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Abstract

The biological herbicide and antibiotic 4-formylaminooxyvinylglycine (FVG) was originally

isolated from several rhizosphere-associated strains of Pseudomonas fluorescens. Biosyn-

thesis of FVG is dependent on the gvg biosynthetic gene cluster in P. fluorescens. In this

investigation, we used comparative genomics to identify strains with the genetic potential to

produce FVG due to presence of a gvg gene cluster. These strains primarily belong to two

groups of Pseudomonas, P. fluorescens and P. syringae, however, a few strains with the

gvg cluster were found outside of Pseudomonas. Mass spectrometry confirmed that all

tested strains of the P. fluorescens species group produced FVG. However, P. syringae

strains did not produce FVG under standard conditions. Several lines of evidence regarding

the transmission of the gvg cluster including a robust phylogenetic analysis suggest that it

was introduced multiple times through horizontal gene transfer within the Pseudomonas

lineage as well as in select lineages of Thiomonas, Burkholderia and Pantoea. Together,

these data broaden our understanding of the evolution and diversity of FVG biosynthesis. In

the course of this investigation, additional gene clusters containing only a subset of the

genes required to produce FVG were identified in a broad range of bacteria, including many

non-pseudomonads.

Introduction

Members of the genus Pseudomonas are prolific producers of specialized metabolites that facil-

itate life in their environment. These chemicals contribute to many processes, including nutri-

ent acquisition, host colonization, manipulation of host physiology and competition with

other microbes. One example of a specialized metabolite produced by some strains of Pseudo-
monas fluorescens is 4-formylaminooxyvinylglycine (FVG, Fig 1A), a non-canonical amino
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acid [1, 2]. FVG arrests the germination of weedy grasses, and thus was originally termed a ger-

mination-arrest factor (GAF) [3]. FVG also displays activity against the bacterial plant patho-

gen Erwinia amylovora, the causal agent of fireblight [4]. As with other vinylglycines, the

activity of FVG is attributed to inhibition of enzymes that utilize pyridoxal phosphate as a co-

factor, such as 1-aminocyclopropane-1-carboxylate synthase in the ethylene biosynthesis path-

way of plants and several enzymes involved in amino acid metabolism in bacteria [5, 6]. The

relatively recent discovery of FVG contrasts with the identification of other vinylglycines of

bacterial origin that occurred decades earlier, e.g. rhizobitoxine [7, 8], aminoethoxyvinylgly-

cine (AVG) [9], and 4-methoxyvinylglycine (L-2-amino-4-methoxy-trans-3-butenoic acid)

(MVG/AMB) [10].

In earlier studies, FVG production was restricted to a small number of P. fluorescens iso-

lated from grass and wheat rhizosphere in the Willamette Valley of Oregon [11]. FVG produc-

tion was not detected in a phylogenetically diverse group of other P. fluorescens strains,

including P. fluorescens A506, PfO-1, Pf-5, and SBW25 [2, 3, 12]. The narrow host range and

geographic origin of FVG-producers coupled with the relatively recent identification of FVG

might suggest that it is produced by few strains in a common, but specialized, ecological niche.

However, our understanding of the relationship between these strains is incomplete. Previous

analyses included a limited number of strains, either due to lack of available genomic or gene

sequences [13], or lack of available cultures for bioassays [3]. As the available genome

sequences in the Pseudomonas fluorescens group has greatly expanded, along with the

sequences of the genus as a whole, a more robust analysis using phylogenomic and targeted

locus scrutinization is now possible [14].

The 13-kb GAF vinylglycine (gvg) biosynthetic gene cluster (Fig 1B) is essential for FVG

production in P. fluorescensWH6 [15–17], and the presence of this cluster is correlated with

the ability of other P. fluorescens strains to produce FVG [2]. Although the biosynthetic path-

way for FVG has not yet been elucidated, the genes within the gvg cluster required for FVG

production have been determined in PflWH6 [17]. The gvg cluster has also been reported in

genomes of a few other species. For example, several genes similar to those of the gvg cluster

Fig 1. Structure of the 4-formylaminooxyvinylglycine compound and the gene cluster necessary for its

production. (a) Structure of 4-formylaminooxyvinylglycine (FVG). (b) Organization of the gvg gene cluster from

Pseudomonas fluorescensWH6. Arrows representing genes are colored based on the function of the encoded proteins.

Gene notations in parentheses are not required for FVG production.

https://doi.org/10.1371/journal.pone.0247348.g001
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were sequenced and characterized in P. chlororaphis (Pch) PCL1391, though in relation to the

regulation of phenazine rather than FVG [18]. P. syringae (Psy) pv.maculicola ES4326, also

known as P. cannabina (Pca) pv. alisalensis ES4326, was reported to contain the gvg cluster but

not to produce FVG under standard conditions [16]. Screens for novel antibiotics recently

revealed that the non-pseudomonad Pantoea ananatis (Pan) BRT175 encodes the gvg biosyn-

thetic gene cluster [19]. These examples suggest a more complex history of FVG biosynthesis

but is not a systematic analysis.

In this study, we combine the analysis of the original collection of Willamette Valley FVG-

producers with mining of publicly available sequence databases to define the phylogenetic,

host, and geographic distributions of the gvg cluster. We also determine if the presence of the

gvg cluster is sufficient for FVG production in distinct genetic backgrounds. The origin of the

gvg cluster in various strains, through vertical descent or horizontal gene transfer, is explored.

