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Abstract

Background: Bone marrow is the leading site for metastasis from
neuroblastoma and affects the prognosis of patients with neuroblastoma.
However, the accurate diagnosis of bone marrow metastasis is limited by the
high spatial and temporal heterogeneity of neuroblastoma. Radiomics
analysis has been applied in various cancers to build accurate diagnostic
models but has not yet been applied to bone marrow metastasis of
neuroblastoma.

Methods: We retrospectively collected information from 187 patients
pathologically diagnosed with neuroblastoma and divided them into
training and validation sets in a ratio of 7:3. A total of 2632 radiomics
features were retrieved from venous and arterial phases of contrast-
enhanced computed tomography (CT), and nine machine learning
approaches were used to build radiomics models, including multilayer
perceptron (MLP), extreme gradient boosting, and random forest. We also
constructed radiomics-clinical models that combined radiomics features
with clinical predictors such as age, gender, ascites, and lymph gland
metastasis. The performance of the models was evaluated with receiver
operating characteristics (ROC) curves, calibration curves, and risk decile
plots.

Results: The MLP radiomics model yielded an area under the ROC curve
(AUC) of 0.97 (95% confidence interval [CI]: 0.95-0.99) on the training set and
0.90 (95% CI: 0.82-0.95) on the validation set. The radiomics-clinical model
using an MLP yielded an AUC of 0.93 (95% CI: 0.89-0.96) on the training set
and 0.91 (95% CI: 0.85-0.97) on the validation set.

Abbreviations: AUC, area under the curve; INRGSS, International Neuroblastoma Risk Group Staging System; KNN, k-nearest-neighbor;

LASSO, least absolute shrinkage and selection operator; MLP, multilayer perception; RF, random forest; ROC, receiver operating characteristics;
XGB, extreme gradient boosting.
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1 | INTRODUCTION

Neuroblastoma, which is derived from the sympathetic
nervous system, is one of the most common solid tumors
in children and a leading cause of cancer deaths in
children [1]. Ultimately, it accounts for 15% of cancer-
related deaths in early childhood [2].

The clinical outcomes of patients with neuroblastoma
vary dramatically. Some patients undergo spontaneous
tumor regression and only need active surveillance, whereas
others lose their lives within a short period, even after an
aggressive treatment plan that may include five to six cycles
of chemotherapy, surgery, chemoradiotherapy, autologous
human stem cell transplant, and immunotherapy [3]. This
diversity of clinical outcomes is associated with the high
spatial and temporal heterogeneity of neuroblastoma [4].
To address this, a widely accepted grading system, the
International Neuroblastoma Risk Group Staging System
(INRGSS), was built [5]. According to INRGSS, patients are
divided into low, intermediate, and high-risk groups based
on patient clinical factors (age and stage) and tumor
genomics, among which, metastasis is regarded as a main
considering factor. Those patients with distant metastasis
are assigned to the high-risk group, with a 5-year overall
survival rate of less than 40% [6]. Among patients with
metastasis, bone marrow is the leading site, accounting for
90% of cases [7]. Internationally agreed-upon treatment
options for high-risk neuroblastoma include chemotherapy,
surgery, high-dose chemotherapy followed by autologous
stem cell transplantation, external-beam radiotherapy,
radionuclide therapy, differentiation therapies, and immu-
notherapy [8]. Hence, bone marrow metastasis should be
precisely diagnosed.

Clinically, the diagnosis of bone marrow metastasis
relies on bone marrow aspiration and biopsy. However,
current diagnostic biopsy procedures may miss meta-
static tissues because of the high spatial heterogeneity of
neuroblastoma, indicating that current diagnostic biopsy

Conclusions: MLP-based radiomics and radiomics-clinical models can
precisely predict bone marrow metastasis in patients with neuroblastoma.
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strategies may miss or underestimate therapeutically
actionable alterations [4, 7, 9]. In addition, neuroblas-
toma shows highly heterogeneous temporal character-
istics. Therefore, physicians have to repeat bone marrow
aspiration and biopsies, which in turn brings more pain
and suffering to children. Therefore, a noninvasive
predictive method should be urgently developed.

