
INTRODUCTION

Parkinson’s disease (PD), dementia with Lewy bodies (DLB), 
multiple system atrophy (MSA), and a subset of Alzheimer’s dis-
ease (AD) are collectively referred to as synucleinopathies and 
characterized by abnormal deposition of α-synuclein (α-syn) in 
disease-affected brain regions [1, 2]. α-syn is a neuronal protein lo-
calized in presynaptic terminals that been shown to be involved in 
synaptic vesicle trafficking and synaptic plasticity [3, 4]. Under cer-
tain conditions, a small amount of α-syn can be released into the 
extracellular space via unconventional exocytosis [5-7]. Neuron-
released α-syn can then stimulate neurotoxic responses in neigh-
boring neurons and glia by interacting with cell surface receptors 
[8-11]. In microglia, α-syn induces a pro-inflammatory phenotype 
characterized by enhanced cell migration, oxidative stress, nitric 

oxide production, and release of cytokines and chemokines [12-
15]. The microglial receptors proposed to recognize extracellular 
α-syn are toll-like receptor 2 (TLR2), TLR4, cluster of differentia-
tion 36 (CD36), macrophage-1 antigen (MAC1), nicotinamide 
adenine dinucleotide phosphate oxidase 2 (Nox2), and β1-integrin 
[16-21]. Neurons, on the other hand, may interact with extracel-
lular α-syn via TLR2 and lymphocyte activation gene 3 (LAG3) to 
modulate autophagy and α-syn transmission, eventually leading 
to abnormal deposition of α-syn and neuronal death [9, 22, 23]. 
As such, targeted regulation of these receptors may have beneficial 
therapeutic effects by alleviating α-syn-mediated toxicity. 

TLRs are a family of membrane-bound pattern recognition 
receptors (PRRs) responsible for an innate immune response. 
Upon recognizing their specific pathogens, TLRs engage in an as-
sortment of intracellular signaling pathways that can induce the 
expression of inflammatory genes to regulate the host’s immune 
response [24]. TLRs are primarily expressed by innate immune 
cells such as monocytes/macrophages and dendritic cells, but they 
can also be found on adaptive immune and non-immune cells [25]. 
In the central nervous system, microglia, astrocytes, neurons, and 
oligodendrocytes are all known to express certain types of TLRs 
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[26]. Although TLRs have been extensively studied in the innate 
immune system, recent studies have also suggested a critical role 
for TLRs in neurodegenerative diseases such as synucleinopathies 
and AD [27-29]. Here, we will explore α-syn-induced microglial 
and neuronal TLR2 activation and discuss TLR2 as a potential 
therapeutic target for synucleinopathies. 

PATHOLOGICAL INTERACTION OF MICROGLIAL TLR2 AND 
EXTRACELLULAR α-SYNUCLEIN

In 2013, we demonstrated the pathological role of microglial 
TLR2 in synucleinopathies [30]. To investigate the microglial 
response to neuron-released α-syn, we introduced culture media 
obtained from differentiated human neuroblastoma SH-SY5Y 
cells (dSY5Y) overexpressing either wildtype human α-syn (αSCM) 
or β-galactosidase (LZCM, control conditioned media) to rat 
primary microglia. Cells treated with αSCM displayed increased 
amoeboid morphology, cell proliferation, and nitric oxide produc-
tion, indicating microglial activation. However, αSCM contains 
not only neuron-released α-syn but also other cellular byproducts. 
To evaluate whether microglial activation by αSCM depends on 
the presence of α-syn in the conditioned medium, we serially and 
selectively eliminated α-syn from αSCM and observed a concomi-
tant decrease in microglial activation. Total depletion of α-syn 
from the conditioned media completely abolished the microglial 
response to αSCM. Microglial activation was conversely increased 
by treatment of α-syn purified from αSCM in a dose-dependent 
manner. 

