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Abstract: In this study, a wearable inertial measurement unit system was introduced to assess
patients via the Berg balance scale (BBS), a clinical test for balance assessment. For this purpose,
an automatic scoring algorithm was developed. The principal aim of this study is to improve the
performance of the machine-learning-based method by introducing a deep-learning algorithm. A
one-dimensional (1D) convolutional neural network (CNN) and a gated recurrent unit (GRU) that
shows good performance in multivariate time-series data were used as model components to find
the optimal ensemble model. Various structures were tested, and a stacking ensemble model with
a simple meta-learner after two 1D-CNN heads and one GRU head showed the best performance.
Additionally, model performance was enhanced by improving the dataset via preprocessing. The
data were down sampled, an appropriate sampling rate was found, and the training and evaluation
times of the model were improved. Using an augmentation process, the data imbalance problem was
solved, and model accuracy was improved. The maximum accuracy of 14 BBS tasks using the model
was 98.4%, which is superior to the results of previous studies.

Keywords: balance assessment; data augmentation; gated recurrent unit; human activity recognition;
inertial measurement unit; one-dimensional convolutional neural network

1. Introduction

Elderly, brain-damaged, and rehabilitation patients often have poor balance. If this
and related conditions are not diagnosed promptly, the patients are more likely to suffer
further injury by falling [1,2]. Recently, human activity recognition (HAR) was introduced
to monitor the motion of a subject in daily life using healthcare devices to determine
measures to prevent such accidents [3–5].

In HAR research, various sensors are used, such as an inertial measurement unit (IMU),
vision sensors, electrocardiograms (ECGs), and electromyography (EMG) devices [6]. For
example, a recent HAR study used a textile stretch sensor attached to patients‘ clothing [7].
The IMU-based HAR is among the most popular research targets. Even if a non-invasive
method is used, such as EMG and ECG, the connections are often unreliable, and they must
be changed often, creating fallacious artifact signals [8]. Although cameras are an option,
there are limitations to camera installation, owing to bulkiness and obstruction, not to
mention privacy issues. Furthermore, lighting and spacing are often problematic [9]. On the
other hand, IMUs avoid these problems. Microelectromechanical IMU systems have small
size, low cost, and low operational power requirements. Hence, they can be implemented
as wearable devices (e.g., smartwatches, fitness bands, and smart clothing [9,10]). Because
human health problems are most often expressed as measurable behaviors [11], IMUs
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are more suitable for daily activity data collection than other sensors. Hence, many IMU-
based HAR studies have been accomplished [3–5,9]. Digo’s study [12] was conducted to
effectively recognize the working condition by wearing only one IMU in the trunk position.
This may allow users to wear fewer IMUs, making it easier to use IMUs in daily life.
Studies on user motion recognition using an IMU in a smartphone were also performed to
recognize motion for daily life [13–15].

Machine-learning models have been widely used [16] for sensor-based HAR mea-
surement, allowing manual and heuristic features to be extracted. Jianchao’s study [17]
attempted to classify daily patient behaviors with an IMU using global and local features.
Global features (e.g., mean and variance) are typically captured using sliding-window
techniques, whereas local features typically contain correlation information, such as simi-
larity and error rates. A final feature vector can be determined by using a feature selection
algorithm, which shows better classification performance than other methods. In stud-
ies using machine learning, the feature selection method often determines the model’s
performance. In order to extract good manual and heuristic features, sufficient under-
standing of data and signal processing algorithms is required. Hence, it takes a great deal
of time and effort to obtain the desired results because selections and combinations of
features must be manually verified [18]. By comparison, deep learning uses raw data as
input, and all feature extraction and classification procedures are mathematically combined
automatically. Therefore, the process is not only fast and convenient, but it also has the
advantage that human error is far less likely. Even features that cannot be recognized by
humans can be mathematically extracted. Hence, recently, deep-learning algorithms have
been employed more often than machine learning methods, and they have performed
well [19]. In a paper by Nathanial Pickle [20], an algorithm was used to estimate whole-
body angular momentum and directly determined imbalances by learning wearable IMU
data with a one-layer artificial neural network, achieving good performance. In Chung’s
HAR study [21], data from a multimodal nine degrees-of-freedom IMU was used, and an
ensemble model comprising a long short-term memory (LSTM) for each head modality
was proposed. Among the many deep-learning studies, the mixed-model convolutional
neural network (CNN)/recurrent neural network (RNN) showed better performance than
machine-learning models, CNNs, and RNNs alone in many studies [22]. Mekruksa Vanich
et al. [23] studied an HAR algorithm using a built-in smartphone IMU. They proposed a
four-layer CNN–LSTM model that outperformed the stand-alone LSTM machine-learning
model. Mekruksa-Vanich’s study [24] demonstrated a CNN-bidirectional gated recurrent
unit (GRU) model that showed better classification performance than a machine-learning
model, including a CNN with a GRU, against several IMU-based HAR open datasets.