We use a robust phylogenetic analysis to test the hypothesis that the gvg locus is restricted to a

monophyletic clade of Pseudomonas spp. In the course of the analysis, additional “orphan”

biosynthetic gene clusters are identified that share similarities with the gvg cluster but are pre-

dicted to produce distinct compounds.

Methods

Search for strains with gvg clusters

The formyltransferase gene was used as a probe in two general strategies to search for

sequenced strains containing the gvg biosynthetic gene cluster. The NCBI database was

searched for homologs of the formyltransferases encoded by gvgI from PflWH6

(PFWH6_5257; WP_003176394.1) and Pan BRT175 (L585_04235; ERM15483.1) using

BLAST+ 2.3.0 (BLASTP and TBLASTN) under default parameters [20]. Locus tags were

retrieved from positive hits and used to search the NCBI Nucleotide database to confirm the

presence of the other genes in the cluster. The Gene Neighborhood tool in Integrated Micro-

bial Genome (IMG) v4 from the Joint Genome Institute was also used to search for complete

gene clusters, again with the gvgI as a probe [21]. Comparisons of the gene content or genetic

context were made using the Gene Neighborhood tool or manually based on gene annotations.

Sequences were downloaded from NCBI or IMG and imported into CLC Main Workbench v.

6 (Qiagen) for additional analysis. For synteny comparisons, chromosome regions were

cropped approximately 25 kb upstream and downstream of the Carbamoyltransferase (CTase)

encoding gene and colored based on the synteny of genetic contexts.

Variations of the gvg cluster that may lack homologs of gvgI, termed gvg-like clusters, were

identified using the gvgA (PFWH6_5249), gvgC (PFWH6_5251), and gvgF (PFWH6_5254)

genes. Additional gvg amino acid sequences and accessions can be found in S2 File. The NCBI

database was searched for homologs of the amino acid sequences corresponding to these genes

from PflWH6 by BLASTP. Additional homologs were retrieved by Genome BLASTP in IMG.

The Gene Neighborhood tool in IMG was used to facilitate identification of gene clusters.

Phylogenetic tree construction of the P. fluoresens and P. syringae groups

The multi-locus sequence analysis based phylogenetic tree was generated as previously

described [22]. The code for the automated multi-locus sequence analysis pipeline (automlsa2)

is available from the python package index (pypi) at https://pypi.org/project/automlsa2/ and

builds upon autoMLSA.pl as previously reported [23]. Briefly, TBLASTN+ (v. 2.10.0) was used

to identify and extract sequences for 99 of the 100 housekeeping genes as identified in Hesse

et al. 2018 [14]; PA4393 was excluded from our analysis as it was unable to be routinely recov-

ered using TBLASTN+ from all selected Pseudomonas spp. Included genome sequences are
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shown in S1 Table. As P. aeruginosa has previously been shown to be a suitable outgroup for

the P. fluorescens and P. syringae groups, three selected P. aeruginosa isolates were used as an

outgroup [24]. All genes that passed filter were aligned using MAFFT (v. 7.427) [25, 26].

Phylogenetic tree construction was done using IQ-TREE2 [27–30] with a partitioned nexus

file containing references to each aligned sequence as input. Model selection and partition

finding was done using the ‘-m MFP—merge rclusterf’ mode in IQ-TREE2, with protein mod-

els limited with the ‘—msub nuclear’ flag. Branch supports were determined using 1000 ultra

fast bootstraps, and 1000 SH-aLRT test replicates (-B 1000, -alrt 1000). Nodes with > = 95%

and> = 80% supports, respectively, were considered as well supported, and are so marked on

the trees. Nodes with less support are unlabeled. Trees were visualized using ggtree v2.4.1 in R

v4.0.1 [31–34].

In addition, the P. fluorescens and P. gessardii subgroups were trimmed from the larger

Pseudomonas phylogeny and annotated using ggtree, as above, and inkscape (https://inkscape.

org/). The genes present at a particular locus, between the genes encoding a methyl transferase

and single-stranded DNA binding protein (tam and ssb), were identified for these strains.

Identification was performed by searching for the sequence encoded by the P. fluorescens tam
gene using IMG BLASTP (v4), cross-referencing results with P. fluorescens and P. gessardii
subgroups in the phylogeny, and manually examining gene annotations.

A phylogenetic tree including Pseudomonas strains encoding the gvg-gene cluster was con-

structed generally as above, but with Pan BRT175 as the outgroup.

Gene diagram for gvg locus

The gvg locus in each genome was identified using BLAST with the protein sequences from

WH6 used as queries against the predicted protein sequences from each of the target genomes

as the databases. Subsetted genbank files (accessions listed in the figure) with 10kb regions

upstream and downstream the putative gvg loci were extracted for each representative genome

(20kb in total). Subset genbank files were used as input to clinker for visualization [35]. Unan-

notated genes were identified using TBLASTN+ v 2.10.0 using the Gvg protein sequences

from WH6 as the query and each individual genome sequence as the target (S2 File; S6 Table).