To gain a comprehensive mechanistic understanding for α-syn-
induced microglia activation, we then analyzed the early (6 hr) 
and late (24 hr) responses in the gene transcriptome of microglia 
exposed to neuron-released α-syn. Jak-STAT, cytokine-cytokine 
receptor, leukocyte transendothelial migration, and regulation of 
actin cytoskeleton pathways were indicated in either the early or 
late response. On the other hand, TLR2 and downstream signaling 
proteins myeloid differentiation primary response 88 (Myd88), 
interleukin-1 receptor-associated kinase (IRAK), nuclear factor 
kappa-light-chain-enhancer of activated B cells (NFκB), and p38 
mitogen-activated protein kinase (MAPK) exhibited sustained ac-
tivation across time points. Transcriptome analysis of human PD 
patients also demonstrated an upregulation of TLR2 and down-
stream signaling cascade components such as CD14, IRAK2, and 
NFκB. 

Given the induction of TLR2 in synucleinopathy, we next examined 
whether modulation of TLR2 could suppress microglial activation. 
Primary microglia isolated from Tlr2 knockout (Tlr2 -/-) mice dis-
played little to no cytokine production following αSCM treatment, 

regardless of the α-syn concentration. Furthermore, overexpression 
of α-syn in dopaminergic neurons induced microglia activation in 
wild type but not in Tlr2 -/- mice. Antibody-mediated TLR2 func-
tional inhibition also significantly decreased microglial responses to 
α-syn, including enhanced cytokine gene expression. 

Neurons release various forms of α-syn, including monomers, 
oligomers, and high molecular weight aggregates [31-34]. To 
identify which α-syn conformations interact with TLR2, we sorted 
neuron-released α-syn by size exclusion chromatography and 
observed that oligomeric α-syn had the highest TLR2 agonistic 
activity while low weight oligomers and monomer had little ef-
fect. Biophysical analysis further revealed that these oligomers are 
β-sheet-enriched. In the manner thus described, we concluded 
that β-sheet-enriched oligomeric forms of neuron-released α-syn 
can induce microglial neuroinflammation via TLR2 (Fig. 1).

Our findings were supported by the studies that followed. In mi-
croglia pretreated with α-syn, administration of a TLR2-specific 
agonist, but not other TLR agonists, was sufficient to increase cy-
tokine gene expression such as that of IL-6 [35]. Additional studies 
observed profoundly increased TLR2 expression in the brains of 
synucleinopathies patients and aged animal models [36, 37]. Our 
finding that misfolded α-syn activated microglia via MyD88-de-
pendent TLR1/2 signaling was also reinforced [38]. Furthermore, 
La Vitola et al. showed that α-syn oligomers impaired memory for-
mation in a PD mouse model through a TLR2-dependent process 
[39]. Qiao et al. additionally demonstrated that TLR2 neutralizing 
antibody and knockdown could prevent microglial activation by 
neuron-released α-syn [40]. Similarly, exercise was found to have 
a neuroprotective effect in a pharmacological animal model of 
PD by down-regulating TLR2 expression and downstream signal-
ing molecules such as MyD88, tumor necrosis factor receptor- 
associated factor 6 (TRAF-6), and transforming growth factor 
β-activated protein kinase 1 (TAK-1) [41, 42]. The literature thus 
supports that targeting microglia TLR2 might be beneficial to the 
treatment of synucleinopathies.

PATHOLOGICAL INTERACTION OF NEURONAL TLR2 AND  
EXTRACELLULAR α-SYNUCLEIN

In a subsequent study, we crossed Tlr2 -/-mice with a synucle-
inopathy mouse model expressing human A53T α-syn (A53T+ 
Tlr2 -/-) to examine whether TLR2 activity is associated with overall 
synucleinopathy pathology in vivo  [43]. In accordance with our 
previous findings, genetic depletion of TLR2 significantly reduced 
astrogliosis, microgliosis, and neuronal loss in A53T+ Tlr2 -/- mice. 
Remarkably, however, we also found a decrease in the neuronal 
α-syn pathology of A53T+ Tlr2 -/- mice without alteration in A53T 
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α-syn gene expression. Although TLRs are typically associated 
with immune cells, multiple studies have proposed that neurons 
also express TLR2 [22, 44, 45]. Therefore, we verified the expres-
sion of TLR2 in primary mouse neurons and human neural 
progenitor cells. Interestingly, we also observed neuronal TLR2 ex-
pression in A53T+ mice. These findings suggested a potential role 
for neuronal TLR2 in synucleinopathies.

