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Abstract

Increasing growth rate across bacteria strengthens selection for faster translation, concomitantly increasing the total

number of tRNA genes and codon usage bias (CUB: enrichment of specific synonymous codons in highly expressed genes).

Typically, enriched codons are translated by tRNAs with higher gene copy numbers (GCN). A model of tRNA–CUB coevo-

lution based on fast growth-associated selection on translational speed recapitulates these patterns. A key untested im-

plication of the coevolution model is that translational selection should favor higher tRNA GCN for more frequently used

amino acids, potentially weakening the effect of growth-associated selection on CUB. Surprisingly, we find that CUB

saturates with increasing growth rate across c-proteobacteria, even as the number of tRNA genes continues to increase.

As predicted, amino acid-specific tRNA GCN is positively correlated with the usage of corresponding amino acids, but there

is no correlation between growth rate associated changes in CUB and amino acid usage. Instead, we find that some amino

acids—cysteine and those in the NNA/G codon family—show weak CUB that does not increase with growth rate, despite

large variation in the corresponding tRNA GCN. We suggest that amino acid-specific variation in CUB is not explained by

tRNA GCN because GCN does not influence the difference between translation times of synonymous codons as expected.

Thus, selection on translational speed alone cannot fully explain quantitative variation in overall or amino acid-specific CUB,

suggesting a significant role for other functional constraints and amino acid-specific codon features.
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Introduction

Within bacterial genomes, the relative use of synonymous

codons differs between highly expressed genes (HEGs) and

most other genes. Codon use in most genes is governed by

genome-specific nucleotide usage, such that GC-rich organ-

isms typically use GC-rich codons and vice versa (Knight et al.

2001; Chen et al. 2004). However, HEGs are comparatively

enriched for specific synonymous codons that are translated

by more abundant tRNAs (Ikemura 1981; Kanaya et al. 1999).

This enrichment is referred to as codon usage bias (CUB), with

greater enrichment indicating stronger CUB. Enrichment of

specific codons in HEGs may result from stronger selection on

translation in two ways. First, the match between enriched

codons and higher abundance of cognate tRNAs can result in

faster elongation (Pedersen 1984; Spencer et al. 2012; Dana

and Tuller 2014), making ribosome use more efficient

(Andersson and Kurland 1990; Klumpp et al. 2012), and

therefore providing a growth advantage (Andersson and

Kurland 1990; Berg and Kurland 1997; Kudla et al. 2009).

Alternatively, higher abundance of cognate tRNAs may also

reduce missense errors by outcompeting near-cognate tRNAs

(Kramer and Farabaugh 2006; but see Shah and Gilchrist

2010) or reduce nonsense errors (Gilchrist 2007; Stoletzki

and Eyre-Walker 2007), thereby avoiding costs related to in-

accurate or abortive translation (Gilchrist 2007; Stoletzki and

Eyre-Walker 2007; Drummond and Wilke 2008). Such

“translational selection” should be stronger for HEGs such

as ribosomal proteins and elongation factors, because they

constitute a large fraction of the protein mass in rapidly grow-

ing cells (Schaechter et al. 1958). At a macroevolutionary

scale, growth rate itself varies widely across bacteria (Rocha

2004). With increasing growth rates, the fraction of total

proteins contributed by ribosomal proteins and elongation

factors also increases (Bremer and Dennis 2008; Scott et al.

2010). Therefore, translational selection on such HEGs is

expected to become stronger.

Theoretical models based on the combined effect of CUB

and tRNA gene copy number (GCN; a proxy for tRNA
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abundance) on translation elongation rate predict that these

traits should coevolve (Bulmer 1987; Higgs and Ran 2008).

Specifically, one detailed model (Higgs and Ran 2008) predicts

that the coevolution between CUB and tRNA GCN should be

influenced by multiple forces such as translational selection,

bias in GC content, and amino acid usage. Comparisons

across bacteria have confirmed two predictions of the model:

1) total tRNA GCN and CUB increase with growth associated

translational selection (Rocha 2004; Higgs and Ran 2008), and

2) the identity of preferred codons and tRNA genes changes

with increasing GC content (Higgs and Ran 2008; Perry

2015). However, the influence of amino acid usage on

tRNA copy numbers and CUB has not been rigorously tested.