Comparison of tree topologies

One strain from each clade in the Pseudomonas phylogeny containing the gvg cluster was

selected for comparison of the topologies of gvg and species trees with Pan BRT175 as the out-

group. Seven of the Gvg proteins (GvgR, GvgA, GvgC, GvgF, GvgI, and GvgJ) were used in

construction of the gvg phylogeny. Tree topology tests, including the approximately unbiased

(-au) and Shimodaira-Hasegawa (SH) tests were done using iqtree2 v2.1.2 with 10,000 repli-

cates (-zb 10000) [36, 37].

Phylogenetic tree of carbamoyltransferase proteins

Carbamoyltransferase (CTase) sequences were retrieved using BLASTP (v2.3.0) of the NCBI

nt database with gvgF (PFWH6_5254) as the query sequence. Additional sequences were iden-

tified by a genome BLASTP search of the IMG database (v4.540). Sequences were confirmed

to be present within clusters containing other homologs to gvg cluster genes. CTase sequences

from the in-house genomes were added and all sequences were aligned using MAFFT (v. 7.244

[25]) and the percent identities calculated in CLC Main Workbench. A representative

sequence of groups of sequences with greater than 95% identity was chosen for further analy-

sis. These sequences were aligned again using MAFFT with the L-INS-i setting and trimmed

using Gblocks (v. 0.91b) with half gapped positions allowed (-b5 = h setting). The LG
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substitution model was selected based on the PROTGAMMAAUTO option in RAxML (v8

[38]). Bootstrap analysis was performed using the autoMRE bootstrapping criterion, resulting

in 350 bootstrap replicates. The resulting phylogenetic tree was visualized and annotated in

iTOL [39].

Bacterial isolation

Bacterial strains used in this study are listed in Table 1. The strains in the ARS collection of

FVG producers were isolated from wheat and grass rhizosphere in the central Willamette Val-

ley of OR, USA as described in [11]. Pseudomonas fluorescens P5A was isolated from the sur-

face of a basidiomycete fungus,Marasmius oreades, at the edge of a Douglas fir plantation in

the Willamette Valley. The sample was transferred to sterile water (100 ml) with glass beads

and shaken. The resulting suspension was serially diluted, plated on Fluorescent Pseudomonad

Media (FPM) agar with cycloheximide (75 mg/L), and incubated at 28˚C for 24 h. Colonies

were re-streaked on FPM agar and screened for germination arrest and anti-Erwinia activity

consistent with FVG production as in [3, 4]. Initial taxonomic identification of P. fluorescens
P5A was performed by amplifying and sequencing 16S rDNA using standard protocols.

The sequencing, assembly and annotation of the genomes is described in Okrent et al. [43].

The contigs were ordered based on whole genome alignment with closely related complete

genomes and the presence of the gvg gene cluster was confirmed.

Preparation of culture filtrates and biological assays

Bacteria were inoculated into either 60 mL or 5 mL of Pseudomonas Minimal Salts Medium

[3] in a 125 mL Wheaton bottle or 20 mL test tube, respectively. The cultures were grown at

28˚C with shaking for either seven (60 mL cultures) or two days (5 mL cultures). Subsequently,

cells were removed from the filtrate by centrifugation (3000 x g for 15 min) and filter

Table 1. Strains used in this study.

Strain� Origin or description Location Reference Genome Reference

Pch 30–84 Wheat rhizosphere WA, USA [40] [41]

Pch O6 Soil UT, USA [42] [41]

Pfl A3422A Unknown OR, USA [2] [43]

Pfl AH4 Bluegrass rhizosphere OR, USA [3] [43]

Pfl E24 Bluegrass rhizosphere OR, USA [2] [43]

Pfl G2Y Ryegrass rhizosphere OR, USA [2] [43]

Pfl P5A Fungal surface OR, USA This study [43]

PflWH6 Wheat rhizosphere OR, USA [11] [15]

PflWH6-30G ΔgvgHmutant N/A [17] N/A

PflWH6-31G ΔgvgImutant N/A [17] N/A

Pfl TDH40 Bluegrass rhizosphere OR, USA [13] [43]

Psn A342 Unknown OR, USA [13] [43]

Psn BG33R Peach rhizosphere SC, USA [44] [41]

Pca BS91 Broccoli raab CA, USA [45] [46]

Psy ES4326 Radish WI, USA [47] [48]

Pan BRT175 Strawberry Unknown [19] [49]

Eam 153 Apple OR, USA [50] N/A

�Eam, Erwinia amylovora; Pan, Pantoea ananatis; Pca, Pseudomonas pv. alisalensis; Pch, Pseudomonas chlororaphis; Pfl, Pseudomonas fluorescens; Psp, Pseudomonas sp.;

Psn, Pseudomonas synxantha; Psy, Pseudomonas syringae.

https://doi.org/10.1371/journal.pone.0247348.t001
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sterilization (Millipore GP express Steritop, 0.22-μm pore size (EMD Millipore) or 25 mm Pall

Acrodisc with 0.22 μm pore size Supor membrane (Pall Corporation), respectively. For initial

laser ablation electrospray ionization mass spectrometry (LAESI-MS) experiments, culture fil-

trate was extracted with 90% ethanol as described previously [1].