In this work, an HAR algorithm is examined by introducing an IMU system to assess
patients via the Berg balance scale (BBS), a clinical test for balance assessment. The BBS is a
highly reliable balance test for elderly and stroke patients [25,26]. It consists of 14 static and
dynamic motion tasks performed in daily life. Each motion is scored, and the total score is
used to assess the patient’s probability of falling. A previous study [27] used a machine-
learning model for the scoring algorithm. Sensor data with high-scoring contributions
were selected for each task. The sum of the energy in the front and rear sections of the
motion data was used as a feature, and the amplitudes of frequency components up to
15 Hz were also used. The features were selected by kernel principal component analysis (a
feature extraction algorithm), and the data were classified using a support vector machine
(SVM). The results showed excellent performance, which improved the performance of
Badura’s study [3]. However, because these studies used machine-learning models, a
great deal of time and effort was required to extract and verify the manual and heuristic
features. Hence, in this study, the final feature vector is extracted and classified using a
deep-learning algorithm, thus reducing the time and effort requirements of the feature
extraction process. It also improves the scoring accuracy. Furthermore, the dataset of the
previous study is improved using a signal-processing algorithm, and the performance and
computational efficiency of the model are improved. The dataset of the previous paper
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had a data imbalance problem. To resolve this, an oversampling-based data augmentation
process was performed to equalize the amount of data for each class and to increase
the total amount of data. These efforts led to an increase in the accuracy of the model.
Additionally, the previous data suffered oversampling of participants’ movement data.
This was resolved by finding an optimal sampling rate of data. The sampling rate of the
data was reduced. Hence, it is now possible to reduce the computational complexity while
preserving classification accuracy. This also lowers the data-sampling rate of the IMU
module, which contributes to reducing the power consumption of the wearable device.
Furthermore, we further improve the deep-learning model by optimizing the GRU and
one-dimensional (1D) CNN models with a shallow structure in consideration of our small
dataset. Additionally, performance improvement was achieved by using an ensemble of
the two models. As with previous papers, we attempted to create a single model that can
cover all BBS tasks. As a result of our experiments, the model comprising two 1D-CNN
heads and one GRU head stacking ensemble model had the highest average accuracy on
all 14 tasks. This result was superior to previous results [3,27].

2. Materials and Methods
2.1. Experiment
2.1.1. Motion and Experimental Protocol

The BBS was devised to assess the balance of elderly and stroke patients [25,26]. For
this exam, subjects are asked to perform 14 functional tasks, and a rehabilitation therapist
assigns a score from 0 to 4 for each task. Combined scores of 0 to 20, 21 to 40, and 41 to 56
represent balance impairment, acceptable balance, and good balance, respectively. Table 1
presents a description of the 14 BBS tasks.

Table 1. Berg balance scale tasks.

No. Task Description

1 Sitting to standing
2 Standing unsupported
3 Sitting unsupported
4 Standing to sitting
5 Transfers
6 Standing with eyes closed
7 Standing with feet together
8 Reaching forward with outstretched arms
9 Retrieving object from floor

10 Turning to look behind
11 Turning 360◦

12 Placing alternate foot on stool
13 Standing with one foot in front
14 Standing on one foot

The experiment was performed at the Stroke (brain injury) rehabilitation clinic of the
Department of Rehabilitation, Inha University Hospital. The patient wore a wearable IMUs
and performed BBS with a rehabilitation therapist in the same manner as the usual BBS
assessment. Some patients could not do all tasks, and they perform only tasks that they
could do. Patient data had a data imbalance problem in which the amount of data for
each score was different and some scores had no data. Therefore, a healthy participant
experiment was conducted to complement the lack of data. Healthy participant exper-
iments were advised by rehabilitation specialists and experimented under the coach of
rehabilitation therapists. The healthy participants conducted experiments that imitated
the patient’s movements. The healthy participants performed all the motions with a score
of 0 to 4 in the 14 tasks of the BBS assessment. Therefore, in the experiment with healthy
participants, it was possible to obtain the same as five times of experiment data per person.
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2.1.2. Participants

