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1  |  INTRODUC TION

Tools to predict organismal responses to climate change increas-
ingly incorporate ecological and physiological traits such as energy 
balance and life history (Buckley, 2008; Kearney & Porter, 2009; 
Urban et al., 2016). However, most models ignore variation in such 
traits among populations or life stages (Cotto et al., 2017; Sinclair 
et al., 2016; Urban et al., 2016). This is despite evidence that in-
traspecific variation in traits is ecologically relevant (Des Roches 

et al., 2018) and that accounting for within-species variation is 
critical for predicting outcomes under future climates (Leites 
et al., 2012; McCain et al., 2016). Variation among populations 
or life stages can occur because of local adaptation, ontogenetic 
ecological differences, or plasticity. These types of variation may 
constrain population responses (Valladares et al., 2014), increase 
the breadth of necessary conditions for population persistence 
(Riddell et al., 2018a), or maintain ecological performance across a 
wide range of environmental conditions, respectively (Huey et al., 
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Abstract
Predicted changes in global temperature are expected to increase extinction risk 
for ectotherms, primarily through increased metabolic rates. Higher metabolic rates 
generate increased maintenance energy costs which are a major component of en-
ergy budgets. Organisms often employ plastic or evolutionary (e.g., local adaptation) 
mechanisms to optimize metabolic rate with respect to their environment. We ex-
amined relationships between temperature and standard metabolic rate across four 
populations of a widespread amphibian species to determine if populations vary in 
metabolic response and if their metabolic rates are plastic to seasonal thermal cues. 
Populations from warmer climates lowered metabolic rates when acclimating to sum-
mer temperatures as compared to spring temperatures. This may act as an energy 
saving mechanism during the warmest time of the year. No such plasticity was evident 
in populations from cooler climates. Both juvenile and adult salamanders exhibited 
metabolic plasticity. Although some populations responded to historic climate ther-
mal cues, no populations showed plastic metabolic rate responses to future climate 
temperatures, indicating there are constraints on plastic responses. We postulate 
that impacts of warming will likely impact the energy budgets of salamanders, poten-
tially affecting key demographic rates, such as individual growth and investment in 
reproduction.
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2012). Given that populations experience different selection pres-
sures and have different evolutionary histories, we should expect 
variation to be the norm (Peterson et al., 2019; Sexton et al., 2009) 
and should use patterns of variability to critically inform how spe-
cies may respond to a changing climate (Franklin, 2010; Moran 
et al., 2015).

Ectotherms comprise the majority of animal biomass and 
biodiversity on Earth, and their fitness is strongly governed by 
thermal conditions (Huey & Stevenson, 1979). Increases in tem-
perature directly impact their ecology, including observed extinc-
tion or threat of extinction (Sinervo et al., 2010; Urban, 2015). 
Ectotherm energy budgets drive responses because thermal con-
ditions affect energy acquisition and allocation (Dillon et al., 2010; 
Guzzo et al., 2017; IPCC, 2013), and previous work in this area 
has mostly focused on thermophilic invertebrates, reptiles, or fish 
(Deutsch et al., 2008; Guzzo et al., 2017; Marques et al., 2018; 
Stoks et al., 2014). In contrast, amphibians, which are subject to 
increased rates of water loss through permeable skin, often be-
haviorally avoid warmer temperatures or dry conditions (Peterman 
& Semlitsch, 2014; Riddel & Sears, 2015). This avoidance could 
prevent exposure, but it could also reduce foraging (Taub, 1961; 
Figure 1a). Standard metabolic rate (SMR; using Burton et al., 2011 
definition), an indicator of energy spent on maintaining organ sys-
tem function, increases exponentially as body temperature in-
creases (Clarke, 1993; Savage et al., 2004). This means warmer 
temperatures are disproportionately more energetically costly 
(Figure 1b). As a result, amphibian thermal ecology is a complex 
interplay because energy acquisition is most strongly reduced 
during the same time maintenance costs would be highest. From 
this dynamic, we predict that thermal conditions during summer 
result in the most stressful period for amphibian energy budgets in 
temperate systems (Naya et al., 2008). Because of the exponential 
relationship between metabolic rate and temperature, increases in 
summer temperature over the next century likely pose a threat to 
amphibian energy balance in temperate climates.