To assess this role, we stimulated α-syn-overexpressing neuro-
nal cells with the TLR2-specific agonist, pam3CSK4. Strikingly, 
stimulation of TLR2 significantly increased the intracellular ac-
cumulation of high molecular weight α-syn aggregates, with cyto-
toxicity. On the other hand, lentiviral vector-mediated knockdown 
of TLR2 in these cells normalized α-syn accumulation to that of 
control levels regardless of whether the agonist was introduced. 
Having observed that TLR2 was associated with α-syn deposition 
in vitro , we next knocked down TLR2 expression in a synucle-
inopathy mouse model, Line 61 (Thy1-human-α-syn). This popu-
lar model mimics the neuropathological and functional aspects 
of synucleinopathy, including α-syn pathology and neuroinflam-
mation. Delivery of a TLR2-knockdown lentiviral vector not only 
significantly decreased both neuroinflammation and neuronal 
accumulation of α-syn, but also improved behavioral deficits.

We next sought to understand the signaling mechanism by 

which TLR2 affects neuronal α-syn accumulation. Given that 
α-syn mRNA levels were unaffected by genetic depletion of TLR2 
and, in general, TLRs are associated with pathogen clearance, we 
hypothesized that neuronal α-syn deposition might be associated 
with cellular protein homeostasis mechanisms such as autophagy 
[46, 47]. To verify this idea, we monitored proteostasis markers 
in TLR2-stimulated neurons and demonstrated that activation 
of TLR2 increased the accumulation of not only high molecular 
weight α-syn aggregates but also sequestosome 1 (p62/SQSTM1) 
and puncta formation of microtubule-associated proteins 1A/1B 
light chain 3B (LC3), which are indicators of autophagy [48]. Treat-
ment of rapamycin, an autophagy inducer, significantly reduced 
TLR2-mediated α-syn accumulation. Notably, co-treating neurons 
with TLR2 agonist and autophagy inhibitor bafilomycin A1 did 
not produce an additive effect on α-syn accumulation, which sug-
gests that the two drugs act along the same pathway. 

The mammalian target of rapamycin (mTOR) is a key modula-
tor of autophagy [49]. Given that rapamycin reversed the effects 
of TLR2 agonist on α-syn pathology, we investigated the role of 
mTOR signaling in TLR2-mediated neuronal α-syn deposition. 
Interestingly, activation of TLR2 in α-syn-overexpressing dSY5Y 
cells increased the inhibitory phosphorylation of mTOR as well 
as the phosphorylation of AKT, an mTOR negative regulator. As 

Fig. 1. Model of pathological TLR2 activation by neuron-released α-synuclein in neurons, astrocytes, and microglia. Under disease conditions, neurons 
release pathogenic α-syn into the extracellular space where they can interact with TLR2 on neighboring cells. In microglia and astrocytes, α-syn activates 
a TLR2 signaling cascade that induces a pro-inflammatory response, thereby generating a neurotoxic environment. α-syn can also interact with neuro-
nal TLR2 to induce neurotoxic α-syn deposition by impairing autophagy. As such, TLR2 immunotherapy is a promising therapeutic strategy to prevent 
α-syn-mediated glial activation and cell-to-cell transmission of α-syn aggregates, ultimately ameliorating neurotoxic conditions in the synucleinopathy 
brain.
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further evidence, stimulation of TLR2 increased the accumulation 
of p62/SQSTM1 and α-syn in human neural precursor cells over-
expressing α-syn. In addition, treatment with an AKT inhibitor or 
lentiviral knockdown of TLR2 was sufficient to reverse these ef-
fects, suggesting that neuronal TLR2 activation by α-syn promotes 
intracellular α-syn deposition through an AKT/mTOR-dependent 
inhibition of autophagy. These findings were supported by Dzam-
ko et al, who described the induction of neuronal TLR2 in PD 
patient brains [50]. Dzamko et al also verified that TLR2 activation 
disrupts neuronal autophagy and results in α-syn accumulation. 
As such, neuronal TLR2 might also be a viable therapeutic target 
for synucleinopathies (Fig. 1).