This study was approved by the Institutional Review Board of Inha University Hos-
pital. Among hospitalized brain disease patients, those expected to be at risk of falling
due to poor balance participated. The diseases of each patient differed slightly, but each
had either cerebral infarction, cerebral hemorrhage, brain atrophy, or brain embolism. A
total of 53 patients (31 male and 22 female) participated, and their ages ranged from 50
to 80 years. The mean age was 64.9, and the standard deviation was 12.6. The healthy
experimental participants included three males in their 20s. The average age of healthy
participants was 28.7, and the standard deviation of age was 0.6. Figure 1 shows scenes of
the BBS experiment conducted with a healthy participant.
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Figure 1. Scenes of BBS experiment conducted with a healthy participant.

2.1.3. Equipment and Data

Noraxon’s myoMotion was used for the experiment. This equipment is a multichannel
wireless IMU system certified as an ISO 13485 compliant (Registration # MED-0037b) and
an FDA 510 K compliant (Registration number #2098416) medical device. The system
consists of a multi-channel IMU module capable of wireless data transmission, a receiver,
and a Velcro band for attaching the IMU to the human body. The receiver was connected to
a computer via USB and records the received data using the provided software. By adding
a USB webcam to the configuration, it can record video time-synchronized with IMU data.
Because the recorded video and IMU data can be checked simultaneously, the video can be
used as the golden state of the IMU data. Figure 2 shows the configuration of the Noraxon
myoMotion.
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Figure 2. Configuration of the Noraxon myoMotion.

IMU sensors were attached at eight locations: the forehead (FH), back (B), both wrists
(RtW: right wrist, LtW: left wrist), both ankles (RtA: right ankle, LtA: left ankle), and
both hips (right and left hips). Each IMU sensor yielded nine types of sensor data: three-
dimensional (3D) acceleration data (Acx, Acy, Acz); and data that excluded gravity and
pitch (P), roll (R), yaw (Y), and 3D rotation data (Rox, Roy, Roz). The rotation data contained
the number of accumulated rotations for each 3D axis. The sampling rate of the data was
100 Hz. Figure 3 shows the position of wearable IMU and the types of IMU sensor data.
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2.1.4. Output Data Description

Each IMU outputs nine data types, owing to the eight IMUs used. This provides a
total of 72-dimensional time series data items output in real time. Additionally, video was
recorded for use as a golden state of IMU data. The duration of the experiment for patient
participants was approximately 10–15 min. Some patients could not perform all 14 tasks,
resulting in shorter performance times. Fifty-three experimental data were recorded from
the patients. Three healthy participants performed all the motions from score 0 to score 4,
and 15 experimental data were obtained from the healthy participants. Therefore, the
equivalent of 78 experimental data were recorded.

2.2. Methodology of the Proposed Method

Figure 4 presents the methodology of the proposed method. Before training the deep-
learning model with the data, the dataset was improved, and 14 models were evaluated by
10-fold cross-validation.
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2.2.1. Preprocess
Noise Depression, Normalization, and Zero-Padding

The high-frequency noise of an inertial sensor can be removed using an empirical mode
decomposition algorithm [28]. As in a previous study [27], the signal was decomposed into
10 intrinsic mode function (IMF) components and resynthesized from the first to the seventh
IMF (low-frequency components) to remove the high-frequency component considered to
be noise. Min–max feature scaling normalization was performed on the data to prevent
the model from being biased to large values caused by unit differences. Multivariate
time-series motion data output from the eight wearable IMUs were continuously recorded
from the start to the end of the assessment. Therefore, it was necessary to extract only the
section in which the assessment was performed from the data. Using the video, each task
execution section was identified, and the IMU data of this section was used as task data.
The data length for each task was set to the longest data item in the task, and zero paddings
were performed at the end of the data having short lengths.

Data Down-Sampling

According to a previous IMU-based HAR study, even when the sampling rate for
100–250 Hz data was decreased to 12–42 Hz [29], the performance reduction was small,
and even the sampling rate of 10 Hz was sufficiently recognizable [21]. Likewise, because
the sampling rate of the BBS motion data was 100 Hz, adequate down-sampling was
expected to improve the efficiency of the model. To select an appropriate sampling rate,
the accumulated information with respect to the frequency was observed, and the accuracy,
training time, and evaluation time before and after down-sampling were compared with a
classification model. The process is described in detail in Steps 1–5.