Seasonal temperature regimes are predictable, so thermal accli-
mation theory predicts that organisms may evolve plasticity (i.e., ac-
climate) to environmental cues to maximize performance within each 
season (Angilletta, 2009; Ghalambor, 2006). We define thermal plas-
ticity as the ability of an ectotherm to express multiple phenotypes 
in response to thermal cues. Thermal plasticity has been observed 
in a variety of organisms to deal with changing conditions (Rohr 
et al., 2018). Variation in metabolic rate, and plasticity therein, is im-
portant for coping with energy balance and behavior (Burton et al., 
2011). Future climate warming is expected to increase the intensity 
and duration of summer temperatures across the temperate zone, 
leading to longer and more severe periods of energy stress for am-
phibians (Allen & Sheridan, 2016). Although amphibians can find mi-
crohabitat refugia, typically in the soil, soil surface temperatures are 
also increasing (Hu & Feng, 2003; Wang et al., 2018). Precipitation 
is predicted to become more variable in frequency and magnitude 
and will also affect salamander physiology through avoidance of dry 
conditions (Hayhoe, Wake, Huntington, et al., 2007; Peterman & 

Semlitsch, 2014). While salamanders may go to deeper soil depths 
to find cooler temperatures, this may have consequences on their 
ability to detect amenable soil surface temperatures for foraging and 
energy intake (Huey et al., 2021). For salamanders to remain near 
the surface under longer and hotter summer conditions, seasonal 
plasticity in metabolic rate may help mitigate higher energy costs.

Past studies show that thermal plasticity in physiological traits 
such as thermal tolerance may not improve persistence under fu-
ture climates (Gunderson & Stillman, 2015), but thermal plasticity in 
physiological rates, such as SMR, has the potential to reduce ener-
getic costs (Seebacher et al., 2014). However, organisms that behav-
iorally thermoregulate species may not have adapted physiological 
mechanisms for dealing with stressful thermal conditions because 
they are behaviorally avoided (Bogert, 1949). This “Bogert effect” 
is supported in reptiles (Buckley et al., 2015; Gunderson & Stillman, 
2015; Sinervo et al., 2010), but it has only recently been considered 
in amphibian studies (Farallo et al., 2018). If applicable to amphib-
ians, modeling approaches that do not account for intraspecific 
variation are sufficient for predicting responses to future climate 
warming. Because plasticity could play an important role in climate 
adaptation, it is important to determine levels of variation and con-
straints in thermal plasticity for amphibian physiological rates (Huey 
et al., 2012; Urban et al., 2014). Predicting responses of amphibians 
to future changes are complicated by unresolved sources of varia-
tion and often because it assumed that a species does not vary over 
space, time (i.e., plasticity), or across ontogeny (Sinclair et al., 2016; 
Valladares et al., 2014).

We use the eastern red-backed salamander (Plethodon cinereus) 
as an amphibian model to describe how SMR and thermal plas-
ticity vary among populations and life stages. Plethodon cinereus 
is a widespread, North American forest-associated species whose 
populations are distributed across a range of summer intensities and 
duration, and thus varying levels of selection pressure to cope with 
summer conditions (Figure 1c,d). Like many species in the family 
Plethodontidae, temperature and moisture drive activity patterns, 
so it is suspected that P. cinereus relies on subterranean refugia to 
find cooler, wetter conditions during the summer (Jaeger, 1980; 
Peterman & Semlitsch, 2013; Taub, 1961). However, there are likely 
limits to which elevated temperatures can be avoided. Soil tempera-
tures are largely driven by local climate and air temperature (Paul 
et al., 2004), and air temperatures largely correlate with soil tem-
peratures up to 20 cm (Islam et al., 2015). If there are not physical 
access limits, such as impermeable soil depth and geology, there are 
also potential costs to going too deep, such as not foraging on the 
forest floor (Huey et al., 2021). In fact, thermal plasticity in metabolic 
rate to warm conditions in a sister species was recently documented 
(Riddell et al., 2018a). As soil conditions warm during the summer, 
salamanders are likely to experience increases in SMR despite ther-
moregulatory behavior.

We experimentally test for differences among populations, life 
stages, and thermal plasticity by exposing salamanders from mul-
tiple populations to different thermal acclimation regimes. Despite 
being one of the most widely studied terrestrial salamanders, it is 
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unresolved whether they demonstrate plastic metabolic rates or vary 
in plasticity across populations or life stages (Feder, 1985; Markle & 
Kozak, 2018). Despite behavioral thermoregulation, we hypothesize 
that salamanders will exhibit metabolic downregulation when ex-
posed to summer thermal conditions and will not follow predictions 
of the Bogert effect. We predict that salamanders from populations 
with warmer thermal conditions will have the great magnitude in 
metabolic downregulation. Across life stages we do not expect to 
find differences because juveniles may have more avenues for de-
velopmental plasticity as predicted by theory (Angilletta Jr., 2009).

