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Tissue-nonspecific alkaline phosphatase (TNAP) is one of the four isozymes in humans and mice that have the
capacity to hydrolyze phosphate groups from a wide spectrum of physiological substrates. Among these, TNAP
degrades substrates implicated in neurotransmission. Transgenic mice lacking TNAP activity display the charac-
teristic skeletal and dental phenotype of infantile hypophosphatasia, as well as spontaneous epileptic seizures
and die around 10 days after birth. This physiopathology, linked to the expression pattern of TNAP in the central
nervous system (CNS) during embryonic stages, suggests an important role for TNAP in neuronal development
and synaptic function, situating it as a good target to be explored for the treatment of neurological diseases. In
this review, we will focus mainly on the role that TNAP plays as an ectonucleotidase in CNS regulating the levels
of extracellular ATP and consequently purinergic signaling.
© 2014 The Authors. Sebastián-Serrano et al. Published by Elsevier B.V. on behalf of the Research Network of

Computational and Structural Biotechnology. This is an open access article under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Alkaline phosphatases (APs) are ubiquitous ectoenzymes widely
distributed in nature from bacteria to humans, suggesting their involve-
ment in important physiological processes. Their main functions consist
of catalyzing dephosphorylation and transphosphorylation reactions on
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a broad spectrum of physiological and non-physiological substrates
[1–3]. AP isozymes, encoded by four homologous gene loci, are present
in both humans and mice [4–6]. Three of them, known as the placental
(PLAP), germ cell (GCAP), and intestinal (IAP) types, are tissue-specific
with highly restricted expression, while the fourth isozyme, tissue-
nonspecific AP (TNAP), is present in numerous tissues but particularly
abundant in mineralizing tissues, the kidneys [7] and the central
nervous system (CNS) [8,9]. TNAP is encoded in humans by the ALPL
(alkaline phosphatase, liver/bone/kidney) gene and by the Akp2
(alkaline phosphatase 2) gene in mice, both with 12 exons [10–12]. In
both species, two different transcripts derived from the same coding re-
gion have been described [12–14]. Similar to the rest of themammalian
AP family, TNAP is a homodimeric protein anchored to the cytoplasmic
membrane via two GPI moieties [15,16]. Each monomer contains three
metallic ions (two zinc molecules and one of magnesium) and one
phosphate ion. The central core of each subunit consists of an extended
β-sheetflanked byα-helices. Other two identifiable regions are the long
N-terminalα-helix and an interfacial flexible loop known as the “crown
domain” [2].

TNAP hydrolyzes extracellular inorganic pyrophosphate (PPi), a
potent mineralization inhibitor, to enable the physiological deposition
of hydroxyapatite in bones and teeth [2,17–20]. Hypomorphic muta-
tions in the ALPL gene encoding TNAP lead to accumulation of PPi in
the extracellular matrix causing a heritable form of rickets in children
or osteomalacia in adults known as hypophosphatasia [6,21–24].
Another substrate of TNAP is pyridoxal-5′-phosphate (PLP, the major
active form of vitamin B6) [25]. TNAP converts extracellular PLP into
pyridoxal that is taken up into cells and rephosphorylated by intra-
cellular kinases. There it functions as a cofactor for the synthesis of
enzymes implicated in the metabolism of several neurotransmit-
ters, such as gamma-aminobutyric acid (GABA) or serotonin [26].
In addition, this enzyme has been described as an ectonucleotidase,
being able to cleave all forms of adenosine phosphates influencing
purinergic signaling [27]. Along with APs, there are also three
major groups of ectonucleotidases: the ecto-nucleoside triphosphate
diphosphohydrolases, ecto-5′-nucleotidase, and ecto-nucleotide
pyrophosphatase/phosphodiesterases (for an extensive review of the
structure and function of the ectonucleotidases see [28]). All these
properties of TNAP linked to the fact that it is highly expressed in the
brain and the developing spinal cord [8,9,29,30], suggesting a physio-
logical role for TNAP in CNS and its development. Although deficiency
in TNAP function leads to seizures, both in patients [25] and in mice
[31,32], little is known about the mechanism of action of TNAP in the
CNS.

2. TNAP Contributes to Early Embryonic Development of the CNS:
Proliferation and Migration

During early developmentof the nervous system, twomain processes
take place. First, the neural precursors proliferate and generate the
characteristic high cellular variability of the brain. Then, cells migrate
until they reach their correct position in the brain.