1. From the first person in Task 1, an n-point fixed Fourier transform was applied to
each of the 72 sensor data outputs from the eight IMUs, and amplitudes from first to
the n/2th were extracted.

2. For each person, the amplitude values of all sensors were summed for each frequency
component. The accumulated amplitude value for each N Hz frequency was calcu-
lated, where N = {1, 2, 3 . . . 50}. The accumulated amplitude for each frequency was
divided by the sum of the amplitudes up to 50 Hz, which is the sum of all frequency
components, and multiplied by 100 to obtain the percentage (%). Thereafter, the
average percentage of the accumulated data for each frequency for all the subjects
were calculated.

3. Processes 1–2 were repeated until Task 14, and the average of all tasks in terms of the
percentage of accumulated data/information were calculated for each frequency.

4. The trend of the accumulated information was observed for each frequency, and a
frequency having a small increase was selected. To restore up to the corresponding
frequency component, the sampling rate was set to twice the frequency component
based on the Nyquist sampling theory [30].

The accuracy, training time, and evaluation time of the model were compared before
and after the data down-sampling.

Data Augmentation Using the Over-Sampling Technique

A medical dataset can easily become unbalanced because it is difficult to obtain
negative class data [31]. Therefore, the amount of BBS motion data for each score was
unequal. If the model is trained on an unbalanced dataset, the model may be biased toward
the majority class, leading to poor performance [32,33]. One way of solving this problem is
to balance the dataset by generating new data similar to the original [34–36]. Similarly, BBS
motion data can be improved using an oversampling technique [37]. As in Khorshidi’s
study [38], an over-sampling technique was applied to both the majority and minority
classes to equalize the amount of data in each and to increase the total number. Steps 1–3
below describe the data augmentation process:
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1. The class set of the scores was As. The number of k samples with the closest Euclidean
distance to a random sample, x (x ε An), is xk (xkε An). xk can be obtained using the
k-nearest neighbor algorithm.

2. The number of n (n ≤ k) new samples between x and xk is xn, and the rule for
generating xn is given by Equation (1):

xn = x + rand(0, 1) ∗ |x− xk| (1)

3. Steps 1 and 2 are repeated, so that the amount of class data in each class (A0 ∼ A4)
becomes N.

To evaluate the model performance, k = 2 and N = 60 were applied using the augmen-
tation process.

2.2.2. Classification Model

In this study, 1D-CNN and GRU ensemble classification models were introduced for
the BBS scoring algorithm. The 1D-CNN and LSTM models often show good performance
on multivariate time-series data [39–41]. Because the amount of BBS data is small, each
1D-CNN and GRU model was constructed with a shallow structure, which is advantageous
for small amounts of data [42,43]. The following describes the 1D-CNN and GRU structures
used in the experiment and the ensemble model that showed the best performance.

1D-CNN Head and GRU Head

The 1D-CNN head has one convolution layer followed by a max-pooling layer with a
size of two, followed by a flattening layer. The kernel size of the convolution layer was
three, the number of filters was 64, and the rectified linear unit was used as the activation
function. The padding option was the same, and stride was set to one.

The GRU head had a one-time-distributed GRU layer, and its output was flattened.
The input size of the GRU unit was 64, and the output size was 64. When using a non-time-
distributed GRU layer, the information of all units in the layer was compressed into one
vector having a fixed size. Therefore, if the input is long, information may be lost, leading
to low model performance [44]. However, the time-distributed GRU layer outputs a feature
vector for each unit, and this problem can be alleviated.

1D-CNN, GRU Stacking Ensemble Model

The 1D-CNN and GRU stacking ensemble model is composed of three heads. The
three heads include two 1D-CNN heads having a kernel size of one and three, and one GRU
head is composed of a one-time distributed GRU layer. The outputs of the three heads are
then concatenated, followed by a dense layer with 100 perceptrons. In this case, between
these two layers, a 50% dropout was applied to prevent overfitting and to generalize the
model. The last layer was a softmax with five perceptrons.

The overall structure was a stacking ensemble. The three heads represented each
of the models, and the subsequent layers were meta-learners. The meta-learner was
equally applied to the proposed model and other experimental models. Figure 5 shows the
structure of the 1D-CNN and GRU stacking ensemble model.