2  |  METHODS

2.1  |  Site selection and salamander collection

We collected salamanders from four populations in April and May 
of 2017: Richmond, Virginia; Millmont, Pennsylvania; Ithaca, New 
York; and Turners Falls, Massachusetts. Mean July nighttime lows 
varied 6.6°C among populations, which spans half the temperature 
range this species experiences (Figure 1c). Virginia is the warmest 
site with the longest summer. New York and Massachusetts have the 

F I G U R E  1 (a) Amphibians can behaviorally avoid extreme temperatures via subterranean refugia, but this comes at the expense of 
foraging. Under future climates (2070–2090), restrictive summer conditions will get both hotter and longer. (b) Standard metabolic rate is 
a measure of maintenance energy costs. Metabolic rate scales exponentially with temperature, so warming in the warmest periods (i.e., 
temperate summers) leads to the highest increases in energy expenses. (c) Our model organism, Plethodon cinereus, experiences July average 
daily temperatures spanning 13.6°C across its range. The populations we study span 6°C, approximately half the thermal range. Mechanisms 
for saving energy under these conditions are important and likely to be under selection. (d) Terrestrial salamanders generally avoid surface 
temperatures above 18°C. Days of summer in those populations vary in length (black numbers) and intensity, and all populations expect 
even longer (grey numbers) and warmer summers in 2070–2090. Managing metabolic rate and during the summer when energy acquisition 
may be lower is important for maintaining energy balance
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coolest climates and shortest summer, and Pennsylvania is interme-
diate in climate and summer length (Figure 1d). For each population, 
salamanders were collected over 1–2 days by searching underneath 
rocks and logs. To test for life-stage differences, 18–20 juveniles and 
18–20 adult male salamanders were collected at each site. Females 
were excluded because we could not control for the varying levels of 
investment in reproduction, such as size and quantity of eggs. Males 
were determined by “candling” (Gillette & Peterson, 2001): via visual 
confirmation of testes and vas deferens through their transparent 
ventral skin. All but five individuals were the striped morph with 
the rest being “lead-backed” morphs. Salamanders were brought to 
a captive facility at Pennsylvania State University and individually 
housed inside 11.5 × 11.5 × 5 cm containers within an environmental 
chamber. We fed salamanders fruit flies daily, ad libitum, and main-
tained unbleached paper towels sprayed with dechlorinated water 
substrate for hydration during our daily checks on animals. All cap-
ture and physiological procedures were approved by IACUC # 47546.

2.2  |  Acclimation and metabolic trials

In total, each salamander had its standard metabolic rate (SMR) 
measured 12–14 times depending on population. Virginia and 
Pennsylvania salamanders experienced four trials for each of three 
thermal acclimation regimes (described below), and Massachusetts 
and New York salamanders experienced two additional trials under 
a fourth thermal acclimation regime (Figure 2). The first acclimation 
regime for all salamanders was “spring.” For this regime, salaman-
ders were housed at the surface soil temperature measured at their 
capture site so that they would be acclimated to their home spring 
conditions (Table 1; Figure 2). For three of the populations this hap-
pened to be the same temperature. After spring acclimation, sala-
manders underwent their first four metabolic trials. To generate a 
thermal reaction norm—mean SMR and the rate it increases with 
temperature—for salamanders under each acclimation regime, trials 
were conducted at four temperatures in randomized order: 10°C, 
15°C, 20°C, and 25°C. After the spring regime and trials, we ran-
domly assigned half of the salamanders from each population, strati-
fied by life stage (n = 18–20), to two thermal regimes: a “summer” 
treatment that was the 1980–2010  July nighttime climate normal 
for their home locale (Arguez et al., 2012) or a “warming” treatment 
which adds 4°C to their local summer temperature to represent the 
2070–2090  mean temperature they will experience from climate 
warming (Hayhoe, Wake, Huntington, et al., 2007). Thermal regimes 
were specific to each population's local climate so that findings were 
not confounded by climate transfer distance and represented re-
sponses to their home seasonal regimes (Leites et al., 2012). Because 
different populations had to share environmental chambers, there 
were slight differences from climate normal for the thermal regimes 
(on average, <0.48°C off; Table 1). We chose nighttime low tempera-
tures from the 1980–2010 climate normal because soil temperatures 
are generally cooler than air temperatures during the summer, sur-
face soil temperatures are highly correlated with air temperature 

(Islam et al., 2015), and because these are the conditions salaman-
ders would be active under. All thermal acclimation regimes for the 
housing chambers were held at a constant temperature (± 0.02°C). 
A stronger experimental design would have included temperature 
variation in thermal regimes to provide more realistic conditions 
(Bozinovic et al., 2013).