TNAP is strongly expressed in these early stages in the neural tube,
and in migrating primordial germ cells [19,29,33], a subpopulation of
neuroectodermal cells. In mice, these cells are characterized by moving
from the epithelium of the hind gut to the genital ridges around
embryonic day 8 (E8) [34]. The high expression of TNAP in these cells
during their migration may suggest an unknown role of the enzyme in
this process.

Furthermore, strong activity of TNAP has been found around embry-
onic day 14 (E14) in ventricular and subventricular zones (VZ and SVZ)
where neural precursors are placed [35]. Taking into account that these
regions are characterized by increased proliferative activity, either dur-
ing development or in the adult brain [36], it would be reasonable to re-
late TNAP function with proliferation. Moreover, increasing evidence
points to purinergic signaling pathways playing a role in embryonic
and adult neurogenesis [35]. The activation of purinergic receptors can
transiently increase intracellular Ca2+ concentrations, independently
of voltage-dependent Ca2+-channel activation [37], and this increase
could be related to cellular proliferation [38]. Studies using embryonic
rat slices demonstrated that Ca2+ waves propagating through radial
glial cells of VZ are mediated by P2Y1 receptor activation. Disruption
of calcium waves induces a reduction of cell proliferation in the VZ
[39]. Furthermore purinergic signaling facilitates progenitor cell migra-
tion within the developing cortex [17,18]. This suggests that purinergic
signalmolecules surrounding the precursor cells are essential for proper
brain development. We surmise that these progenitor cells employ the
ectonucleotidase activity of TNAP to regulate the nucleotide availability
in the microenvironment of purinergic receptors [35,40]. In support of
this hypothesis, downregulation of TNAP in neural stem cells from
adult mice affects differentiation in vitro and possibly also in vivo [41].
The mechanisms underlying the impact of TNAP activity on precursor
cell proliferation and possibly migration require further investigation.

3. TNAP Regulates Neuronal Differentiation: Axonal Growth

The next essential event during development is axonal growth and
guidance. Once the intermediate neurons reach their correct position,
axonal elongation towards the proper target is initiated, eventually
generating the precise neuronal circuits observed in the mature brain.
Guidance cues include neurotrophic factors, neurotransmitters and
other signals, both diffusible and associated with the neuronal mem-
brane. These molecules employ attraction and repulsion mechanisms,
directing the axonal growth through the control of polymerization
and depolymerization of microtubules and microfilaments [42,43].

Around E10.5, strong TNAP activity has been found in cranial nerves
and dorsal roots that may be related to pioneer growth cones [29]. One
hypothesis for the involvement of this enzyme in axonal elongation
might relate to the ability of TNAP to interact with extracellular matrix
proteins, such as collagens, through its loop region [44]. Another
hypothesis might relate to the involvement of TNAP in the metabolism
of extracellular nucleotides modulating purinergic signaling [27]. In the
nervous system, purines act as neurotransmitters mediating not only
rapid effects, but also trophic effects inducing changes in metabolism,
structure and function [45]. For example,well-establishedmodels of ax-
onal growth using neural explants of rat embryos at E12 demonstrate
that ATP is able to reduce motoneuron neurite extension [46]. ATP be-
haves as a neurotransmitter in the CNS activating both, ionotropic P2X
receptors (P2XRs) [47–49] andmetabotropic P2Y receptors [50]. Activa-
tion of ionotropic P2XRs induces transient increases in cytosolic Ca2+

concentrations [37] including in growth cones [51]. This increase nega-
tively regulates the rate of axonal outgrowth. To the contrary, reduction
of intracellular Ca2+ levels in axonal growth cones accelerates axonal
elongation [52]. Moreover, in vitro studies using cultured hippocampal
neurons have shown that ATP can induce an intracellular Ca2+ increase
in the axonal growth cone, generating a Ca2+ wave mainly at the distal
region of the axon [51]where P2XRs are localized. This focal Ca2+ influx
correlates with changes in growth conemorphology, from lamellipodial
to filopodial extensions. Pharmacological and molecular biology tools
have identified the P2X7R as the ATP receptor inducing these changes.
Interestingly, specific P2X7R antagonists induce a significant increase
in axonal length [51].