Training and Evaluation

The model optimizer was Adam with a learning rate of 0.001. The loss function
used was the categorical cross entropy, and the batch size was optimized for each task.
Batch size1∼14 = {64, 32, 64, 16, 32, 32, 32, 64, 32, 64, 64, 64, 64, 64}. Early stopping
was applied; the training was completed when the loss no longer decreased, the patience
number was 20, and the maximum number of epochs was limited to 500.
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When evaluating the accuracy of a model with data randomly split into training and
testing, there may be differences in the accuracy, depending on the split data. Therefore,
the model performance was evaluated using the average of the Stratified K-fold cross-
validation accuracy. Stratified K-fold cross-validation maintains the ratio of the amount
of data per class of the original dataset when splitting the training and test data in K-fold
cross-validation. Because the amount of data for each class was equalized by improving
the dataset, the data for each class for training and testing were also equalized. Only
accuracy was used as the evaluation metric because the model was trained on balanced
data; hence, it was not necessary to use an evaluation metric such as the F1 score used in
the case of imbalanced data [45]. When evaluating the model, the average performance of
all BBS tasks was used; this was to make a good model that could cover all BBS tasks, as in
previous studies [3,27].

3. Results and Discussion
3.1. Improving Model Efficiency through a Data Down-Sampling Process

To determine an appropriate sampling rate, the accumulated data for each frequency
were analyzed. Figure 6 shows the amount of accumulated data with respect to the
frequency.

As the frequency increases, the increase in the amount of data tends to decrease. The
sum of the frequency components under 10 Hz was more than 90% of the total information,
thus confirming that most of the information is in the low-frequency region. In the 5–10 Hz
range, the increase in the information rapidly decreases and thereafter remains small.
Therefore, the appropriate sampling rate was set such that the frequency component below
10 Hz could be restored. According to the Nyquist sampling theory [30], the sampling rate
required to restore a frequency component of n Hz is 2 × n Hz. Therefore, the appropriate
sampling rate was set to 20 Hz.
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When down-sampling data from 100 to 20 Hz, the amount of data was reduced by 80%;
however, the amount of information was reduced by 8.3%. The classification performance of
the scoring model was compared to the data before and after down-sampling to determine
the degree to which this loss of information affects the scoring performance. Figure 7 shows
the scoring accuracy of 14 tasks using the 1D-CNN model before and after down-sampling.
Input data of the model was preprocessed multidimensional time-series data output from
the eight IMUs.
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When the sampling rate was 20 Hz, the average accuracy of the model decreased by
0.2%. When the data sampling rate was 20 Hz, the training time was reduced by 67.7%
compared with when the sampling rate was 100 Hz; in addition, the epoch time was
reduced by 66.4%, and the evaluation time was reduced by 58.6%. After down-sampling
the data, the gain in the computational efficiency of the model was greater than the loss,
owing to the performance decrease caused by information loss. As shown in Figure 7,
when the sampling rate was below 20 Hz, the decrease in accuracy was greater; therefore,
it was not appropriate to further lower the sampling rate. By observing the graph of
Figures 6 and 7, given the similarity in the shapes, the correlation between the amount of
information and the model performance is considered to be high. Therefore, predicting the
decrease in the model performance based on the amount of information is a reasonable
method.
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3.2. Classification Model

The 1D-CNN and RNN based models, which show good performance on multivariate
time-series data, were used as the scoring algorithms. In many studies, the performance
could be improved with the 1D-CNN- and RNN-based ensemble models rather than using
them alone [23,46–48]. This study also tried to find the model structure with the best
performance by combining the 1D-CNN model and the RNN-based model using various
model structures. Table 2 presents the average performance of the model in the 14 tasks.
The performance on each task is the average performance of 10-fold cross-validation. The
model names listed in the table are abbreviated as follows: 1D-CNN: C; GRU: G; Double
head 1D-CNN: DC; Triple-head 1D-CNN: TC; 1D-CNN after GRU: C-G; 1D-CNN and
GRU parallel: C+G; and double-head 1D CNN and GRU parallel: DC+G.

Table 2. Performance of 1D-CNN, GRU-based model.