Salamanders experienced either their local “summer” or “warm-
ing” acclimation regimes for 3  weeks before undergoing another 
four metabolic trials, as described above (Markle & Kozak, 2018). 
After this round of trials, acclimation regimes were switched, and 
salamanders were assigned to the summer or warming thermal re-
gime they had not yet experienced (Figure 2). After this round of 
summer and warming thermal regimes, salamanders had another 
round of four metabolic trials. At this stage in the study, all sala-
manders experienced a spring (first acclimation period), local sum-
mer, and local warming acclimation thermal regime with the order of 
summer and warming randomized for individuals to prevent any con-
founding with time in captivity. From each regime, salamanders had 
four trials to generate a thermal reaction norm (see analysis section). 
Salamanders were fed throughout the thermal regime changes and 
were only fasted 10 days prior to four temperature trials to achieve 
a post-absorptive state for measuring SMR (Homyack et al., 2010).

In addition to testing for plasticity using local climate regimes for 
each population, we also measured metabolic rates for salamanders 
under a single common thermal regime. This was done to compare 
SMR among populations. Populations were housed at a common 
high-temperature regime (Figure 2; hereafter 19.7°C common re-
gime). This temperature was chosen because it was the closest ac-
climation regime to the median July normal across the species range 
(Figure 1c) that most salamanders had already experienced in the 
study. Note that individuals may have experienced these tempera-
ture conditions at different times in the experimental design; sal-
amanders from Virginia (19.7°C summer regime) and Pennsylvania 
(19.7°C warming regime) experienced this during the treatment ac-
climation regimes while salamanders from Massachusetts and New 
York experienced these conditions at the end of the treatment accli-
mation regimes (Figure 2).

For the metabolic trials, the four temperature trials at 10°C, 
15°C, 20°C, and 25°C each occurred on a single day. Temperature 
order was randomized for each set of trials. These temperatures 
represent realistic surface and soil temperatures salamanders expe-
rience in the summer and spring (Muñoz et al., 2016; Novarro et al., 
2018). Because this species is nocturnal, we ran trials during daytime 
hours between 07:00 a.m. and 06:00 p.m. to minimize activity levels 
to best characterize SMR. Standard metabolic rate is a conservative 
estimate of metabolic rate (Burton et al., 2011). Mass of individual 
salamanders was measured before and after every trial. For compar-
isons of standard metabolic rate at the 19.7°C common acclimation 
regimes, metabolic trials were only done at 15°C and 25°C to min-
imize extra trials salamanders experience, to characterize the Q10 
response for the warmer trial temperatures, and because prelimi-
nary data showed the linear relationship was consistent from 10°C 
to 20°C as it was 15°C to 25°C.
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Salamander SMR was measured using stop-flow respirometry 
following established manual bolus integration calculations (Lighton, 
2008). Salamanders were individually loaded into 60  mL syringes 
and flushed for 60 s with dry, carbonless air, and then sealed. To en-
sure measurable oxygen consumption, syringes were sealed for 5 h 
(10°C and 15°C), 4 h (20°C), and 3 h (25°C). Upon completion, 30 mL 
of syringe air was injected into the stop-flow system, and average 
oxygen consumption was measured (Oxzilla II, Sable Systems,). Flow 
rates were 80  ml  ×  min−1 (Mass Flow Controller 5850E, Brooks 
Instrument), and prior to sensor entry, CO2 and H2O were scrubbed 
from the incoming air with Ascarite II (Thomas Scientific) and 

magnesium perchlorate, respectively. Raw data were recorded using 
Expedata software (Sable Systems) and processed in program R (R 
Core Team, 2018).

2.3  |  Analysis

To test our hypotheses, we wanted to compare the reaction norms 
within each population to see if plasticity was exhibited in SMR 
among thermal acclimation regimes. We also wanted to compare re-
action norms among populations from the 19.7°C common regime. 

F I G U R E  2 This represents the study design for thermal acclimation regimes salamanders experienced before each round of metabolic 
trials. For each of the four populations, all salamanders first experienced 10 days of spring temperatures. After 10 days in the spring regime, 
salamander underwent 4 days of metabolic trials at four different temperatures. Following that half of the animals from each population 
were randomly assigned to a summer (1980–2010 mean July nighttime temperature) or warming (2070–2090 mean July nighttime 
temperature) thermal regime. After another round of four temperature trials, treatments were switched. All salamanders had all three 
thermal acclimation regimes and underwent 12 total metabolic trials. Lastly, Massachusetts and New York had one final thermal regime, 
19.7°C, so that metabolic rates could be compared across all four populations under a common temperature. These were only measured at 
15°C and 25°C