The agar diffusion bioassays for antimicrobial activity against Erwinia amylovora were per-

formed generally as described in [4], however smaller volumes were used than reported previ-

ously. Aliquots of E. amylovora cultures grown overnight and diluted to an OD600 of 0.2

(300 μL) were spread on a 100x100x15 mm square plate containing 35 mL of 925 agar media

[4]. Four wells per plate were cut using a #2 cork borer and the plugs removed. Samples of fil-

trate (40 μL) were added per well and plates incubated at 28˚C for 2 days. Plates were scanned

and the areas of the zones of inhibition were measured on triplicate wells for each sample

using ImageJ from the National Institutes of Health [51].

Laser ablation electrospray ionization mass spectrometry analysis

LAESI-MS analysis was performed by Protea Biosciences, Inc. Samples of crude culture fil-

trate, non-inoculated filtrate, or extracted culture filtrate (20 μl) were aliquoted into individual

wells of a 96-well plate and analyzed with a LAESI DP-1000 (Protea Biosciences) coupled to a

Q Exactive Orbitrap mass spectrometer (Thermo Scientific) according to the methods

described in [52].

Conditions were slightly altered for analysis of FVG in crude culture filtrates. Settings for

the LAESI DP-1000 were electrospray (+ 4000 V, 1.0 μl/min flow, 50% methanol, 0.1% acetic

acid), 100 pulses per well at 20 Hz laser repetition rate, and laser energy ~600 μJ. The samples

were analyzed in selected-ion monitoring mode at a resolution of 140,000 with scans centered

on the sodium adduct of FVG, [M+Na]+m/z 183.037. The average scan signal intensities were

extracted on each well using LAESI Bridge software. Samples were analyzed by direct analysis

using the LAESI-MS interface to the Q Exactive mass spectrometer without any sample prepa-

ration. Samples were analyzed in SIM mode at resolution of 140,000 for greatest sensitivity,

specificity, and accuracy. Mass accuracy was maintained through analyses at< 0.5 ppm error

with the sodium adduct detected. After optimization on positive and negative controls, all

remaining samples were run using the same ablation and scanning conditions. Measurements

were also performed on a second set of biological replicates for comparison.

Results and discussion

Identification of potential FVG-producers

The gvg gene cluster in PflWH6 contains 12 genes (gvgR, gvgA-gvgK), encoding putative regu-

latory, transferase or transport activity, and two small ORFs encoding peptides of less than 50

amino acids (Fig 1B) [16, 17]. Three genes, gvgD, gvgE and gvgK, are dispensable for produc-

tion of FVG [17]. In preliminary analyses, the gvgI gene, encoding a formyltransferase, was

proposed as a specific marker for FVG biosynthesis [13]. Based on previous studies, we

hypothesized that the gvgI gene would be found in a limited number of isolates within the

three previously reported groups of Pseudomonas (i.e. WH6-like strains, P. chlororaphis, and

few P. syringae isolates), in addition to Pantoea ananatis isolate known to encode the gvg locus.

Our strategy for prediction of additional FVG-producing strains was to mine genome data-

bases for the gvgI gene and confirm its presence within a gvg cluster. This strategy identified

over 30 additional sequenced strains containing a gvg cluster in NCBI and IMG databases as of

December 2020. Counter to our expected result, the strains originated from a broad spectrum

of geographic locations and varied taxonomic units (S2 Table). In general, strains encoding

the gvg cluster were collected from rhizosphere or soil samples and belong to the genus
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Pseudomonas. However, the gvg cluster was also found in other genera including Thiomonas,
Pantoea and Burkholderia, and strains from environmental or clinical samples (S2 Table).

Distribution of gvg-cluster containing strains

The distribution of strains containing the gvg cluster within the genus Pseudomonas is not

readily apparent by species name alone. The Pseudomonas genus contains over 230 recognized

species names (www.bacterio.net/pseudomonas.html). The P. fluorescens and P. syringae
groups or species complexes are diverse and heterogeneous, and are each further divided into

subgroups. Recent phylogenies have grouped P. fluorescens into 9 subgroups [24, 53] and P.

syringae into at least 9 genomospecies or 11 phylogroups with multiple subgroups [54]. As a

further complication, several of the Pseudomonas strains containing a gvg cluster have not

been conclusively assigned to species (S2 Table). Additionally, researchers have suggested that

some species designations in Pseudomonasmay be incorrect based on newer tools, namely

comparisons to type strains using multilocus or whole genome-based methods [14, 24, 55].

As the species labels on these isolates do not allow us to make conclusions about phyloge-

netic relationships between them, and in order to investigate the distribution of strains con-

taining the gvg cluster within the genus Pseudomonas, a maximum likelihood phylogenetic

tree was constructed from the amino acid sequences of 99 housekeeping genes [14, 41], focus-

ing on groups containing strains with gvg-like clusters. The resulting phylogenetic tree, shown

in Fig 2A, is largely consistent with the phylogenetic tree published in Hesse et al. 2018 [14, 24,

53, 56] and clustering of average amino acid identities from whole genomes [14, 57]. Strains

encoding the gvg cluster are shown using blue or green circles at the tips for the P. fluorescens
and P. syringae groups, respectively.