The model predicts that frequently used amino acids should

have higher tRNA GCN; and when a single tRNA type (i.e.,

anticodon) translates multiple codons, amino acids with

higher tRNA GCN should have weaker CUB.

These seemingly counterintuitive predictions may be

explained as follows. In coding sequences, amino acid use

ranges from �1% (Cys) to �15% (Ala). For any amino

acid, the overall benefit of an additional tRNA gene must be

proportional to the usage of that amino acid, since gaining a

tRNA gene will simultaneously improve the translation time

(and/or accuracy) of a proportionate number of sites in coding

sequences. Therefore, the number of tRNA gene copies ded-

icated to an amino acid must be proportional to the usage of

that amino acid (Higgs and Ran 2008). How could this lead to

a weaker CUB? The strength of selection at any codon site

should be proportional to the time gained by using a fast

codon instead of a slow codon. Following a simple model

(Higgs and Ran 2008), translation time¼ 1/(translation rate),

and translation rate¼ codon:anticodon pair-specific transla-

tion rate constant� tRNA abundance. In the simplest case of

2-fold degenerate amino acids encoded by NNU and NNC

codons, both codons are decoded by GNN anticodons, but

the NNC codon is decoded faster (Curran and Yarus 1989).

Consider two such amino acids A and B, where the usage of

B¼ 2� usage of A, and tRNA copies for B¼ 2� tRNA copies

for A. If there are n copies of the GNN tRNA of A, the NNC

codon is decoded at rate k� n and the wobble NNU codon at

rate (k/2)� n. Consequently, the time gained by using the

faster NNC codon is (2/(k� n)�1/(k� n))¼ 1/(k� n) units.

For amino acid B, the translation rate should double for both

codons, that is, k� 2n for NNC codon and (k/2)� 2n¼ k� n

for NNU codon. In this case, the time gained is (1/(k� n)� 1/

2� (k� n))¼ 1/2� (k� n). As less time is gained in the second

case, CUB for amino acid B should be weaker than the CUB for

A. To generalize: if additional tRNA copies bear an anticodon

thatdecodesmultiplecodons,all thosecodons shouldbe trans-

lated faster; the benefit of favoring a particular codon should

reduce; and hence CUB must weaken. Note that although in-

creasing selectiondue to fastergrowth shouldapply similarly to

all amino acids, this selection should be weaker for amino acids

with more tRNA copies. These predictions can be extended to

NNA/Gcodonfamilyaminoacids if thepromiscuousUNNtRNA

is more abundant, and the translation rate constants of the

Watson–Crick and wobble pairs are similar to the NNU/C fam-

ily. However, for 4- or 6-fold degenerate amino acids, it is dif-

ficult to predict quantitative trends in CUB, which will depend

on the anticodon composition of tRNA copies and relative

translation rates of different Watson–Crick and wobble pairs

(Wald et al. 2012). Although the copy numbers of anticodon-

specific tRNAs can be obtained from the genome, we are not

aware of direct measurements of the relative translation rates

ofallpossiblecodon:anticodonpairs.Therefore, for4-or6-fold

degenerate amino acids, it is difficult to predict the strength of

selection on CUB as a function of tRNA GCN.

Apart from tRNA abundance, other factors may also cause

differences in CUB across amino acids. The general prediction

for 2-fold amino acids of the NNU/C family assumes an iden-

tical translation rate constant (k above) across amino acids,

because the codon: anticodon pairs involve the same bases at

the wobble position. However, rate constants may differ due

to the first two positions in the codon: anticodon pair

(Bonekamp et al. 1989; Curran and Yarus 1989) or due to

different tRNA modifications. Another possibility is that some

codons may be preferred or avoided for peculiar reasons; for

example, two of the four Glycine codons are strongly avoided

to prevent translational pausing due to their similarity to

Shine–Dalgarno like sequences (Li et al. 2012; Diwan and

Agashe 2016). In such cases, amino acid-specific CUB may

deviate from predictions based on tRNA abundances. Recent

studies show that CUB varies across amino acids (Perry 2015),

and that amino acid-specific tRNA GCN is positively correlated

with amino acid usage (Du et al. 2017). However, the rela-

tionship of amino acid-specific CUB with growth rate, amino

acid usage or tRNA GCN remains unclear. In addition, quan-

titative trends in anticodon-specific tRNA copy numbers are

unclear, and there are no predictions about variation in amino

acid-specific CUB, except in the simplest case of 2-fold de-

generate amino acids. Understanding amino acid-specific

tRNA copy numbers and CUB should deepen our understand-

ing of translational selection and may also be important for

designing optimal protein coding sequences.