TA B L E  1 These are the temperatures (°C) used for each thermal acclimation regime salamanders experienced during this study. For 
comparison to the Summer Thermal Regime, the July Climate Normal is the average low temperature during July 1980–2010 taken from 
nearby weather stations (Arguez et al., 2012). Salamanders experienced a spring (measured by thermometer at collection site), summer 
(from 1980–2010 climate normal), and warming thermal regime (summer climate normal +4°C). Housing regimes do not match climate data 
perfectly because populations needed to share housing (e.g., half of VA salamanders shared housing with half of PA animals, VA receiving its 
summer thermal regime and PA its warming regime)

Virginia Pennsylvania Massachusetts New York

Spring Thermal Regime 16 12.5 12.5 12.5

Summer Thermal Regime 19.7 15.7 14.5 14.5

Warming Thermal Regime 23.7 19.7 18.5 18.5

July Climate Normal 20.5 16 13.9 14.3
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To do this we ran five separate models to investigate patterns in sal-
amander SMR. We used log(SMR) as the response variable for each 
individual salamander to account for exponential relationships with 
body mass and temperature. We modeled log body mass (log(g)) and 
day of trial (1–4) as fixed effects. Repeated measures were modeled 
using a random intercept for individual. Random slopes were not sup-
ported in our model selection process (Appendix S1). We considered 
body mass, day of trial, and individual variation as nuisance variables. 
Other nuisance parameters were considered but were removed be-
cause of high variance inflation factors (Appendix S1: Table S2). The 
first model analyzed differences among populations (fixed effect) 
under the 19.7°C common regime. The other four models tested for 
plasticity and analyzed each population separately with thermal ac-
climation regime (spring, summer, and warming) as a fixed effect. To 
determine additive versus interactive relationships between fixed 
effects (population or thermal acclimation regime with tempera-
ture), we used Akaike's Information Criteria in a maximum likelihood 
framework to determine top models (Appendix S1: Table S3–S6). Top 
models were analyzed using a restrictive maximum likelihood esti-
mator in package “lme4” (Bates et al., 2015) to run a mixed-effects 
Gaussian regression using function “lmer.” With log transformation, 
residuals were homoscedastic and passed visual assessment of nor-
mality via Q-Q plots. Temperature predictor variables were centered 
and standardized by standard deviation to aid in computation. We 
tested for differences in mean SMR, which were the intercept of the 
model and represented metabolic rate per fixed effect at the aver-
age trial temperature and body mass. We also looked for differences 
in thermal sensitivity, the slope term that represented the increase in 
SMR by increase in temperature for each fixed effect.

2.4  |  Data repository

All data and program R scripts can be found at Data Dryad (https://
doi.org/10.5061/dryad.931zc​rjm5).

3  |  RESULTS

We used standard metabolic rate (SMR) from 1720 trials on 72 juve-
nile and 67 adult male salamanders from four populations. Five adult 
males had died in captivity soon after arrival. No cause was identi-
fied from autopsy. Juveniles had an average body mass of 0.50  g 
(± 0.14 SD) and adults 0.96 g (± 0.19 SD). During trials, salaman-
ders lost on average 3.3% of their body mass, but they frequently 
regained mass lost within 24 h via rehydration. Across 63 days of 
captivity, juveniles lost on average 0.025g (4.7% of average juvenile 
body mass), and adult males lost on average 0.069g (7.6% of average 
adult body mass). After controlling for mass and individual variabil-
ity, estimated average SMR thermal sensitivity—the rate at which 
log(SMR) increases with log(Temperature)—of populations ranged 
from 1.5 (± 0.04 SE) to 1.7 (± 0.03 SE). Scaling of SMR with body 
mass also varied across populations, with the mass scaling exponent 

ranging from 0.53 (± 0.07 SE) to 0.86 (± 0.06 SE; Appendix S1: 
Figure S1). These mass scaling exponents differ from the expected 
value of 0.66 predicted by the metabolic theory of ecology (Brown 
et al., 2004).

We determined whether SMR varied among populations under 
the 19.7˚C common regime to determine if populations had similar 
metabolic rates after being acclimated to similar conditions. Changes 
in mean SMR (intercept), not thermal sensitivity (slope parameter 
with temperature), best explained differences among populations 
(Appendix S1: Table S6). Under these conditions, Virginia had the 
lowest mean SMR, but all populations had overlapping 95% confi-
dence intervals, indicating overall similar SMR (Figure 3). Populations 
did vary in their allometric scaling of mass and SMR (Appendix S1: 
Figures S1). The amount of variation explained by fixed effects in the 
model (log(mass), population, and the order of the individual trials) 
was r2 = 0.73. For the effect sizes for each parameter, please see 
Appendix S1.