Despite the known limitations of accurate taxonomic designations within the Pseudomonas
genus, analysis of the Pseudomonas phylogeny revealed that strains with homologous gvg clus-

ters are present in the P. fluorescens and P. syringae groups only. Further, and contrary to our

original hypothesis, the gene clusters appear in multiple subgroups within the P. fluorescens
group, i.e. the P. fluorescens and P. chlororaphis subgroups, as well as Pfl FW300-N2E3, not yet

placed in a subgroup. Strains containing the cluster within the P. fluorescens subgroup are not

monophyletic, but instead are dispersed throughout the subgroup (Fig 2B; bold). The strains

from the original Willamette Valley collection of FVG producers are found in multiple clades

within the P. fluorescens subgroup (Fig 2B; bold). In contrast, gvg clusters are restricted to two

paraphyletic groups in a small subclade of P. syringae (Fig 2C; bold). These strains are vari-

ously annotated as P. cannabina and P. syringae and include the model Arabidopsis pathogen

Psy ES4326. The full phylogenetic tree is included as S1 File.

The gvg cluster was also found in several non-pseudomonads, including one strain of Pan-
toea ananatis, Thiomonas sp. and several strains of Burkholderia. In each case, the presence of

a gvg-like cluster is not typical of the species. For example, a PCR-based survey of 117 strains

of Pantoea failed to detect the cluster in any strain other than Pan BRT175 [19]. Similarly, of

the 22 sequenced strains of Pantoea ananatis in the IMG database as of December 2020, Pan
BRT175 and the closely related Pan PANS 99–36 are the only strains with the cluster. The gvg
cluster is also unique to Thiomonas sp. (Tsp) CB2 of the 11 strains of Thiomonas that have

been sequenced. Likewise, although there were approximately 40 sequenced genomes in the

Burkholderia cepacia complex, only three contain complete gvg clusters (S2 Table).

Gene content of gvg clusters

As gvg gene clusters are present in a variety of bacterial strains, we were interested in determin-

ing whether there are variations in the gene content. To this end, the clusters were examined
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for gene loss, gain or rearrangement. Rearrangement was not evident in these clusters, as

genes consistently appear in the same order. However, gene loss and gain were both evident

and consistent with the phylogeny, as shown in Fig 3. The three genes not essential for FVG

production, gvgD, gvgE and gvgK, are absent in some clusters. While most strains within the P.

fluorescens subgroup have the same set of genes as PflWH6, the two strains in the E24 clade,

Pfl E24 and Pfl ATCC 13525, as well as Pfl FW300-N2E3, lack the partially-redundant LysE

transporter gene, gvgK. The gene cluster in Pfl FW300-N2E3 lacks segments of the non-essen-

tial amidinotransferase encoded by gvgD, indicative of gene decay. The strains within the P.

syringae consistently lack gvgK but contain all other genes (Fig 3).

Outside of Pseudomonas, the gvg-like clusters are more variable. Pan BRT175 lacks ortho-

logs of gvgD, gvgE and gvgK (Fig 3 and S1 Fig). Tsp CB2 lacks gvgK only and Burkholderia

Fig 2. The gvg locus has a patchy distribution in genomes within the Pseudomonas genus. (A) Full maximum likelihood phylogenetic tree based on 99 housekeeping

genes. The fluorescens and syringae groups are highlighted in blue and green, respectively. Red nodes correspond to the expanded clades in B and C. (B) Expanded P.

fluorescens clade. (C) Expanded P. syringae clade. The tree was rooted on P. aeruginosa. Strain names in bold contain a gvg cluster. Nodes indicated with a gray circle are

well supported (>95% UF-bootstraps &>80% SH-aLRT replicates). Genome accessions are listed in S1 Table.

https://doi.org/10.1371/journal.pone.0247348.g002
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strains lack both extra LysE genes, gvgD and gvgK (S1 Fig). Uniquely, Thiomonas and Burkhol-
deria clusters have gene sequences inserted between the gvgR and gvgA orthologs and between

the gvgH and gvgI orthologs (S1 Fig). These genes encode putative amino acid transporters, a

metallohydrolase, and proteins of unknown function. What effect the presence of these genes

may have on the metabolites produced by these strains is unknown; they may produce a vari-

ant of FVG rather than the compound itself.

Formylaminooxyvinylglycine chemical analysis

The routine determination of an FVG phenotype typically requires an ethanol-based extrac-

tion of crude culture filtrate followed by thin-layer chromatography [1] as well as two biologi-

cal assays [3, 4]. However, this protocol is not amenable to high-throughput analysis and is

sometimes ambiguous. We recently developed a LAESI-MS-based method to directly detect

FVG by mass in crude culture filtrates without extraction [51]. This protocol was used here to

analyze a diverse selection of strains to determine if the presence of a gvg-like cluster corre-

sponds to the ability to produce FVG. The culture filtrates were analyzed by LAESI-MS and,

using Erwinia amylovora as an indicator strain, inhibition using the agar diffusion assay. All

tested strains within the P. fluorescens group produced FVG, including strains in the P. fluores-
cens and P. chlororaphis subgroups (Table 2). As previously reported, the non-pseudomonad

Fig 3. The gvg biosynthetic locus exhibits co-linearity but also gene gain and/or loss within Pseudomonas spp. The gvg clusters are

color coded according to legend, shared with Fig 1. Syntenic sets of neighboring genes are additionally shown in the same color (not listed

in legend). Sequences shared between strains are connected by bands that are shaded according to percent identity (black = 100% identity,

white = 0% identity). Strains are ordered by dendrogram on the left, which follows the species tree. (�) Annotated gvgB have been removed

from NCBI genome annotations, but are found in all strains. (†) Genomes encoding unannotated gvgG (S6 Table). (‡) ATCC 13525 has a)

an assembly error or b) frameshift mutation causing a lack of gvgA. Paralogs gvgE, gvgJ, and gvgK intentionally share the arrow color and

have different border colors.

https://doi.org/10.1371/journal.pone.0247348.g003

Table 2. Zone of inhibition of bacterial filtrates against Erwinia amylovora and detection of FVG (m/z 183.037)

by LAESI-MS for various strains.

