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