Models testing for plasticity under thermal acclimation regimes 
showed that variation within populations existed. Treatment ther-
mal acclimation regimes were a significant predictor of mean SMR 
(intercept) for salamander populations in the two warmer climates 
(Virginia and Pennsylvania; Figure 4; Table 2; significance deter-
mined by 95% confidence intervals is not overlapping). Salamanders 
from warmer sites reduced mean SMR after exposure to summer 
regimes compared to spring regimes. The greatest reduction in 
mean SMR occurred in Virginia salamanders (−27.2%) followed by 
Pennsylvania salamanders (−20.6%; Figure 4; Table 2). The two 
cooler climate populations did not show any significant change in 
mean SMR (Figure 4). Of the four populations, Massachusetts was 
the only population to include an interaction between thermal accli-
mation regime and SMR thermal sensitivity (slope) in its final model. 
Compared to the spring acclimation, mean summer thermal sensitiv-
ity decreased slightly with increasing temperatures (−0.08, [−0.159, 
−0.005] 95% CI). All populations exhibited less than 10% individual 

F I G U R E  3 At the 19.7°C common thermal acclimation regime, 
all populations exhibited variation in mean standard metabolic rate. 
Virginia and New York had the lowest mean standard metabolic 
rate, but all populations had similar means and were not statistically 
significant from one another. Only the mean standard metabolic 
rates are visualized because thermal sensitivity (temperature by 
population slope interactions) was not supported in the final model

https://doi.org/10.5061/dryad.931zcrjm5
https://doi.org/10.5061/dryad.931zcrjm5
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variation in their random intercepts. These models explained a high 
level of variation in metabolic rate: Virginia r2 = 0.55, Pennsylvania 
r2 = 0.79, Massachusetts r2 = 0.76, and New York r2 = 0.59. All re-
gression coefficients can be found in Appendix S1, Table S7.

We did not find consistent support for differences between life 
stages in their SMR. Juvenile salamanders showed similar plasticity 
as adult males in all populations except for Pennsylvania. Juvenile 
salamanders from Pennsylvania had a slight (0.242) but statistically 
significant lower intercept (i.e., average SMR) than adult male sal-
amanders. In response to summer thermal regimes, Pennsylvania 
juvenile salamanders exhibited a slightly smaller reduction in SMR 
compared to adult salamanders (Appendix S1: Table S7). Separate 
from thermal relationships, Massachusetts and Pennsylvania ju-
venile salamander had lower intercepts for the mass relationships, 
indicating that metabolic rate increases more slowly as body mass 
increases than in adults (Appendix S1: Figure S1).

4  |  DISCUSSION

We find that P. cinereus can exhibit plasticity in standard metabolic 
rate (SMR) in response to seasonal thermal cues. Perhaps unsurpris-
ingly for a limited dispersal species with a large geographic range, 
capacity for plastic response was not consistent among popula-
tions. Across the populations of P. cinereus we studied, plasticity in 
mean SMR appears to be present only in the populations from the 
warmer climates. Documenting this phenomenon suggests thermal 

plasticity functionally reduces energy costs during stressful sum-
mer conditions and could be adaptive. Without a thermally plastic 
response, populations in warmer parts of the species’ range would 
experience a significantly higher maintenance energy costs which 
could infer a mismatch between energy requirements and foraging 
opportunities. Our findings suggest that plasticity in SMR in sala-
manders from warmer climates, but not cooler, may be a mechanism 
for reducing maintenance energy costs over the summer. However, 
when exposed to predicted summer thermal conditions expected in 
2070–2090 (i.e., “warming” regime), all populations demonstrated 
no further plasticity in SMR. This indicates that there are limits to 
the adaptive capacity plasticity infers to thermal regimes not expe-
rienced before.

Our findings help inform which ecological and evolutionary 
theories may apply to terrestrial amphibians. Our findings of plas-
ticity and among-population variation therein lend no support 
for the Bogert effect in this salamander species (Bogert, 1949; 
Farallo et al., 2018). Behavioral thermoregulation, which is wide-
spread in this species, did not preclude physiological adaptations 
in SMR. Our finding reveals that some salamander populations 
follow predictions from thermal acclimation theory by expressing 
plasticity in SMR in response to seasonal thermal cues (Angilletta, 
2009). However, seasonality, and thus plasticity, is hypothesized 
to be more pronounced in cooler parts of the P. cinereus range 
(Ghalambor, 2006). Our study showed that it was populations 
from the two warmer climates that exhibited the strongest thermal 
plasticity. Deutsch et al. (2008) demonstrated that the warmest 
climates (i.e., tropics) drive susceptibility of ectotherms to a neg-
ative energy balance. For temperate zone Plethodon salamanders, 
summer represents the period of warmest conditions. Terrestrial 
salamander body temperatures rapidly reach equilibrium with the 
surrounding environment (Lunghi et al., 2016). Given behavioral 
avoidance of warmer temperatures in P. cinereus (Muñoz et al., 
2016), our findings may lend support that the warm conditions 
during the summer constitute a significant pressure on salamander 
energy budgets. A further step in improving our understanding is 
to include variation in acclimation temperatures to better reflect 
natural conditions (Terblanche et al., 2010).