Here, we assess the relationship of tRNA GCN, anticodon

composition, and CUB with growth rate in a sample of 189

c-proteobacteria for which genome data are available in public

databases. We use rRNA copy number (rRNA CN) as a proxy for

growth rate. Several studies suggest that faster growth is

strongly associated with selection for higher rRNA CN: soil bac-

teria with higher rRNA CN form colonies faster on rich media

(Klappenbach et al. 2000); Escherichia coli with lower rRNA CN

have low fitness in nutrient rich conditions (Stevenson and

Schmidt 2004; Gyorfy et al. 2015) but are favored in nutrient

limited conditions (Gyorfy et al. 2015); and rRNA CN is posi-

tively correlated with maximal growth rate in the laboratory

(Vieira-Silva and Rocha 2010; Roller et al. 2016) and with

various other growth associated traits (Roller et al. 2016).
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First, we analyzed average CUB and total tRNA gene copies

(NtRNA) as a function of rRNA CN and found discordant patterns

for the two traits. Next, we analyzed across-species variation in

tRNA GCN, anticodon composition, and CUB separately for

each amino acid. Our comparative analysis across amino acids

revealed that the impact of growth rate on tRNA GCN

increases with amino acid usage, but the impact of growth

rate on CUB is not correlated to amino acid usage. We found

that some amino acids have weak CUB that does not change

with increasing growth rate. Together, our results strongly in-

dicate that factors other than translational speed modulate the

strength of selection acting on CUB.

Results

Codon Usage Bias and Total tRNA Gene Numbers Show
Distinct Patterns of Increase with rRNA Copy Number

We began by assessing the correlation between rRNA copy

numbers (CN) and average magnitude of CUB, and between

rRNA CN and total tRNA gene numbers (NtRNA) for a large set

of bacterial genomes (�1,000). These genomes from a pub-

lished bacterial phylogeny (Segata et al. 2013) were chosen to

reduce redundancy arising from numerous closely related

strains (see Materials and Methods). We quantified CUB

using two established metrics: 1) DENC0, the normalized

difference in the effective number of codons (ENC0) be-

tween highly expressed (“HEG”) and all other genes

(“other”), accounting for nucleotide usage and averaged

across amino acids (Wright 1990; Novembre 2002; Rocha

2004); and 2) SCUB, a selection coefficient based on a pop-

ulation genetic model of CUB (Sharp et al. 2005). As done in

previous studies, we defined HEGs as genes coding for

ribosomal proteins, elongation factors, and RNA polymerase

(Sharp et al. 2005; Higgs and Ran 2008; Vieira-Silva and

Rocha 2010). These metrics are positively correlated (sup-

plementary fig. S1A, Supplementary Material online) al-

though they account for nucleotide usage in different

ways, make different assumptions about selection on

CUB, and use data for overlapping but distinct sets of amino

acids. As established by previous studies, both CUB and

NtRNA are strongly positively correlated with rRNA CN

(fig. 1). However, we noticed that the relationship of the

two traits and rRNA CN differed in form. A saturating model

fits the relationship of CUB and rRNA CN better than a linear

model (see Materials and Methods; supplementary table S1,

Supplementary Material online). In contrast, NtRNA does not

increase in bacteria with low rRNA CN (between 1 and 3),

but increases substantially in bacteria with >3 rRNA copies

(fig. 1C). A piecewise linear model with a breakpoint at

rRNA CN¼ 3 fits this two-regime pattern better than a sin-

gle linear model (supplementary table S1, Supplementary

Material online). These observations suggest that the rela-

tive importance of CUB and NtRNA for translation, or other

constraints on these traits, may vary with growth rate. To

account for the impact of phylogenetic relatedness between

species on these correlations, we also assessed correlations

among phylogenetically independent contrasts for each

trait (see supplementary file, section 1.1, Supplementary

Material online). We found weak but statistically significant

positive correlations among all trait pairs tested in figure 1

(supplementary fig. S2, Supplementary Material online). In

addition, we analyzed above relationships separately for six

major bacterial clades (see supplementary file, section 1.2,

Supplementary Material online). We found a strong

FIG. 1.—Correlations between codon usage bias (CUB), total tRNA gene copies (NtRNA), and rRNA copy numbers (rRNA CN), across bacterial genomes.