Model C G DC TC C-G C+G DC+G

Mean accuracy (%) 94.9 95.6 95.6 95.3 95.3 95.9 96.1
Standard deviation of

accuracy (%) 4.4 4.1 4.0 4.4 4.7 4.1 3.8

Max accuracy (%) 99.8 99.8 100 99.8 100 100 100
Min accuracy (%) 87.1 87.4 87.6 86.4 85.7 87.2 88.8

Mean epoch 64.9 80.6 69.9 63.8 80.1 71.7 78.8
Mean training time (s) 5.172 21.351 8.383 10.270 13.304 21.729 26.551

Epoch time (s) 0.081 0.265 0.120 0.161 0.166 0.303 0.337
Evaluation time (s) 0.099 0.073 0.142 0.153 0.115 0.095 0.129

Before constructing the ensemble model, the parameters of the single 1D-CNN and
GRU models were optimized, and their performance was checked. Between the two
models, the mean accuracy of the GRU model was 95.6%, which is 0.7% higher than that
of the 1D-CNN model. However, the training time of the 1D-CNN model was about 76%
shorter than that of the GRU model. Therefore, the 1D-CNN and GRU model were both
excellent. After this test, various 1D-CNN and GRU ensemble models were tested to find
the optimal model.

First, a double-head 1D-CNN model with kernel sizes of one and three was tested for
the scoring algorithm. In previous studies [49,50], the performance of multi-head 1D-CNN
was found to be better than that of the single-head 1D-CNN and LSTM. The test results
showed that the mean accuracy of the double-head 1D-CNN was 95.6%, which is 0.7%
higher than that of the 1D-CNN single model and the same as that of the GRU single model.
However, the training time was 60% shorter than that of the GRU single model. Therefore,
it could be helpful in improving performance. Additionally, triple-head 1D-CNN models
with kernel sizes of one, three, and five were tested. The experimental results showed that
the performance of the triple-head 1D-CNN was not better than that of the double-head
1D-CNN because the mean accuracy of the triple-head 1D-CNN model was 0.3% lower
than that of the double-head 1D-CNN model, and the training time of the triple-head
1D-CNN model was 23% longer than that of the double-head 1D-CNN model; hence,
adding three or more 1D-CNN heads did not improve performance.

Second, a model comprising a GRU layer after the 1D-CNN layer was tested. It is
natural for the GRU layer to come after the CNN layer in theory [51]. Therefore, many
studies have used this model and have obtained good performance [52,53]. The test results
showed that the mean accuracy of the 1D-CNN after the GRU model was 95.3%, which is
0.4% higher than that of the 1D-CNN single model, but it was 0.3% lower than that of the
GRU single model. Additionally, the training time of the 1D-CNN after the GRU model
was 59% longer, and the mean accuracy was 0.3% lower than that of the double-head
1D-CNN model.

Third, the 1D-CNN and GRU parallel models were tested. In XU’s study [54], the
CNN and LSTM parallel models outperformed the 1D-CNN and LSTM single models.
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From the test results, the mean accuracy of the 1D-CNN and GRU parallel models was
95.6%, which is 1.0 and 0.3% higher than that of the 1D-CNN and GRU single models,
respectively. It was also 0.3% higher than the double-head 1D-CNN model, whose mean
accuracy was the highest.

From the previous test results, the performance improved in two cases: double-head
1D-CNN model and 1D-CNN and GRU parallel models. Therefore, a model with two
1D-CNN heads and one GRU head, which is a stacking ensemble model, was tested. The
results of the test showed that the mean accuracy of the two 1D-CNN heads and one GRU
head model was 96.1%, which was the highest of all tested models. Additionally, the
stability of this model was the best because the standard deviation of the accuracy of the
model was 0.2–0.9% lower than that of the other models.

3.3. Improvement in Model Performance through Data Augmentation

One of the objectives of this study was to develop a model that shows good perfor-
mance in all BBS tasks. Therefore, the amount of data for each score in all the tasks was
made the same so that the effect of augmentation was equal for each task. The amount of
data for each score was set to 60 for the model tests. Because Task 2 “Standing unsupported,”
which had the most imbalanced data, had 56 participants’ motion data with Score 4. The
under-sampling technique was not considered because over-sampling showed generally
better performance in the data imbalance problem [37]. Many studies have improved
the performance of classification models using the oversampling technique [34–36,55].
However, the over-sampling technique also decreases the model performance because
new data increases noise or can cause overlapping between classes [56]. Therefore, the
amount of data for each score was fixed at 60 to reduce the complexity of the experiment.
Subsequently, using the model with the best performance, the test was performed to deter-
mine whether the model performance could be improved when the amount of data was
increased. Figure 8 shows the model performance with respect to the amount of data for
each score.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 17 
 

 

showed that the mean accuracy of the 1D-CNN after the GRU model was 95.3%, which is 
0.4% higher than that of the 1D-CNN single model, but it was 0.3% lower than that of the 
GRU single model. Additionally, the training time of the 1D-CNN after the GRU model 
was 59% longer, and the mean accuracy was 0.3% lower than that of the double-head 1D-
CNN model. 