Strain� Zone of inhibition cm2 (SD) FVG (M+Na) 183.037‡

PflWH6† 6.79 (0.35) +

Pfl AH4† 6.60 (0.29) +

Pfl TDH40 6.56 (0.27) +

Pfl G2Y 7.20 (0.32) +

Pfl A3422A† 6.36 (0.29) +

Pfl E24† 4.68 (0.18) +

Pfl P5A 4.82 (0.19) +

Psn A342† 5.11 (0.25) +

Psn BG33R 6.99 (0.24) +

Pch O6 5.45 (0.31) +

Pch 30–84 6.68 (0.22) +

Psy ES4326† 0.00 (0.00) -

Pca BS91 0.00 (0.00) -

Pca T3C 0.00 (0.00) -

Pan BRT175 7.78 (0.20) +

�Pan, Pantoea ananatis; Pca, Pseudomonas pv. alisalensis; Pch, Pseudomonas chlororaphis; Pfl, Pseudomonas
fluorescens; Psn, Pseudomonas synxantha; Psy, Pseudomonas syringae.
† FVG production has previously been analyzed by different methods for these strains.

‡ Values are listed in S3 Table.

https://doi.org/10.1371/journal.pone.0247348.t002
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Pan BRT175 also produced FVG (Table 2) [51]. However, neither biological activity consistent

with FVG production nor the mass associated with FVG were detected from the three strains

within the P. syringae group (Table 2). The absence of FVG production from these strains is

consistent with previous analyses of Psy ES4326 [16, 19, 51]. We investigated multiple strains

from the P. syringae group in the current study, due to the possibility that a mutation in the

laboratory strain Psy ES4326 was responsible for the lack of FVG production previously

observed. This was not the case, as the closely related isolates of Pca also did not produce FVG.

Although we tested several possible hypotheses for the lack of FVG production in P. syrin-
gae strains, we were not able to conclusively demonstrate why these strains do not produce

FVG under standard conditions. However, the most likely explanation is related to differences

in gene regulation. P. syringae lack the sigma factor/anti-sigma factor pair involved in regula-

tion of FVG production in WH6 encoded by the prtIR locus [58]. This suggests that regulation

of FVG production differs in these strains relative to P. fluorescens. In P. fluorescensWH6,

transcription of the gvg cluster occurs from multiple promoters, with one located in the inter-

genic region between gvgR and gvgA as well as additional promoters internal to the cluster

[17]. We thus examined the promoter regions in P. syringae and compared them to those of

several strains in the P. fluorescens group. The predicted promoter sequences located between

gvgR and gvgA are conserved within P. fluorescens group strains (including P. chlororaphis) but

substantially different in P. syringae strains (S2 Fig). Therefore, P. syringaemay require differ-

ent conditions for induction of the gvg cluster, which may reflect the different ecological niches

or nutrient acquisition strategies of the two species.

Evidence of horizontal gene transfer

The observed pattern of gvg clusters, present in a given phylogenetic group but not closely

related strains, is consistent with horizontal gene transfer (HGT) and/or the inclusion of clus-

ters in genomic islands. Horizontally transferred genes typically demonstrate a lack of corre-

spondence between phylogenetic trees representing gene evolution and those representing

species evolution [59]. We therefore compared the phylogeny of the gvg genes and the house-

keeping genes for strains within Pseudomonas. One representative from each clade that con-

tains a gvg cluster was chosen for construction of maximum likelihood phylogenetic trees for

amino acid sequences encoded by gvg and housekeeping genes. A comparison of the species

tree and a partitioned Gvg protein maximum likelihood tree is shown in Fig 4. The most strik-

ing finding is that the placement of Psy isolates in the Gvg phylogeny is inconsistent with the

species tree. Additionally, using the approximately unbiased (AU) and Shimodaira-Hasegawa

(SH) tests with 10,000 resamplings, we determined that these two phylogenies had significantly

different topologies (p< 0.01 for both tests). While we are unable to determine the origin of

these gene loci in the Pseudomonas spp., this pattern is indicative of two or more HGT events

within and/or between gvg-encoding Pseudomonas spp.

Genomic context of the gvg locus

The gvg cluster appears in several distinct genetic contexts (Fig 3). These different genetic con-

texts correspond to both phylogeny and gene content of clusters, i.e. clusters in closely related

strains have the same gene content and are located in the same genomic context (Fig 3). The

genetic context is the same for all strains in the P. syringae group, while there are six observed

in the P. fluorescens group (Fig 3). Strains that are closely related to gvg-cluster-containing

strains but that do not contain gvg clusters maintain synteny of the neighboring genes. This

suggests specific insertion of gvg clusters rather than larger genetic rearrangements. We
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propose that each example of a cluster located in a distinct genetic context represents an inde-

pendent insertion of the gvg cluster in that lineage.