Considering that CT is necessary during follow-up,
whether we can predict bone marrow metastasis with CT
is of great interest. Xinxian et al. reported that a
calcification sign on CT correlated with bone marrow
metastasis in neuroblastoma, indicating that CT has the
potential to reflect neuroblastoma characteristics likely to
be associated with metastasis [10].

Radiomics, which involves the extraction of large
amounts of high-dimensional quantitative features from
medical images, has been rapidly developed in the hope
that it will advance precision diagnostics and cancer
treatment [11, 12]. Built on the hypothesis that CT
images of cancer can reflect the nature of the cancer,
radiomics and machine learning approaches have the
potential to elucidate the mystery of cancer and assist in
clinical decision-making. Radiomics provides a good
strategy to study tumor heterogeneity by mapping the
region of interest (ROI) of tumors, which theoretically
means that all features of the cancer are taken into
consideration [13]. Previously, researchers have re-
ported numerous radiomics nomograms for accurately
predicting metastasis in various cancers [14, 15].
However, the application of radiomics to the prediction
of bone marrow metastasis in patients with neuroblas-
toma has not been reported. Furthermore, previous
literature reported the good predictive ability of a
radiomics nomogram for MYCN status in neuroblas-
toma, another factor relating to prognosis [16, 17].
Therefore, we proposed that a machine learning-based
radiomics nomogram using CT images could predict
bone metastasis in patients with neuroblastoma.
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2 | METHODS

2.1 | Study design and participants

We retrospectively collected information from patients
with neuroblastoma treated at Guangzhou Women and
Children's Medical Center from 2015 to 2020. Ethical
approval was obtained from the institutional review
board and the requirement for informed consent was
waived. Inclusion criteria included the following:
(a) pathologically confirmed abdominal neuroblastoma;
(b) standard abdominal CT performed <30 days before
bone marrow aspiration and biopsy. Exclusion criteria
consisted of the following: (a) neuroblastoma originating
from the chest; (b) presence of imaging artifacts on the
CT images. The label “bone marrow metastasis” was
applied to those who were detected with bone marrow
metastasis on either bone marrow aspiration, biopsy, or
PET/CT scan within 6 months after the CT scan. In this
way, we could discover those who already had metastasis
as well as those with a high tendency to develop
metastasis, and the nomogram built according to this
categorization strategy should be more valuable for early
prevention as well as early diagnosis.

The patients were divided into training and validation
sets in a ratio of 7:3 based on the date of the CT. The
training set was used to develop radiomics and radiomics-
clinical models using multiple machine learning ap-
proaches. The training and validation sets were completely
independent. The study design is presented in Figure 1.

2.2 | Imaging acquisition, volume-of-
interest segmentation, and radiomic
feature extraction

All patients underwent an abdominal contrast-enhanced
CT examination at Guangzhou Women and Children's
Medical Center on a 64-slice CT scanner. All patients
were scanned from thoracic inlet to pubic symphysis.
The imaging parameters were as follows: 0.675 mm
reconstructed slice thickness, 3.0 mm slice thickness, 3.0
slice interval, and 80kV tube potential with automatic
tube current modulation.

Nonionic iodinated contrast medium was used at a
dose of 1.5mL/kg (body weight) and a flow rate of
1.8-2.0 mL/s via power injection. Pre-contrast acquisitions
were followed by two post-contrast scans performed in the
arterial (20 s after injection) and venous phases (60 s after
injection). The arterial and venous phase CT images were
used in the following analysis. ROIs were delineated using
3D Slicer software version 4.7.0 by two skilled radiologists
(YFL and YQ). Then, a large set of quantitative radiomics
features was extracted using the PyRadiomics platform
implanted in the 3D Slicer software [18]. The features can
be divided into the following four categories: (a) first-order
statistics features, (b) shape-based features, (c) statistics-
based textural features, and (d) wavelet features. More
detailed information about the radiomics features and
their extraction can be found on the official website
for PyRadiomics (https://pyradiomics.readthedocs.io/en/
latest/).