TLR2 IN CELL-TO-CELL TRANSMISSION

The cell-to-cell transmission of α-syn has also been proposed 
to play a critical role in synucleinopathy pathogenesis [9, 51, 52]. 
To assess whether TLR2 is associated with α-syn transmission, we 
employed a live-cell monitoring system consisting of neuronal 
donor cells expressing α-syn conjugated to the amino-terminus 
of the fluorescent protein Venus and neuronal recipient cells ex-
pressing α-syn conjugated to the carboxy-terminus of Venus [53, 
54]. Intriguingly, induction of TLR2 through overexpression or 
an agonist increased the cytotoxic neuron-to-neuron transmis-
sion of α-syn. However, functional or genetic inhibition of TLR2 
suppressed this transmission. These results indicate that TLR2 
plays a critical role in the neuron-to-neuron transmission of α-syn 
aggregates. In addition to neuron-to-neuron transmission, α-syn 
may also be transferred to neighboring glial cells [8]. Although 
astrocytes do not express α-syn, we observed significant α-syn ac-
cumulation in the astrocytes of both synucleinopathy patients and 
mouse models [8, 55]. We thus also verified that astrocytic α-syn 
aggregates originated from neurons in a TLR2-dependent manner 
[8].

TLR2 IMMUNOTHERAPY IN SYNUCLEINOPATHY MOUSE 
MODEL

With evidence to support that extracellular α-syn pathologically 
activates TLR2 in synucleinopathies, we shifted our focus to the 
therapeutic potential of modulating TLR2 activity [56]. We first 
verified that TLR2 was present and elevated in the neurons and 
microglia of synucleinopathy patients and animal models. Then, 
we administered a TLR2 functional blocking antibody (T2.5) into 
a synucleinopathy mouse model mimicking the neuropathological 
and functional aspects of the disease [56]. As expected, blockade 
of TLR2 successfully diminished α-syn deposition in neurons, 

especially that of triton-insoluble high molecular weight α-syn 
aggregates. Treatment with T2.5 also reduced astrogliosis and mi-
crogliosis as well as decreased the expression of pro-inflammatory 
cytokines such as tumor necrosis factors alpha (TNFα) and in-
terleukin 6 (IL-6). Remarkably, T2.5 administration significantly 
ameliorated neuronal loss in synucleinopathy mice, and this neu-
roprotective effect was reflected in the improvement of behavioral 
deficits in the model such as hyperactivity.

Based on these data and our previous findings, we propose three 
mechanisms by which functional inhibition of TLR2 could al-
leviate α-syn pathology, inflammation, and neurodegeneration in 
models of synucleinopathy. First, functional inhibition of TLR2 
reduces glial activations and subsequent neuroinflammation [30]. 
Second, TLR2 blockade relieves the suppression of neuronal au-
tophagy to decrease abnormal deposition of α-syn [43]. Finally, 
neutralization of TLR2 may inhibit neuron-to-neuron and neu-
ron-to-glia α-syn transmission (Fig. 1). 

CONCLUSIONS

TLR2 is involved in the neuropathogenesis of synucleinopathy in 
in vitro and in vivo models via i) the induction of pro-inflamma-
tory glial activation, ii) autophagy-mediated neuronal α-syn accu-
mulation, and iii ) pathogenic neuron-to-neuron and neuron-to-
glia α-syn transmission (Fig. 1). We further showed that functional 
modulation of TLR2 can ameliorate the neuropathogenesis and 
behavioral deficits in synucleinopathy mouse models. Therefore, 
we propose that targeting TLR2 is a promising immunotherapeu-
tic strategy for synucleinopathies.
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