There is one example where gvg clusters are present in the same genetic context even

though the strains are in multiple clades of the phylogeny. These strains consist of members of

the PflWH6 clade, the Psn A342 clade and Pfl 1112. In all of these strains, the gvg cluster is

located in the same chromosomal location, between tam and ssb genes. The tam gene encodes

a methyl transferase and ssb encodes a single stranded DNA-binding protein. Remarkably, this

common location of the gvg cluster is true despite the many related strains lacking the cluster

(S3 Fig). Two possible explanations for this observation are that 1) the gene cluster has been

inserted in at least three lineages in the same location or 2) the common ancestor to these

three clades contained the gvg cluster at this location but that it has been lost in multiple line-

ages. In strains without the gvg cluster at this location, alternative genes present between tam
and ssb encode a LysR transcription factor, chloroperoxidase, chemotaxis protein, and various

hypothetical proteins. In some strains, an integrase, transposase or restriction enzyme is also

apparent. Like the presence of the gvg cluster, these variations are only partially consistent with

phylogeny (S3 Fig). For example, chloroperoxidase and lysR regulatory proteins are present in

this location in several disparate clades (S3 Fig). This analysis reveals that the position between

the tam and ssb genes is highly variable in the P. fluorescens subgroups, perhaps indicating a

hotspot for recombination or insertion.

Fig 4. The Pseudomonas species and Gvg trees are incongruent. Trees were generated using maximum likelihood analysis. The species tree

was inferred from the amino acid sequences of 99 housekeeping genes, while the Gvg tree was generated using a partitioned analysis of seven

of the Gvg protein sequences. The trees were rooted to Pantoea ananatis BRT175. Nodes indicated with a gray circle are well supported

(>95% UF-bootstraps &>80% SH-aLRT replicates). Pan, Pantoea ananatis; Psy, Pseudomonas syringae; Pch, Pseudomonas chlororaphis; Pfl,
Pseudomonas fluorescens; Pfi, Pseudomonas fildensis; Psn, Pseudomonas synxantha.

https://doi.org/10.1371/journal.pone.0247348.g004
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These observations regarding HGT of the FVG biosynthetic cluster are consistent with the

evidence of HGT for other specialized metabolites produced by plant-associated bacteria,

including several metabolites commonly associated with Pseudomonas (reviewed in [60, 61]).

For example, the gene clusters responsible for biosynthesis of 2,4-diacetylphloroglucinol

(DAPG), phenazines and pyochelin are observed in Pseudomonas as well as disparate, unre-

lated taxa [62–65]. As we observed with the gvg cluster, biosynthetic gene clusters frequently

are present in both Pseudomonas and Burkholderia in particular, which may be explained by

the presence of these bacteria in the same habitats [60].

Similarly, the vinylglycine rhizobitoxine is produced by bacteria from multiple genera,

including the rhizobial Bradyrhizobium elkanii and the plant pathogen Burkholderia andropo-
gonsis. Rhizobitoxine biosynthesis (rtx) genes flanked by insertion sequences have been

reported in Xanthomonas oryzae pv. oryzae KACC10331 [66], though rhizobitoxine produc-

tion has not been reported in this strain. AMB production has only been reported in Pseudo-
monas aeruginosa and AVG in one strain of Streptomyces sp., though systematic analyses have

not been performed for other vinylglycines.

Characteristics of gvg-like gene clusters

In addition to the strains containing gvg gene clusters, there are many strains with only some

of the genes of the cluster, sometimes in combination with different genes. These variations

are present in a broader range of bacteria than is the complete gvg cluster (S4 Table). Genera

with strains containing these gvg-like clusters include the Alphaproteobacterium Salinarimo-
nas; Betaproteobacteria Burkholderia, Ralstonia and Thiomonas; Gammaproteobacteria Pseu-
domonas, Pantoea, Acinetobacter and Serratia; and the Actinobacteria Streptomyces and

Saccharopolyspora (S4 Table). These clusters contain genes in various arrangements and do

not contain all of the genes shown to be necessary for FVG production [17], and thus would

not be predicted to produce FVG. The core genes of these cluster variants are gvgA, gvgB,

gvgC, and gvgF. The vast majority of these gene clusters are uncharacterized.

The evolutionary relationship of the gvg and gvg-like clusters was examined by constructing

a phylogeny of the carbamoyltransferase (CTase) encoded by gvgF, which is common to the

majority of the gene clusters, including the complete gvg clusters discussed above. The CTases

from gene clusters with the same gene content tend to be in the same clades, regardless of tax-

onomy (Fig 5). Additionally, the CTases from the complete gvg clusters form a separate clade

from those in gvg-like clusters, irrespective of taxonomy. (The exception is CTases encoded by

truncated clusters from the Burkholderia mimosarum strains, which are also found in this

clade, suggesting a relatively recent origin from a complete gvg cluster.) (Fig 5).