Segmentation

1316 features from
arterial contrast-
enhanced phase

1316 features from
venous contrast-
enhanced phase

Feature extraction

+

Clinical variables

FIGURE 1

Radiomics model
development and validation

Study design. We extracted radiomic features from arterial and venous contrast-enhanced phase CT of neuroblastoma

patients and then used multiple machine learning approaches to develop and validate the performance of radiomic models for predicting

bone marrow metastasis. CT, computed tomography.
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2.3 | Feature selection and radiomics
signature construction

First, all radiomics features were standardized into
the range [0,1] using a z-score normalization method.
The z-score normalization process involves subtracting the
mean value of the data from each individual data point and
then dividing it by the standard deviation of the data. The
formula for calculating the z-score of a data point (X) is

where Z represents the standardized value, X is the
original data point, u is the mean of the data, and o is the
standard deviation of the data.

The z-score transformed data will have a mean of 0 and a
standard deviation of 1. Data points below the mean will
have negative z-scores, while data points above the mean will
have positive z-scores. This normalization technique allows
for easier interpretation and comparison of data acr-
oss different variables because they are all measured in
terms of their deviation from the mean in standard deviation
units.

Then, we applied ¢ tests to all the radiomics features and
removed insignificant features (p < 0.05). After that, we over-
sampled the training set using the Synthetic Minority Over-
sampling Technique (SMOTE) approach, which involves
generating new samples and adding them to the training
queue to equalize the number of positive and negative
examples [19]. No oversampling was performed on the
validation set. Finally, we built the radiomics signatures using
multiple machine learning approaches, including least
absolute shrinkage and selection operator (LASSO) logistic
regression, k-nearest-neighbor (KNN), gradient boosting
decision tree (GBDT), classification and regression tree
(CART), random forest (RF), adaptive boosting (Ada),
XGBoost (XGB), logistic regression (LR), and multilayer
perception (MLP) [20-22].

2.4 | Construction of the radiomics-
clinical complex models

The radiomics signature represents the diagnostic perform-
ance of the CT features. Previous studies suggested that
clinical factors may also have a guiding role in bone marrow
metastasis [23]. Incorporating clinical factors into the model
construction process is expected to result in a better-
performing predictive model [24]. Therefore, we took clinical
factors into consideration and constructed bone marrow
metastasis radiomics-clinical complex models. We selected
the bone marrow metastasis-related clinical factors using
univariate and multivariate logistic regression and then
constructed the radiomics-clinical complex nomogram.

Taking both radiomics features and clinical factors as texture
variables, we also constructed complex models with the
above machine learning approaches.

2.5 | Performance of the radiomics and
radiomics-clinical models

For both radiomics and radiomics-clinical models, we only
compared the diagnostic performances of the top three
performance models in depth. The top three approaches were
identified by comparing areas under the curves (AUCs) on
the validation set. As the AUC increased, the performance
improved. T tests were performed to evaluate the differences
between the radiomics scores and radiomics-clinical scores of
the bone marrow metastasis group and nonmetastasis group.
Two-sided p < 0.05 was considered significant. The calibra-
tion curves of the models were constructed, and Brier scores
were calculated to evaluate the fitting of the models. As the
Brier score decreased, the calibration improved. Receiver
operating characteristics (ROC) curves of the top three
radiomics and radiomics-clinical models were constructed,
and the AUCs were calculated to compare their discrimina-
tion accuracy on the training and validation sets. The
accuracy, sensitivity, specificity, negative predictive value
(NPP), positive predictive value (PPV), and F1 score of the
prediction models were calculated. The formulas used for
calculating these are presented in Supporting Information S1.
All analyses were independently tested.

2.6 | Ethics approval and consent to
participate

The relevant institutional review board approved this
retrospective study and waived the need to obtain
informed consent from the patients.