Additional studies, again with cultured hippocampal neurons,
showed that during the first days of culturing extracellular ATP levels
are considerably reduced [53]. The reduced levels of extracellular ATP
correlate with a significant increase in TNAP activity, especially at the
axonal growth cone. It is important to note that during the three initial
days in culture, one of the neurites emerges from the cell body to
become the axon. Pharmacological inhibition of TNAP maintains high
levels of extracellular ATP in the culture media and inhibits the growth
and branching of axons (Fig. 1B and C) [53]. Neither activation nor
inhibition of adenosine receptors influenced axonal growth, excluding



Fig. 1. Schematic representation of the axonal growth regulation by the coordinated action of TNAP and P2X7R. A) Immunofluorescence image of the axonal growth of hippocampal
neurons fixed at 3 DIV and stained with antibodies against TNAP (green) and P2X7R (red). The image shows the presence of both proteins at the growth cone of hippocampal neurons.
Scale bar: 20 μm. B) TNAP hydrolyzes the physiological agonist of P2X7R, ATP, in the proximal environment of the receptor, which negatively regulates the activation of this receptor
favoring in this way the axonal growth. C) The pharmacological inhibition of TNAP by levamisole produces an increase of ATP in the proximal environment of P2X7R, event that favor
the activation of the receptor and then decreasing the axonal growth. The immunofluorescence images of lower panels showhippocampal neurons (3DIV) stainedwith antibodies against
axonal molecular markers, Map2 (red) and Tau (green), under normal condition (B) or treated with TNAP antagonist, levamisole, inhibiting axonal growth (C). Scale bar, B and C: 50 μm.
Ext: extracellular space. Int: intracellular space. Ado: adenosine. Pi: inorganic phosphate. (For interpretation of the references to color in thisfigure legend, the reader is referred to theweb
version of this article.)
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the contribution of adenosine in this process, the principal product
generated by extracellular hydrolysis of ATP by TNAP [53]. The presence
of TNAP at growth cones suggests a close functional interrelation
between P2X7R and the ectonucleotidase (Fig. 1A). TNAP probably
induces axonal elongation by hydrolyzing ATP in the immediate envi-
ronment of the receptors, thus preventing the activation of P2X7R. Of
note, inhibition of P2X7R reduced TNAP expression while addition
of exogenous TNAP enhanced P2X7R expression revealing a novel
relationship between both proteins at the transcriptional level [53].

4. TNAP and Synaptic Function

Once the axon reaches the proper target, it has to establish synaptic
contacts. TNAP is selectively expressed in the synaptic cleft of sensory
cortical areas in adult primates [8] and in humans [54]. As shown by
deprivation paradigms in monkeys TNAP activity is regulated by senso-
ry experience [8]. It is of interest that the high activity of TNAP in the
cortex coincides with the peak of synaptogenesis [55,56], suggesting a
functional involvement of TNAP in synapse formation and maturation.
Recent studies demonstrated the presence of TNAP in the retina of sev-
eral vertebral species, including humans, suggesting a role in retinal
neurotransmission [57]. While the precise biological functions of TNAP
at these CNS sites remain to be further elucidated, emerging evidence
suggests that TNAP may act through metabolic pathways additional to
hydrolyzing extracellular nucleotides. The levels of PLP are regulated
by TNAP [58]. PLP is a co-factor of glutamic acid decarboxylase
(GAD65) [59] essential for GABA synthesis. GABA is one of the main
inhibitory neurotransmitters in the CNS. Changes in its concentration
may induce an imbalance between excitatory and inhibitory synaptic
responses. In addition, PLP is necessary for the synthesis of serotonin,
dopamine, epinephrine and norepinephrine [26,60].

As noted above, TNAP is potentially involved in purinergic transmis-
sion by producing nucleoside receptor substrates through the extracel-
lular hydrolysis of ATP to adenosine [28]. Adenosine has been widely
described as a neuromodulator in the CNS, and the activation of its
receptors is implicated in several physiological processes [61]. Further
to this, studies using nerve endings from the rat midbrain as a model
demonstrated that the adenosine generated by TNAP, is sufficient to
activate presynaptic A1 adenosine receptors. This in turn increased the
affinity and response of presynaptic ionotropic nucleotide and dinucle-
otide receptors at the same nerve endings [62,63]. Additionally, several
neurotransmitters like acetylcholine (ACh), glutamate or GABA could be
released by vesicle-dependent mechanisms when these ionotropic
nucleotide receptors were activated [64–66]. This suggests that TNAP
might modulate synaptic function by regulating the availability of
ligands at nucleotide and nucleoside receptors.