At least eight cluster variations are present (Fig 5), leading to the hypothesis that each contrib-

utes to the production of a unique compound, perhaps an amino acid or similar product. One var-

iant is located within a known cluster for biosynthesis of the macrolide antibiotics aldgamycin and

chalcomycin in Streptomyces sp. HK2006-1 [67]. This cluster variation contains homologs of gvgA,

gvgC, gvgF and gvgG, annotated as almUII, almUIII, almDIV and almUIV, respectively. However,

exactly how these genes may function in the synthesis of the cluster products is unknown. These

gvg-like loci are promising candidates for future molecular characterization. An important ques-

tion is whether these gene clusters lead to the production of as yet undiscovered compounds or to

previously identified compounds for which the biosynthetic genes are not yet known.

The presence of subsets of core biosynthetic genes in unrelated strains has also been

observed for the phenazine phz and DAPG phl clusters encoded in other Pseudomonas spp.

[49, 50]. This recycling of biosynthetic sub-clusters into new clusters may be a key method for

evolution of biosynthetic diversity [68, 69].
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Conclusion

Historically, secondary metabolites were identified in single organisms or groups of organ-

isms. The range of organisms capable of producing the metabolites were not known. With the

advent of genome sequencing and the linking of genes clusters to metabolites, it is now possi-

ble to obtain a deeper understanding of their distribution and abundance.

Fig 5. The structure of the gvg gene cluster is correlated with the inferred gvg phylogeny. This is a maximum likelihood phylogenetic tree of the carbamoyltransferase

encoded by gvg clusters and other gene clusters. Clades are colored and labeled based on the genes present in the gene cluster. The red A clade corresponds to a complete

gvg cluster with all of the genes present for production of FVG. In the key, the genes present in each cluster are listed, with parentheses around genes that are optional

and curly braces indicating insertions. Sequence accessions are listed in S5 Table.

https://doi.org/10.1371/journal.pone.0247348.g005
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Analysis of sequence databases reveals that the gvg cluster is widespread within the genus

Pseudomonas. It appears in strains commonly studied and utilized for biological control of a

number of pathogens/pests, including all sequenced strains of P. chlororaphis. FVG was pro-

duced and excreted by both strains of P. chlororaphis tested and its activity may be comple-

mentary to other useful properties of these strains. Production of FVG is not a defining

characteristic of the P. fluorescens group, as only some of the strains are capable of producing

the compound. The gvg cluster is not restricted to single clade or subgroup of the P. fluorescens
group, but instead is dispersed throughout the group in multiple subgroups. This varied pat-

tern indicates that FVG provides a function that is beneficial in specific ecological contexts

and niches but may be a burden in others, leading to loss of the gvg locus even in closely related

isolates.

In contrast, although the gvg cluster is present in several pathogenic strains of the P. syrin-
gae group, FVG was not produced under the conditions tested for three of the strains. Addi-

tional cues for the induction of FVG production may be required in these strains. Experiments

to understand different modes of regulation of FVG production in these strains are ongoing.

However, FVG production is not restricted to Pseudomonas. The strain Pan BRT175 was con-

firmed to produce FVG. In this case, FVG biosynthesis must be embedded in different regula-

tory networks than in Pseudomonas. The unexpected, diverse pattern of gvg encoding strains

indicates that FVG and related compounds may have additional benefits and outcomes that

have yet to be elucidated.

The pattern of distribution of gvg cluster, non-congruence between gene and species trees,

and variation in genetic context suggest that the cluster has been horizontally transferred mul-

tiple times. In some cases, indicators of integration consistent with a “classic” genomic island,

such as an integrase, transposase or tRNA genes, are located adjacent to the cluster. However,

the lack of these indicators in many strains may be reflective of an ancient integration event,

for which those signs are not typically found. The frequency of which the cluster appears in

unrelated strains suggest a useful function for a variety of bacteria living in a variety of plant or

soil-related environments.

Finally, gvg-like gene clusters containing some of the genes of the gvg clusters are found in a

wide range of bacteria. Study of these gene clusters may help us to understand the biosynthetic

pathway of FVG as well as discover novel compounds or result in new sources of known

compounds.

Supporting information

S1 Fig. The gvg gene cluster maintains co-linearity, including outside of the Pseudomonas
genus. Comparison of gvg gene clusters in Pseudomonas fluorescensWH6, Pantoea ananatis
BRT175, Thiomonas sp. CB2 and Burkholderia cenocepacia. Gene arrows are colored by func-

tion and are to scale. Gray arrows indicate genes not present in gvg clusters from P. fluorescens.
(TIF)

S2 Fig. Promoter regions are different between Pseudomonas fluorescens and P. syringae.

Comparison of the promoters in the intergenic region between gvgR and gvgA of the gvg clus-

ters from Pseudomonas fluorescens, P. chlororaphis and P. syringae strains. The locations of the

-35 and -10 promoter sites for P. fluorescensWH6 are indicated by gray arrows above the

sequences.

(TIF)

S3 Fig. The gvg locus inserted in a putative hotspot for horizontal gene transfer in some

isolates. This is a subset of Fig 2 focusing on the Pseudomonas fluorescens subgroup. The
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putative identity of genes present between the tam and ssb genes in a given strain are indicated

by color (red = gvg locus; turquoise = lysR protein; green = chloroperoxidase protein;

orange = chemotaxis protein; purple = other genes; gray = no insert). Strains containing a gvg
locus are shown in bold.

(TIF)

S1 Table. Strains used to construct multi-locus sequence phylogeny of pseudomonas.
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