2.7 | Statistical analysis

All statistical analyses were performed using Python
and R statistical software (version 3.4.2). A two-sided
p value < 0.05 was considered significant.

3 | RESULTS
3.1 | Baseline characteristics and bone
metastasis-correlated clinical variables

In total, 187 patients were enrolled in our study. The
demographic and clinical information of the patients in the
training and validation sets are listed in Table 1. Among the
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187 patients, 81 (43.3%) were diagnosed with bone marrow
metastasis, which is a rate consistent with other studies.

3.2 | Radiomics signature development
and performance

In total, 1316 radiomics features from venous phase images
and 1316 from arterial phase images were obtained. After
removing features with a t test-derived p value > 0.05, 897
features were identified. We tested nine machine learning
approaches to develop a radiomics signature on the training
set with these 897 features. The diagnostic performance
values of these radiomics signatures are shown in Table 2.
Among the approaches, the performances on the validation
set of the radiomics signatures built using an MLP, RF, and

TABLE 1 Characteristics of the 187 patients enrolled in this study.

Training Validation

Variables set (n =130) set (n=57)
Sex

Boy (%) 74 (56.9) 32 (56.1)

Girl (%) 56 (43.0) 25 (43.8)
Age (month) 35.5 (14-48) 35 (17-48)
Calcification (%) 101 (77.6) 46 (80.7)
Cross midline (%) 30 (23.0) 15 (26.3)
Ascites (%) 26 (20.0) 7 (12.2)
Lymph gland 61 (46.9) 36 (63.1)
metastasis (%)
Bone marrow 58 (44.6) 23 (40.3)

metastasis (%)

XGB ranked in the top three. The accuracy, sensitivity,
specificity, NPV, PPV, and F1 scores of the top three
radiomics models are listed in Supporting Information S1:
Table S1. The AUCs of these three approaches were 0.97
(95% CI: 0.95-0.99), 0.86 (95% CI: 0.81-0.91), and 0.87 (95%
CI: 0.82-0.92), respectively, on the training set and 0.90 (95%
CL: 0.82-0.95), 0.88 (95% CI: 0.80-0.94), and 0.82 (95% CI:
0.71-0.91) on the validation set (Supporting Information S1:
Figure Slab). The calibration curves of these approaches
on the training and validation sets are presented in
Supporting Information S1: Figure Slc-h. The Brier scores
of these approaches ranged from 0.097 to 0.186, indicating
that these approaches showed a good fit in the prediction of
bone marrow metastasis. The radiomics features included in
these approaches are shown in Supporting Information S1:
Figure Sli-k as radar plots. The main features varied
between the models because of the principles of the different
approaches, which is the reason why we tried different
approaches to develop the most suitable prediction model.
The feature importance of the top three models is shown in
Supporting Information S1: Table S2. We divided all
participants in the training and validation sets into
10 groups based on the estimated risk deciles of the top
three models (Supporting Information S1: Figure S2). With
an increase in prediction probability, the observed probabil-
ity also increases.

3.3 | Radiomics-clinical model
development and performance

The results of the univariate and multivariate logistic
regression are presented in Table 3. MLP (p <0.001) and
ascites (p = 0.03) were independently associated with bone

TABLE 2 Performance of the radiomics and radiomics-clinical models built using different machine learning approaches.

Radiomics models

Radiomics-clinical models

Machine learning AUC in the AUC in the AUC in the AUC in the
approaches validation set training set validation set training set
LASSO 0.813 0.873 0.850 0.988
KNN 0.804 0.785 0.838 1.000
GBDT 0.785 0.906 0.841 0.999
CART 0.748 0.742 0.721 0.799
RF 0.880 0.864 0.845 0.998
Ada 0.795 0.826 0.840 0.949
XGB 0.815 0.875 0.866 0.898
LR 0.811 0.951 0.853 0.989
MLP 0.898 0.973 0.913 0.929