CUB was measured either as DENC0, the normalized difference in effective number of codons between highly expressed and other genes; or as SCUB, a

selection coefficient derived from a population genetics model. (A) DENC0 versus rRNA CN. (B) SCUB versus rRNA CN. The fitted line represents a saturating

model with three parameters. (C) NtRNA versus rRNA CN. Each data point represents one bacterial genome (n ¼ 964). We added a small jitter to rRNA CN

since numerous data points have the same rRNA CN. q values represent Spearman’s (nonparametric) correlation coefficients and P-values correspond to a

one-way asymptotic permutation test for positive correlation. In panel C, lines represent piecewise linear models with two slopes. All fitted models were

evaluated based on AIC differences reported in supplementary table S1, Supplementary Material online. Axes ranges were curtailed to magnify trends,

causing up to eight data points to fall outside the axis range in each plot. Full data can be found in supplementary figure S1, Supplementary Material online.
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correlation between NtRNA and rRNA CN in all clades (sup-

plementary fig. S3, Supplementary Material online), but only

c-proteobacteria showed a strong positive correlation and

saturation in both DENC0 and SCUB. Therefore, hereafter we

focus on 189 genomes of c-proteobacteria, representing

one of the most widely sequenced clades that also exhibits

the entire range of rRNA CN observed across bacteria.

The Impact of Growth Rate on tRNA Gene Copy Number Is
Stronger for Frequently Used Amino Acids

Next, we turned to amino acid-specific differences in the im-

pact of growth rate on tRNA GCN. Although tRNA GCN for

all amino acids showed a strong positive correlation with

rRNA CN, the extent and pattern of this association varied

substantially (fig. 2). The range of tRNA GCN corresponding

to an amino acid varied from 1–3 (His) to 3–20 (Arg). For

multiple amino acids (Tyr, Lys, Cys, Val, Thr, Leu, Arg), tRNA

GCN remains more or less constant until a threshold rRNA

CN, and then increases at higher rRNA CN. This threshold

appears to differ across amino acids. Such amino acid-specific

early constancy-late increase patterns likely sum up to give rise

to the pattern seen for total tRNA gene numbers (compare

panels in fig. 2 with the c-proteobacteria panel in supplemen-

tary fig. S3, Supplementary Material online). For Ile and Ala,

we observed an exact linear relationship between tRNA GCN

and rRNA CN in a subset of genomes. On more systematic

investigation, we observed that up to seven tRNA copies of Ile,

Ala, and Glu are part of rRNA operons in >50% of analyzed

genomes, leading to a correlation between the respective

tRNA GCN and rRNA CN. As with other amino acids, this

correlation should still reflect growth-associated selection to

increase tRNA copy numbers although it arises from a differ-

ent molecular process. However, we cannot rule out the pos-

sibility that in these three cases, the correlation evolves for

reasons other than translational selection. More generally,

the patterns described here confirm that growth rate associ-

ated selection differentially impacts tRNA GCN depending on

the amino acid.

As explained earlier, we expected that increasing growth

rate should have a stronger impact on tRNA GCN of more

frequently used amino acids. To test this, we fit linear regres-

sion models to the data shown in figure 2 and estimated two

quantities for each amino acid: the tRNA GCN when rRNA

CN¼ 1 (i.e., tRNA GCN in “slowest” growing bacteria), and

the slope of tRNA GCN versus rRNA CN (i.e., the magnitude

of increase in tRNA GCN per unit rRNA CN). As expected,

both parameters were positively correlated (P< 5e�3)

with amino acid usage in HEGs (fig. 3). This correlation

could arise from the confounding effect of amino acid

degeneracy since 4- and 6-fold degenerate amino acids

are more frequently used and may need more tRNA genes

to accommodate the larger number of synonymous

codons. However, we also observed positive associations

(P< 0.05) within the 2-fold degenerate amino acids (red

data points in fig. 3). The correlation between tRNA GCN

and amino acid usage persists (P< 1e�3) even if we ignore

the amino acids whose tRNAs are part of rRNA operons.