Third, the 1D-CNN and GRU parallel models were tested. In XU’s study [54], the 
CNN and LSTM parallel models outperformed the 1D-CNN and LSTM single models. 
From the test results, the mean accuracy of the 1D-CNN and GRU parallel models was 
95.6%, which is 1.0 and 0.3% higher than that of the 1D-CNN and GRU single models, 
respectively. It was also 0.3% higher than the double-head 1D-CNN model, whose mean 
accuracy was the highest. 

From the previous test results, the performance improved in two cases: double-head 
1D-CNN model and 1D-CNN and GRU parallel models. Therefore, a model with two 1D-
CNN heads and one GRU head, which is a stacking ensemble model, was tested. The re-
sults of the test showed that the mean accuracy of the two 1D-CNN heads and one GRU 
head model was 96.1%, which was the highest of all tested models. Additionally, the sta-
bility of this model was the best because the standard deviation of the accuracy of the 
model was 0.2–0.9% lower than that of the other models. 

3.3. Improvement in Model Performance through Data Augmentation 
One of the objectives of this study was to develop a model that shows good perfor-

mance in all BBS tasks. Therefore, the amount of data for each score in all the tasks was 
made the same so that the effect of augmentation was equal for each task. The amount of 
data for each score was set to 60 for the model tests. Because Task 2 “Standing unsup-
ported,” which had the most imbalanced data, had 56 participants’ motion data with Score 
4. The under-sampling technique was not considered because over-sampling showed gen-
erally better performance in the data imbalance problem [37]. Many studies have im-
proved the performance of classification models using the oversampling technique [34–
36,55]. However, the over-sampling technique also decreases the model performance be-
cause new data increases noise or can cause overlapping between classes [56]. Therefore, 
the amount of data for each score was fixed at 60 to reduce the complexity of the experi-
ment. Subsequently, using the model with the best performance, the test was performed 
to determine whether the model performance could be improved when the amount of 
data was increased. Figure 8 shows the model performance with respect to the amount of 
data for each score. 

 
Figure 8. Accuracy of the best model with respect to the amount of data for each score. 

The average accuracy increases with the increase in the amount of data for each score. 
The model performance was saturated when the amount of data for each score was 220. 

Figure 8. Accuracy of the best model with respect to the amount of data for each score.

The average accuracy increases with the increase in the amount of data for each
score. The model performance was saturated when the amount of data for each score was
220. Therefore, it was confirmed that the appropriate amount of data for each score to
maximize the model performance was 220. When the amount of data for each score was
220, the average accuracy on the 14 tasks was 98.4%. Figures 9 and 10 show boxplots of the
accuracy of the model in the 14 tasks when the amount of data for each score was 60 and
220, respectively. The accuracy increased, and the variance of the accuracy decreased when
the amount of data for each score was 220.
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3.4. Comparison with Previous Study

This study evaluated model excellence by comparing the results of previous studies.
Prior studies include those of Badura [3] and Kim [27]. Kim’s was a study in which the
performance was improved by changing the feature extraction process and machine learn-
ing classification model of Badura’s study. Unlike previous studies, this study applied a
deep-learning algorithm and performed feature extraction using the deep-learning model.
The data sampling rate of the previous studies (100 Hz) was down-sampled to 20 Hz, and
the computational complexity was improved without reducing model accuracy. Reduc-
ing the sampling rate of data is meaningful in that it can contribute to reducing power
consumption by lowering the sampling rate of the wearable devices. The dataset of the
previous study had a data imbalance problem in which the amount of data for each score
was different. In this study, this problem was solved by performing data augmentation
based on the oversampling algorithm. As a result, the classification accuracy was increased.
Additionally, a healthy participant experiment was performed to compensate for the insuf-
ficient amount of data in some classes. Because healthy participants performed all actions
from zero to four on all tasks, the amount of data was equal to five times the patient data
per healthy participant. The total amount of data was 78, 53 of which were patient data,
and 15 were created by three healthy participants. By using the 10-fold cross-validation
average accuracy as the evaluation method of the model, the evaluation method of previous
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studies, which can produce good results only in some splits, was improved overall. Table 3
summarizes the improvement points of this study compared with these previous studies.