Abbreviations: Ada, adaptive boosting; AUC, area under the curve; CART, classification and regression tree; GBDT, gradient boosting decision tree; KNN, k-nearest-
neighbor; LASSO, least absolute shrinkage and selection operator; LR, logistic regression; MLP, multilayer perception; RF, random forest; XGB, XGBoost.
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marrow metastasis. The nomogram is shown in Figure 2.
The AUCs on the training and validation sets were 0.98
(95% CI: 0.96-0.99) and 0.90 (95% CI. 0.84-0.96), respec-
tively. When the radiomics feature and clinical factors were
incorporated into the machine learning approaches in the
radiomics-clinical model development, MLP, XGB, and LR
were the top three approaches. The accuracy of these
models and comparisons with the other radiomics models
are shown in Table 1. The AUCs of the top three
approaches (MLP, XGB, and LR) were 0.93 (95% CL
0.89-0.96), 0.90 (95% CI: 0.85-0.94), and 0.99 (95% CI:
0.98-1.00), respectively, on the training set and 0.91 (95%
CI: 0.85-0.97), 0.86 (95% CI: 0.77-0.94), and 0.85 (95% CL:
0.76-0.93) on the validation set (Figure 3a,b). The accuracy,
sensitivity, specificity, NPV, PPV, and F1 scores of the top
three radiomics-clinical models and nomograms are listed
in Supporting Information S1: Table S3. The calibration
curves and radar plots for the included features are
presented in Figure 3c-k. From the above results, we can
conclude that the prediction accuracy of most approaches
will increase when clinical variables are included. The
feature importance of the top three radiomics-clinical
models is shown in Supporting Information S1: Table S4.
Figure 4 shows that with an increase in prediction
probability, the observed probability also increases. We
also performed ¢ tests on the model-predicted probabilities
of metastasis and nonmetastasis patients in the training and
validation sets (Figure 5). All top three radiomics and
radiomics-clinical models yielded a p value < 0.001.

4 | DISCUSSION

In this study, we developed and validated multiple radiomics
and clinical-radiomics models to personalize the prediction
of bone marrow metastasis in neuroblastoma. These models

effectively stratify patients according to the likelihood of
bone marrow metastasis and provide guidance for more
frequent follow-ups or aggressive preventive protocols. By
using these machine learning prediction models, we could
potentially reduce the frequency of invasive examinations
without compromising the accuracy of detecting bone
marrow metastasis, thereby improving the quality of life of
children with neuroblastoma.

Among the various models evaluated, the MLP demon-
strated the highest diagnostic accuracy in both the radiomics
and radiomics-clinical models. In the radiomics model, the
AUCs were 0.97 (0.95-0.99) on the training set and 0.90
(0.82-0.95) on the validation set. In the radiomics-clinical
model, the AUCs were 0.93 (0.89-0.96) and 0.91 (0.85-0.97),
respectively. Despite achieving satisfactory AUC values, the
accuracy scores were 0.807 for the MLP radiomics model
and 0.754 for the radiomics-clinical model. Thus, further
efforts are required to improve the accuracy of this prediction
model before its clinical application, such as increasing the
size of the training data set.

Notably, the sensitivity of the radiomics-clinical
models was only 0.609, although the specificity was
0.853. Consequently, our model can only identify a
small portion of patients with metastasis. However,
given its high specificity, we are confident that it could
be used to reduce the frequency of bone marrow
biopsies or aspirations in patients predicted to not have
metastasis.

Several strategies exist for diagnosing bone mar-
row metastasis in cancer, including radiomics, clini-
cal prediction nomograms, and molecular profiling
[25, 26]. However, in the case of neuroblastoma,
intratumor heterogeneity must be taken into consid-
eration. Intratumor heterogeneity is the main cause of
cancer progression and treatment resistance, which
poses challenges for both physicians and patients. For

TABLE 3 Univariate and multivariate logistic regression analyses of the MLP probability and clinical candidate predictors in the

training set.