These results support the hypothesis that growth rate-as-

sociated translational selection on tRNA GCN increases

with amino acid usage.

Specific Anticodons Contribute to Amino Acid-Specific
Variation in tRNA GCN

Since amino acid-specific CUB will partly depend on the prev-

alence of the respective tRNA anticodons, we assessed how

specific tRNA (with distinct anticodons) change as a function

of increasing rRNA copy numbers. Apart from the well-known

absence of ANN tRNAs (except Arg), we found five clear

patterns (fig. 4). 1) As expected for 2-fold degenerate amino

acids of the NNU/C codon family (and 3-fold degenerate Ile),

GNN tRNAs increase in copy number. 2) For amino acids of

the NNA/G codon family, both UNN and CNN tRNAs are pre-

sent, but the UNN tRNAs are prevalent and increase in copy

number with growth rate. The CNN tRNAs are absent in fast

growing bacteria. 3) For 4-fold degenerate amino acids (ex-

cept Gly), UNN tRNAs are prevalent and their gene copies

increase strongly with growth rate. The GNN tRNAs are also

present but their gene copies increase to a smaller extent.

The opposite is true for Gly. For all 4-fold degenerate amino

acids, CNN tRNAs are either absent or are present in single

copies. 4) For 6-fold degenerate Leu, anticodons can be di-

vided into a four-box (NAG) and a two-box (YAA). Among

the four-box tRNAs, UAG or CAG anticodons are prevalent

in different sets of genomes, while the UAA anticodon is

prevalent in the two-box tRNAs. 5) 6-fold degenerate Arg

can also be divided into a four-box (NCG) and a two-box

(YCU). The ACG anticodon is prevalent among the four-box

tRNAs, while the UCU anticodon is prevalent among the

two-box tRNAs.

Thus, the NNA/G codon family amino acids are similar to

the NNU/C codon family because the tRNAs (UNN) that can

decode both codons are prevalent and increase with

growth rate. These patterns set up the expectation for an

inverse relationship between tRNA GCN and CUB for all

these amino acids, tested as described in the following sec-

tion. In the case of 4-fold amino acids, the UNN and GNN

tRNAs can decode multiple overlapping codons (Marck and

Grosjean 2002; Weixlbaumer et al. 2007), but their relative

efficiencies at decoding different codons have not been

comprehensively measured. Hence, unlike 2-fold degener-

ate amino acids, we cannot predict quantitative differences

in CUB across 4- or 6-fold degenerate amino acids.

Nonetheless, we analyzed variation in CUB of these amino

acids and discuss the potential sources of this variation (see

Discussion section).

Variation in Bacterial Codon Usage Bias GBE

Genome Biol. Evol. 10(2):562–576 doi:10.1093/gbe/evy018 Advance Access publication January 29, 2018 565

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy018#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy018#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy018#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy018#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy018#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evy018#supplementary-data


FIG. 2.—Relationshipbetweenaminoacid specific tRNAgenecopynumber (tRNAGCN)andrRNAcopynumbers (rRNACN) inc-proteobacteria. Forall amino

acids,tRNAGCNincreasedwithrRNACN.q representstheSpearman’scorrelationcoefficientandP-valuescorrespondtoaone-wayasymptoticpermutationtestfor

positive correlation. Smoothened Loess fits are shown to highlight trends. Each data point represents one genome (n¼189). Since multiple genomes have identical

rRNACNandtRNAGCN,weaddedasmall jitter tobothvariables.Asa result, the sizeofgreyclustersapproximates thenumberofgenomesat the samex–yvalues.
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The Impact of Growth Rate on CUB Varies across Amino
Acids, but Is Not Correlated with Amino Acid Usage or
tRNA GCN

To quantify amino acid-specific CUB, we calculated an amino

acid-specific version of DENC0 (see Materials and Methods

and supplementary text, section 1.3, Supplementary

Material online) for all amino acids, and SCUB for 2-fold de-

generate amino acids (including Ile) as in previous studies

(Sharp et al. 2005; Higgs and Ran 2008). The motivation for

and limitations of these metrics are discussed in the supple-

mentary text, section 1.3, Supplementary Material online. We

first describe general patterns of change in amino acid-spe-

cific CUB with growth rate, before addressing the correlation

of CUB with amino acid usage or tRNA GCN.