TNAP is often co-expressedwith other ectonucleotidases [27] which
could redundantly generate adenosine from extracellular nucleotides in
different regions of the nervous system, including the somatosensory
system or the hippocampus. In both cases, the adenosine generated acts
by inhibiting dorsal root ganglion or spinal neurons and hippocampal
activity, respectively [67,68].
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Finally, pioneering studies using TNAP knockout mice analyzed the
consequences of the lack of TNAP on postnatal brain development, spe-
cifically from the first to the tenth day of postnatal development. During
these days, at the spinal cord level, the relative amount of white matter
suffers a considerable decrease in the knockout mice when compared
to their control littermate wild-type mice. This fact was accompanied
by a decrease in the g-ratio (axon diameter/fiber diameter) of the mye-
linated fibers and in the thinning of the myelin sheath [32,69]. In the
cerebral cortex, myelinated axons, found to be present in wild-type
littermate mice, were absent in TNAP knockout animals at seventh and
eighth postnatal days. Remarkably, the cerebral cortex from these mu-
tant mice contains a high proportion of immature synapses supporting
the hypothesis that TNAP plays also a role in synaptogenesis [69].

5. Implication of TNAP in Neurodegenerative Diseases: Alzheimer's
Disease and Epilepsy

As mentioned above, TNAP hydrolyzes a wide spectrum of
monoesters of phosphoric acid. These properties together with the
abnormalities in myelination and synaptogenesis observed in the
TNAP knockout mice, a model of infantile hypophosphatasia, implicate
an important role of this enzyme in neuronal development [32,69].
Therefore, TNAP emerges as a plausible target for the treatment of neu-
rological diseaseswhere the synaptic function is altered such as epilepsy
or Alzheimer's disease.

5.1. Alzheimer's Disease (AD)

In 2006 the incidence of ADwas around 30million cases throughout
the world [70], but this figure has been increasing each year since then.
At histopathological levels, this disease is characterized by the presence
of two aberrant structures: extracellular senile plaques composed by
amyloid beta peptide, and intracellular neurofibrillary tangles (NFTs)
mainly formed by hyperphosphorylated tau protein [71].

Hyperphosphorylated tau initially appears in the entorhinal cortex
and spreads from there to surrounding regions like the hippocampus
[72]. In these brain regions it has been found that a relationship
Fig. 2. Schematic representation illustrating the involvement of TNAP in the progression of Alzh
undetermined injury or by its own vesicular release under physiological conditions. This tau pro
activation of muscarinic receptors by tau has three main consequences; an increase of intracell
quently of these effects, a positive feedback loop is generated in which the final consequence is
contents are released to the interstitial space, increasing the extracellular levels of hyperphosp
degradation, allowing the proteins to reach distant brain regions that results in spreading of th
between the extent of tangles and neuronal death exists [73–75].
Regarding the underlying mechanism, it has been recently reported
that tau protein induces a toxic effect through the activation of musca-
rinic receptors, specifically M1 and/or M3 receptors [76,77]. But, why
tau and not other muscarinic agonists like ACh, is able to induce
this neurotoxic effect? We can find the answer in three differential
facts; first tau has around one order of magnitude higher affinity for
muscarinic receptors than ACh. Second, a repeated stimulation of the
muscarinic receptor by ACh induced receptor desensitization, and this
phenomenon failed when they were stimulated by tau. And finally,
tau protein is very stable in the interstitial space, remaining intact in
this location more time than ACh [78]. All these data can explain, at
least in part, the toxic effect associated with tau protein in AD.