Univariate logistic regression

Multivariate logistic regression

Variables OR OR (95% CI)
MLP probability 383,080 5902-24,861,724
Gender 1.46 0.72-2.96

Age of month 1.02 1.00-1.03
Calibration 1.42 0.61-3.32

Cross midline 0.36 0.15-0.89
Ascites 2.90 1.18-7.13
Lymph gland metastasis 3.07 1.50-6.31

p value OR OR (95% CI) p value
<0.001* 20,606,765 27,793-15,278,328,143 <0.001*
0.29
0.01%* 0.98 0.95-1.01 0.23
0.41
0.03* 1.12 0.15-8.59 0.92
0.02* 4.44 1.28-84.85 0.03*
0.002* 2.73 0.51-15.40 0.24

Abbreviations: CI, confidence interval; MLP, multilayer perception; OR, odds ratio.

*p < 0.05, statistically significant.
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FIGURE 4 Risk deciles of the radiomics-clinical models represented as bar plots (observed vs. predicted risk) for the training and

validation sets. Observed risk means the true bone marrow status of patients, the results of bone marrow aspiration, biopsy, or PET/CT scan.
Predicted risk means the probability of bone marrow metastasis predicted by the machine learning approaches. (a) MLP in the training set,
(b) XGB in the training set, (c) LR in the training set, (d) MLP in the validation set, (¢) XGB in the validation set, and (f) LR in the validation
set. CT, computed tomography; LR, logistic regression; MLP, multilayer perception; PET, positron emission tomography; XGB, XGBoost.

instance, Schmelz and colleagues reported extensive
spatial and temporal intratumor heterogeneity within
neuroblastoma [4]. As a result, molecular profiling
based on bulk sequencing approaches from single-

tumor biopsies often proves inefficient or only
exhibits short-term relevance. Therefore, radiomics
or clinical prediction nomograms may be more
suitable methods for prediction in this context.
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In the past, many researchers have dedicated
themselves to achieving more precise diagnoses of
cancers, prediction of cancer outcomes (including
metastasis), and assessment of treatment responses
using deep learning and machine learning methods.
For example, we previously developed a deep learning
model for the detection of bladder cancer that has
been successfully implemented in practice [27]. Ji
et al. successfully constructed a CT radiomics-based
model to predict lymph node metastasis in biliary
tract cancer [28]. Dercle et al. developed a radiomics
response signature using CT to identify metastatic
colorectal cancer sensitive to therapies targeting the
EGFR pathway [29].

In our study, we combined both radiomics and clinical
variables associated with bone marrow metastasis in our
nomogram and applied various feature selection algorithms.
This approach has the potential to provide individualized
precision in predicting the probability of bone marrow
metastasis, without adding any risks or costs. Patients with a
high tendency for bone marrow metastasis will be recom-
mended to undergo bone marrow aspiration, biopsy, or
positron emission tomography (PET)/CT, while those at low
risk will be advised to undergo active surveillance only. In
this way, we can strike a balance between the adverse effects
of more aggressive examinations and treatments and the
risks posed by cancer progression.

Our study demonstrated that most models combining
radiomics features and clinical factors outperformed models
that only included radiomics features. Unsurprisingly, the
accuracy of some models decreased when different machine
learning algorithms were employed because the effectiveness
of algorithms can vary.

Several studies also focused on detecting bone marrow
involvement using machine learning approaches. For
example, Mayerhoefer et al. developed a PET/CT radiomics
model with an MLP to predict bone marrow involvement in
mantle cell lymphoma in 97 patients [30]. The AUC of their
model reached 0.81, whereas the AUC of our model reached
0.91. Our higher value is possibly due to our larger sample
size. We compared nine different machine learning
approaches and selected the best model, whereas Marius
only used one machine learning approach. We believe that
different machine learning approaches may perform differ-
ently on different datasets and in different clinical scenarios.