We found substantial variation in the relationship between

amino acid-specific DENC0 and rRNA CN (fig. 5). There was no

correlation between rRNA CN and DENC0 for Gln, Lys, Glu,

Asp, or Cys (P> 0.076); but we observed a moderate positive

correlation for Tyr, His, Phe, Gly, Pro, Leu (0.4< q< 0.6;

P< 1e�8), and a strong positive correlation for Asn, Ser2,

Ile, Val, Ser (q> 0.6; P< 1e�18). To avoid potential biases

due to the peculiarities of DENC0 (supplementary text, section

1.3, Supplementary Material online), we also analyzed the

relationship of SCUB with rRNA CN for 2-fold degenerate

amino acids. Consistent with patterns in DENC0, we observed

a strong positive correlation between SCUB and rRNA CN for

Tyr, Phe, and Asn; and no correlation for Gln, Lys, and Cys

(supplementary fig. S5, Supplementary Material online).

Although we observed a positive correlation for Glu and

Asp (unlike DENC0), the actual SCUB values for these amino

acids were consistently smaller than other amino acids across

the entire range of rRNA CN. Overall, our results indicate no

effect of growth rate on CUB for Gln, Lys, or Cys, and a weak

effect for Glu and Asp. Note that these five amino acids with

no or weak effect of growth include all 2-fold degenerate

amino acids encoded by NNA/G codons (three of three). On

the other hand, growth rate had a strong impact on CUB of

five of seven amino acids encoded by NNU/C codons.

To test whether the (weak) impact of growth rate on CUB

was associated with frequently used amino acids and high

tRNA GCN, we quantified the impact of growth rate on

CUB as the increase in CUB per unit increase in rRNA CN.

We then analyzed two sets of correlations: one between

amino acid usage and the impact of growth rate on CUB;

and another between impact of growth rate on tRNA GCN

and the impact of growth rate on CUB. As explained above, in

both cases, we expected to see a negative correlation for 2-

fold degenerate amino acids. Contrary to our expectation, we

found that the impact of growth rate on CUB was negatively

correlated (P¼ 0.043) with amino acid usage only if CUB was

quantified as DENC0 (fig. 6A), but not when it was quantified

as SCUB (fig. 6B). Moreover, the impact of growth rate on CUB

was not correlated with the impact on tRNA GCN in either

case (fig. 6C and D). Hence, the differences in the impact of

growth rate on CUB across amino acids were explained nei-

ther by amino acid usage nor by tRNA GCN.

FIG. 3.—Amino acid usage and tRNA gene copy number (tRNA GCN) in c-proteobacteria. We calculated amino acid usage as the median value (across

genomes) of the fraction of coding sites corresponding to a particular amino acid in highly expressed genes (HEGs). Predicted values of tRNA GCN at rRNA

CN¼1 represent tRNA GCN in the slowest growing bacteria. Slopes represent the increase in tRNA GCN per unit rRNA CN. (A) Median amino acid usage and

predicted tRNA GCN when rRNA CN¼1. (B) Median amino acid usage and slope of tRNA GCN versus rRNA CN. Red circles show data for 2- or 3-fold

degenerate amino acids and black circles indicate 4- or 6-fold degenerate amino acids. q represents Spearman’s correlation coefficient and P-values

correspond to one-way asymptotic permutation test for positive correlation. Vertical bars are standard errors from the linear regression fit, and horizontal

bars are interquartile ranges for amino acid usage. In most cases, IQR is smaller than the width of the circles.
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FIG. 4.—Anticodon specific tRNA gene copy number (tRNA GCN) in c-proteobacteria. GCN of tRNAs bearing each anticodon are plotted against rRNA

copy numbers (rRNA CN) of 189 genomes. Amino acids are arranged column-wise in increasing order of degeneracy, and the anticodon identities appear in

the legend at top left. For 2-fold degenerate amino acids, the GNN anticodons (orange) are prevalent in the NNU/C codon family; while the UNN anticodons