It has been recently reported that extracellular hyperphosphorylated
tau protein coming from damaged neurons must be dephosphorylated
to become an agonist of amuscarinic receptor and induce the unbalances
of the intracellular calcium homeostasis that finally triggers neuronal
death [79]. Furthermore, this activation by dephosphorylated tau also in-
creases TNAP expression and the phosphorylation levels of intracellular
tau [76,79]. Taking all these data together, we can postulate the next
scenery that is summarized in Fig. 2. Briefly, after an initial neuronal
damage or maybe by its own vesicular release [80] hyperphosphorylated
tau reaches the extracellular spacewhere it is dephosphorylated by TNAP.
Afterwards, dephosphorylated tau can activatemuscarinic receptors pro-
ducing an increase in the intracellular levels of calcium, phosphorylation
of intracellular tau protein and the expression of TNAP. This last event
will cause a more efficient dephosphorylation of the extracellular
hyperphosphorylated tau. The final result is a positive feedback mecha-
nism that maintains constant muscarinic receptor activation that could
provoke the neuronal death by the imbalance of intracellular calcium ho-
meostasis. But in addition, this mechanism also generates the formation
of new intracellular tangles, prior to the cell death. With the rupture of
the plasma membrane after the cell death, the intracellular contents are
released to the interstitial space, increasing the extracellular levels
of hyperphosphorylated tau. The NFTs suffer slow disassembly and
degradation, allowing the proteins to reach distant brain regions which
results in spreading of this neurodegenerative process [79].
eimer's disease. First, tau protein reaches the interstitial space as a consequence of an initial
tein is dephosphorylated by TNAP becoming an active ligand of muscarinic receptors. The
ular level of calcium and hyperphosphorylated tau, and an increase of TNAP levels. Subse-
cell death.With the rupture of the plasmamembrane after the cell death, the intracellular
horylated tau. The NFTs (intracellular neurofibrillary tangles) suffer slow disassembly and
is neurodegenerative process.
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Supporting this hypothesis, preclinical assays tested on more than
100ADpatients have shown that TNAP activity is significantly increased
in the hippocampus of AD patients compared with age-related controls,
independent ofwhether theywere diagnosed as sporadic or genetic AD.
Interestingly, this study also demonstrated an increase of TNAP levels in
the plasma of the AD patients [81], suggesting that TNAP is a good
biomarker of disease progression.

5.2. Epilepsy

Epilepsy is a common and chronic group of neurological disorders
characterized by recurrent unprovoked seizures, which range from
brief and practically undetectable, to longer periods of violent convul-
sions. It affects about 50 million people worldwide [82]. Epileptic
seizures are the result of excessive and abnormal hypersynchronous
firing of neurons in the brain [83].

Bearing in mind that TNAP regulates the availability of PLP [25], the
cofactor implicated in GABA synthesis [26], the first studies directed to
elucidate the causes of the spontaneous epileptic seizures observed in
TNAP knockout mice [31,32] focused on the dysregulation of GABAergic
signaling, responsible for inhibition of neuronal activity. Administration
of vitamin B6 (pyridoxal) was found to suppress these seizures [84] and
the authors suggested that the epileptic seizures observed in TNAP
knockout mice result from GAD dysfunction resulting from reduced
hydrolysis of extracellular PLP and subsequent shortage of intracellular
PLP. This could also explain the abnormal morphology of the lumbar
nerve roots and myelination defects observed in these mice [32,69].
Finally, the role of TNAP as an ectonucleotidase must be further investigat-
ed. Considering that P2XRs have been widely related to epilepsy [85] as
well as TNAP is able to regulate ligand availability (ATP) in the
environment of P2XRs, together with recently reported work where it is
described that PLP can antagonize the response induced by the activation
of someP2XRs [86],we can suggest that the contributionof TNAP to the sei-
zures suffered by TNAP null micemay be due tomultiple factors. However,
to validate this hypothesis deeper and exhaustive studies should be done.

6. Concluding Remarks

The studies presented here demonstrate that under normal condi-
tions TNAP plays a key role during CNS development, being involved
on neural differentiation as well as in the establishment and mainte-
nance of the synaptic contact. However, alterations on its normal func-
tion have been associated with some neurological diseases, such as
epilepsy or AD. Considering that the role of TNAP in the CNS is just
starting to be elucidated, new studies have to be performed to identify
the factors that are altering its normal function on these diseases. On
the other hand, due to the wide distribution that TNAP presents in the
whole body, new specific antagonists of TNAPwith a restricted distribu-
tion to CNS should be developed. In addition, according to what was
mentioned in Section 5.2, to consider this enzyme as a validated thera-
peutic target to treat AD, the combination of these new compounds
with selective P2X antagonists would avoid epileptic seizures derived
from the maintained inhibition of TNAP.
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