There is currently a renewed interest in characterizing terres-
trial salamander physiology (Gifford, 2016) because they are often 
thought as indicator species of forest habitats with important roles 
in ecosystem processes (Burton & Likens, 1975; Hocking & Babbitt, 
2014; Welsh & Droege, 2001). A study recently suggested that P. 
cinereus does not have plasticity in metabolic rate or any variation 
among populations (Markle & Kozak, 2018); however, they had a 
small number of salamanders from each population, and they did 
not consider a reduction in SMR after exposure to warmer tempera-
tures to be indicative of plasticity. Past investigations in salaman-
der acclimation found that four species of Plethodontidae, including 
P. cinereus, had decreased metabolic rates after being exposed to 
a 17.5°C thermal regime compared to a 4–5°C regime, which was 
believed to be an adaptive energy saving mechanism (Feder, 1985). 
Plastic reduction in SMR, in combination with behavior, has been 

F I G U R E  4 Plasticity in mean standard metabolic rate (SMR; 
shapes; µL O2/min) varied among populations as exhibited by 
changes after exposure to thermal acclimation regimes (see 
legend). Both Virginia and Pennsylvania had statistically significant 
reductions in SMR in response to summer and warming thermal 
regimes compared to spring regimes (VA −27.2%, PA −20%), but 
Massachusetts and New York exhibited no plasticity in SMR. No 
populations exhibited plasticity between current summers and 
future warming, indicating a lack of plasticity to future conditions. 
Only the mean standard metabolic rates (intercept terms) are 
visualized because they represented the strongest statistical 
finding
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shown to greatly increase the resistance of a different terrestrial 
salamander species to extinction (Riddell et al., 2018a). To our 
knowledge, our study is the first to provide evidence of geographic 
variation in plasticity of metabolic rate for terrestrial salamanders. 
Because of our documentation of plasticity, future studies should 
include multiple common acclimation thermal regimes when testing 
for differences among populations to capture consistency more ad-
equately in salamander's performance in metabolic trials. We affirm 
other studies that argue that biophysical and species distribution 
approaches cannot assume that all populations share the same re-
sponses (Cotto et al., 2017; Franklin, 2010; Urban et al., 2016).

The role of thermal plasticity in aiding species persistence under 
climate change is unresolved (Canale & Henry, 2010; Metcalfe 
& Norin, 2019). There is evidence that plasticity in physiological 
traits can both increase and decrease adaptive capacity of a spe-
cies (Gomez-Mestre & Jovani, 2013; Gunderson & Stillman, 2015; 
Kingsolver & Buckley, 2017; Oostra et al., 2018; Seebacher et al., 
2014). It has been argued that a better understanding of limits to 
plasticity is needed to clarify its adaptive potential (Metcalfe & 
Norin, 2019). It is challenging to determine if plasticity in metabolic 
rate confers a selective benefit because the adaptive capacity of a 
high or low SMR is context dependent (Burton et al., 2011). For in-
stance, high metabolic rates are beneficial for increasing resource 
acquisition and performance in energetically expensive behaviors, 
but not when resources are scarce or when maintenance energy 
costs need to be minimized (Burton et al., 2011; Metcalfe & Norin, 
2019). Low metabolic rates are beneficial for saving energy, but 
they can put organisms at a disadvantage when active behaviors are 
needed (Burton et al., 2011).

Under current climate conditions, we provide conclusive evidence 
that salamanders in some populations have reduced SMR after expo-
sure to summer temperature cues. We argue this is adaptive because 
this plasticity was evident in the two populations with the warmer 
and longer summers, a period when salamanders have reduced 
foraging ability and higher maintenance energy costs. Under these 
conditions, our observed 20.6%–27.2% reduction in metabolic rate 
would lead to a larger savings in maintenance energy costs. For pop-
ulations in the warm edges of the species range, thermal plasticity in 
SMR could aid population persistence, as has been found for another 
terrestrial salamander species (Riddell et al., 2018a). This plasticity is 
likely adaptive in reducing maintenance energy costs (Burton et al., 

2011; Christian et al., 1999; Metcalfe & Norin, 2019). Reduction in 
energy metabolism has also been argued as adaptive for other ecto-
therms (Artacho & Nespolo, 2009). Under future climate conditions, 
we found all populations in our study lacked thermal plasticity to fur-
ther reduce metabolic rate. This supports theory which predicts that 
organisms will not evolve plasticity to conditions they have not yet 
experienced (Angilletta, 2009). Future avenues of research should 
determine the degree to which the plasticity we documented, and 
lack of plasticity to future climate thermal cues, is expected adaptive 
or maladaptive for whole salamander energy budgets.