(grey) are prevalent in the NNA/G codon family. For most 4-fold degenerate amino acids, the UNN anticodons (blue) are most prevalent, followed by the

GNN anticodons (orange). Glycine (Gly) is an exception where the GNN anticodon (orange) prevails over UNN anticodons (blue). For Leucine (Leu), the CNN

(magenta) or UNN (blue) anticodons are prevalent in different set of genomes. For Arginine (Arg), the ANN anticodon is prevalent over others. Since multiple

genomes have identical rRNA CN and tRNA GCN, we added a small jitter to both variables. As a result, the size of clusters approximates the number of

genomes at the same x–y values. Smoothened Loess fits are shown to aid visualization.

Mahajan and Agashe GBE

568 Genome Biol. Evol. 10(2):562–576 doi:10.1093/gbe/evy018 Advance Access publication January 29, 2018



FIG. 5.—Correlations between amino acid specific codon usage bias (CUB) and rRNA copy numbers (rRNA CN) in c-proteobacteria. CUB is represented

by amino acid-specific DENC0, the normalized difference in effective number of codons between HEGs and all other genes. Red labels indicate amino acids

with no positive correlation between DENC0 and rRNA CN. Each data point represents one genome (n¼189). The dashed grey line indicates an absence of

CUB. q is the Spearman’s correlation coefficient and P-values correspond to a one-way asymptotic permutation test for positive correlation. Smoothened

Loess fits are shown to aid visualization. Y-axes were set to identical scales within 2- or 3-fold, and 4- or 6-fold degenerate amino acid sets, for ease of visual

comparison.
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In the case of 4- and 6-fold degenerate amino acids, we

also noticed that the impact of growth rate on CUB was more

narrowly distributed compared with the 2-fold degenerate

amino acids (black vs. red circles in fig. 6A and C). For

4-fold degenerate amino acids, this may arise from a consis-

tent enrichment of NNU (and/or NNA) codons and avoidance

of NNG (and/or NNC) codons (supplementary fig. S6,

Supplementary Material online), irrespective of varying tRNA

GCN (figs. 2 and 4). This may suggest that the strength of

selection on codon usage in these cases is not influenced by

the observed variation in tRNA abundances.

Some previous studies have raised the possibility that ribo-

somal protein genes may have peculiar codon usage distinct

from other HEGs (Hershberg and Petrov 2012). To test

whether our results depend on inclusion of ribosomal protein

genes as HEG, we repeated the above tests after redefining

HEG as genes with lowest 1% ENC0 in each genome, exclud-

ing any genes in our original HEG set. We find similar results

even after redefining HEG. The impact of growth rate remains

similar for all amino acids, except Cys, where a positive cor-

relation is observed between DENC0 and rRNA CN.

Particularly, the impact of growth rate on CUB of 2-fold de-

generate amino acids is negatively correlated with amino acid

usage (P¼ 0.0015) or tRNA GCN (P¼ 0.028) only if CUB is

quantified as DENC0, but not when it is quantified as SCUB

(supplementary fig. S7, Supplementary Material online).

tRNA GCN, CUB, and Codon-Specific Translation Times in
E. coli

As described above, we found that the amino acid-specific

impact of growth rate on CUB is not correlated with the im-

pact on tRNA GCN (fig. 6C and D), whereas we expected a

negative correlation. This expectation was based on the fol-

lowing assumptions: 1) higher tRNA GCN for frequently used

amino acids should reduce the difference in translation times

FIG. 6.—Association between the impact of growth rate on CUB and amino acid usage or tRNA GCN in c-proteobacteria. Amino acid usage was

calculated as the median values (across genomes) of the fraction of coding sites in HEGs that belong to a particular amino acid. The impact of growth

rate on CUB is represented by the increase in DENC0 or SCUB per unit change in rRNA CN, estimated by fitting linear regression models. (A) Median

amino acid usage and slope of DENC0 versus rRNA CN. (B) Median amino acid usage and slope of SCUB versus rRNA CN. (C) Slope of tRNA GCN versus

rRNA CN and slope of DENC0 versus rRNA CN. (D) Slope of tRNA GCN versus rRNA CN and slope of SCUB versus rRNA CN. Red circles show data for 2-

or 3-fold amino acids and black circles indicate 4- or 6-fold degenerate amino acids. q is the Spearman’s correlation coefficient and P-values correspond

to a one-way asymptotic permutation test for a positive correlation. In panels A and B, horizontal bars are interquartile ranges of amino acid usage.