Wennmann et al. combined deep learning and radio-
mics to automatically detect disseminated bone marrow
involvement in multiple myeloma [31]. In this study, the
regions of interest were the whole skeleton, whereas in
our study, the regions of interest were neuroblastomas.
Using the skeleton as the region of interest might lead to
better performance in predicting bone marrow involve-
ment because the skeletal region directly represents the

bone marrow. However, as mentioned earlier, neuroblas-
toma exhibits high temporal and spatial heterogeneity,
and repeat whole-body CT scans expose children to high
doses of radiation. Many studies have shown that analysis
of specific regions of cancer can reveal its heterogeneity
and propensity for metastasis [32, 33].

Our in-depth analysis suggested that venous phase
features may be as important as arterial phase
features. Both phases were included in both the
radiomics and radiomics-clinical models. This is
consistent with clinical knowledge that both arterial
and venous phases present signs associated with
disease progression. Recently, Chen et al. reported a
radiomics nomogram to predict MYCN status in
neuroblastoma [17]. Their study indicated that
venous phases outperformed arterial phases. We
compared the features included in our nomogram
with those in their study but found no common
features, suggesting that the important radiomics
features for MYCN status and bone marrow metasta-
sis may be different.

Multiple machine learning approaches were used to
construct the radiomics and radiomics-clinical models.
Our results indicate that MLP, RF, and XGB performed
well in the construction of the radiomics model, whereas
LR, XGB, and MLP performed well in the construction of
the radiomics-clinical model. Many previous studies
constructed radiomics models using LASSO regression
but, in our study, LASSO was not the most suitable
feature selection algorithm. Therefore, we encourage
researchers to compare different machine learning
approaches to obtain a more accurate prediction model.

Data independence is crucial in the model develop-
ment process. In our study, CT data from the same
patient were only included in either the training set or
the validation set. After dividing the data into training
and validation sets, we stored them as two independent
files to avoid data leakage.

The reproducibility of radiomics models is an ongoing
concern [34]. A reliable prediction model should be based
on stable and reproducible predictors. In our study, the
regions of interest were manually delineated or semi-
automatically generated, making complete elimination of
interobserver heterogeneity challenging. To address this,
the regions of interest in the training and validation sets
were independently delineated by two radiologists. The
high AUC on the training set indicates that interobserver
heterogeneity during delineation did not significantly
affect the results. Therefore, our model has the potential
to be generalized to other institutions.

Our model has the following limitations. First, only
the arterial and venous contrast phases were included in
our study, not the plain phase. We excluded the plain
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phase because we observed that tumor boundaries were
not well distinguished in the images. Tumor border
characteristics can greatly influence the aggressiveness of
the tumor. Because we did not have an accurate method to
obtain clear boundaries on the plain phase, we believe that
a model constructed solely using plain-phase images
would be less reliable. Therefore, we opted to include
only the arterial and venous contrast phases. Second, our
study lacks multicenter validation. Different CT scanners
and imaging environments may introduce variations in
the original CT images, which could impact the predictive
efficacy of our model in other medical centers. It is
important to validate the performance of our model across
multiple centers to ensure its generalizability. Third, we
did not directly compare the diagnostic accuracy of our
machine learning model with that of radiologists. In
clinical practice, radiologists typically rely on bone
marrow aspiration, biopsy, or PET/CT scans to detect
bone marrow metastasis. These methods are considered
the reference standards. However, our aim was to develop
a noninvasive diagnostic model that could complement or
assist the existing protocols. We evaluated and compared
the accuracy of our model with clinically used protocols
using metrics such as ROC and 10% risk deciles. We
acknowledge these limitations and believe that future
research should address these issues to further improve
the reliability and applicability of our model.

5 | CONCLUSION

In this study, we constructed multiple machine learning
radiomics and radiomics-clinical models using venous
and arterial enhanced-phase CT scans to predict bone
marrow metastasis of neuroblastoma. The MLP-based
radiomics and radiomics-clinical models outperformed
other machine learning approaches, with AUCs exceed-
ing 0.90 on the validation sets.
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