Table 3. Improvements in this study compared to previous studies.

Study Badura’s Study Kim’s Study This Study

Classification model Multi-layer perceptron (MLP) Support vector Machine
(SVM)

Double head 1D-CNN and
single head GRU stacking

ensemble

Feature extraction

Manual (Frequency and time
domain feature, Feature
selection: Fisher’s linear

discriminant)

Manual (Frequency domain
and energy feature, Feature

selection: KPCA)
Automatic in deep learning

Sampling rate of data (Hz) 100 100 20 (Introduce data
down-sampling)

Data imbalance problem Yes Yes No (Introduce data
augmentation)

Amount of experimental data 63 53 78

Evaluation method Random split Training:
Test = 7:3

Random split Training:
Test = 7:3

Mean accuracy of 10-fold
cross validation

The main achievement of this study is the improvement of accuracy. Table 4 shows the
scoring accuracy of the model in the previous studies and the model that showed the best
performance in this study. The model names listed in the table are abbreviated as follows:
double-head 1D CNN and GRU stacking ensemble: DC+G.

Table 4. Comparison of results of previous study with this study.

Task Badura’s MLP
Accuracy (%)

Kim’s SVM
Accuracy (%) DC+G Accuracy (%)

1 87.5 100 98.5
2 92.2 100 98.5
3 100 100 99.6
4 89.1 87.5 99.0
5 70.3 76.5 96.7
6 89.1 100 97.9
7 76.6 100 99.0
8 76.6 92.9 98.9
9 89.1 100 97.8
10 70.3 78.6 98.2
11 78.1 100 97.8
12 79.7 80.0 98.2
13 62.5 90.0 98.1
14 67.2 100 99.1

Average 80.6 93.2 98.4
Standard deviation 10.9 9.1 0.7

The average accuracy of the model in this study was about 18% higher than that of
the multi-layer perceptron model of Badura’s study [3] and about 5% higher than that of
the SVM model of Kim’s study [27]. It was also confirmed that the standard deviation of
the accuracy for the BBS task from 1 to 14 of the models of this study was 0.7%, which was
much smaller than 10.9% of the MLP model of Badura’s study and 9.1% of Kim’s SVM
model. This means that the model of this study can cover all BBS tasks well.
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4. Conclusions

In this study, a deep learning-based BBS auto-scoring algorithm was developed. The
best model was the stacking ensemble model with a meta-learner comprising a simple
dense layer behind two 1D-CNN heads and one GRU head. The computational complexity
and accuracy of the model were improved by improving the dataset during preprocessing.
During the down-sampling process, it was possible to find a reasonable sampling rate
by analyzing the accumulated information amount and the trend in the accumulated
information amount with respect to the frequency change. After down-sampling, the
computational complexity of the model was reduced. During the data augmentation
process, the dataset was improved using the over-sampling technique. By creating data
similar to the original data, the amount of data for each score was equalized, and that of
both minority and majority classes was increased so that the deep-learning model could
learn the data more generally. As a result, the scoring performance of the model was
improved without a performance decrease caused by noise or class overlapping that occurs
otherwise due to the generated data [56]. The accuracy was saturated when the amount of
data for each score exceeded a certain threshold. The maximum average accuracy of the
model in the 14 tasks was 98.4%, which was superior to previously reported results.

In the previous study [27], the efficiency of the algorithm could be increased by using
only sensor data, which is advantageous to score classification for each BBS task. Of course,
the deep-learning method performs this process inside the model by adjusting the weights
between perceptrons. However, it has a disadvantage in that the amount of computations
is large because all sensor data must be entered as an input. Therefore, in a follow-up
study, an attention model deep-learning method will be introduced, and weights will
be visualized to exclude data having a low contribution to scoring classification. This
will not only increase the computational efficiency of the model, but it will also have the
advantage that users can wear fewer sensors. Furthermore, we will introduce the latest
deep-learning techniques and improve the dataset with signal processing algorithms to
increase performance.

The algorithm of this study can be applied to a wearable healthcare device that
evaluates the balance ability in the daily life of elderly or brain-disease patients who are at
risk of falling. With wearable healthcare devices, users can know their balance ability and
probability of falling at any time without having to visit a hospital, and it will be helpful
for falling prevention.
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