We found mixed evidence for differences in SMR between life 
stages. Juveniles from Pennsylvania exhibited slightly lower levels of 
plasticity compared to adult males (Appendix S1). By having slightly 
less plastic SMR, either juveniles in Pennsylvania have increased sus-
ceptibility to warmer temperatures, or other forms of plasticity (e.g., 
developmental) may contribute to resilience (Burggren, 2018). For 
instance, both Pennsylvania and Massachusetts juveniles had lower 
body mass–SMR scaling relationships (Appendix S1). Following the al-
lometric scaling of metabolic rate with body mass (Brown et al., 2004), 
having a lower scaling relationship means being smaller and not in-
vesting energy into reproduction lowers costs of warm temperatures, 
but future analyses should disentangle the sensitivity of different life 
stages in regard to energy budgets. For instance, in fishes, body size 
varied counter to temperature, suggesting smaller body mass offsets 
high maintenance energy costs from warmer temperatures (Moffett 
et al., 2018). Temperature–size relationships in amphibians are con-
tradictory and unresolved (Ashton, 2002; Peterman et al., 2016). 
Importantly, our findings show that similar levels of plasticity can 
generally be assumed between juveniles and adult males. Our infer-
ence could be improved by including female salamanders; however, 
accounting for reproductive status is challenging (Finkler, 2006).

Using SMR to predict population outcomes remains challenging 
(Buckley et al., 2014), mainly because the fitness advantage of high 
or low SMR is context dependent (Burton et al., 2011). However, en-
ergy allocated to maintenance cannot be spent on growth or repro-
duction, meaning changes in SMR are strong predictors of changes in 
life-history traits (Le Lann et al., 2011; Pettersen et al., 2015, 2016). 
Across animal taxa, experimental warming reduced maximum body 
size, spurred earlier reproduction, and reduced longevity (Bestion 
et al., 2015; Ohlberger, 2013; Winkler et al., 2002). Energy assimila-
tion is also expected to decrease at warmer temperatures (Fontaine 

TA B L E  2 Mean estimated standard metabolic rate (SMR; µL O2/min), with 95% bootstrapped confidence intervals, for a typical adult male 
from each population. Mean SMR vary by thermal regimes (spring, summer, and warming). Metabolism was downregulated between spring 
and summer by Virginia (VA) and Pennsylvania (PA) salamanders, but not the Massachusetts (MA) or New York (NY) populations. Warming 
mean SMR was lower than summer, but confidence intervals overlapped, indicating no clear differences between summer and warming SMR

Spring SMR Summer SMR Warming SMR
Spring vs. 
Summer

Summer vs. 
Warming

VA 3.17 (2.76, 3.62) 2.31 (2.04, 2.63) 2.18 (1.92, 2.5) −27.2% −5.7%

PA 3.99 (3.62, 4.37) 3.16 (2.88, 3.46) 3 (2.74, 3.3) −20.6% −5.0%

MA 3.45 (3.03, 3.92) 3.61 (3.2, 4.09) 3.22 (2.87, 3.65) +4.6% −10.7%

NY 2.64 (2.29, 3.08) 3 (2.61, 3.49) 2.77 (2.4, 3.23) +13.6% −7.6%
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et al., 2018). To persist under future climates, salamanders may need 
to increase energy acquisition via phenological shifts to maintain 
current allocation. Without changes to energy acquisition, popula-
tions could experience reduced maximum body size, reproduce at 
smaller sizes, or have reduced fecundity. Resolving how life-history 
traits are affected by temperature changes is necessary to clarify 
the impacts of higher maintenance energy costs on population per-
sistence under future climates (Moffett et al., 2018).

We identified previously unknown geographic variation in plas-
ticity in terrestrial salamanders (Riddell et al., 2018b) and show that 
plasticity in SMR responds to current summer seasonal cues as a 
potential energy-saving mechanism. Our findings also identify limits 
to plasticity, suggesting that current levels of plasticity in SMR may 
not respond to future climate conditions (Metcalfe & Norin, 2019). 
Our findings reveal fundamental patterns in physiological rates that 
can be used to parameterize biophysical climate models (Kearney & 
Porter, 2009; Urban et al., 2016) and point to necessary life-history 
and demographic data needed to resolve persistence or extinction 
of terrestrial salamanders under climate change.
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