Vertical bars in all plots are standard errors from the linear regression fits. In most cases IQR of amino acid usage is smaller than the width of the circles.
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between synonymous codons, and 2) CUB is proportional to

translation time differences between synonymous codons.

However, these assumptions have not been explicitly verified

and codon-specific translation times have been comprehen-

sively estimated in vivo only in E. coli (a c-proteobacterium)

and Bacillus subtilis (a Firmicute). Using published translation

time estimates based on ribosome profiling data (Dana and

Tuller 2014), we found that the difference in translation times

of the fastest and slowest synonymous codons of amino acids

was not correlated with corresponding tRNA GCN (fig. 7A

and supplementary fig. S8A, Supplementary Material online).

This may explain why the impact of growth rate on amino

acid specific CUB does not correlate with the impact on tRNA

GCN. CUB was positively correlated (P< 0.02) with the dif-

ference in translation times between synonymous codons, but

only for 2-fold degenerate amino acids in E. coli (fig. 7B and

C). Interestingly, in E. coli, the smallest differences in transla-

tion times between synonymous codons were observed for

the NNA/G codon sets of Lys, Glu, Gln, and NNU/C codons of

Cys. These observations are consistent with the idea that a

smaller increase in translation speed results in weaker CUB.

However, these correlations disappear if Lys and/or Glu are

excluded, and do not hold true for 4- or 6-fold degenerate

amino acids or in B. subtilis (supplementary fig. S8B and C,

Supplementary Material online). Overall, we thus find little

evidence for the assumption that tRNA GCN mediated

changes in translation times contribute to amino acid-specific

variation in CUB.

Discussion

Bacterial growth rate appears to be under strong ecological

selection, with faster growth preferred in nutrient rich

conditions (Roller et al. 2016). Such selection is expected to

impact the evolution of key factors affecting translation rate,

including ribosomal RNA genes, tRNA pools, and codon use.

Although the influence of fast growth-associated selection on

tRNA GCN and CUB has been recognized for many years

(Rocha 2004; Sharp et al. 2005; Higgs and Ran 2008), the

quantitative nature of this “imprint of growth” (Vieira-Silva

and Rocha 2010) is less clear. By investigating genome level

tRNA GCN and CUB across�200 c-proteobacterial genomes,

and using rRNA copy number as a proxy for growth rate, we

gained new insights about the impact of growth rate on these

traits. First, we found that total tRNA gene numbers (NtRNA)

and average CUB respond differently to growth associated

selection, and covary strongly only within a narrow range of

moderate growth rates. NtRNA showed an early constancy-late

increase pattern, while CUB showed an early increase-late

saturation pattern with increasing rRNA CN. Similar patterns

were also observed individually for multiple amino acids. Our

observations cannot be explained if the costs and benefits of

translational components scale linearly with growth rate. We

suggest that factors other than growth associated transla-

tional selection may constrain trait values at very low and

very high growth rates.

At low growth rates, the simplest explanation for con-

stancy of NtRNA may be that tRNA abundance is not a limiting

factor for translation, or that single copies of genes are suffi-

cient in this range of growth rates. Alternatively, constant

NtRNA may also result from negative selection against invest-

ment in additional tRNA gene copies. On the other hand, at

higher growth rates, CUB may saturate because any further

enrichment of codons preferred for speed may have detri-

mental effects on translational accuracy, or on other sequence

features such as mRNA structure and stability. Fast codons are

FIG. 7.—Amino acid specific translation time differences, tRNA gene copy number (tRNA GCN) and codon usage bias (CUB) in E. coli. Mean typical

translation time for each codon for E. coli was obtained from Dana and Tuller (2014), and the difference in translation times, that is, jmaximum – minimumj
of the codon set of each amino acid were calculated. CUB (DENC0 and SCUB) was calculated as previously described. SCUB could be calculated only for two-

box amino acids. (A) Difference in translation time and tRNA GCN. (B) DENC0 and difference in translation times. (C) SCUB and difference in translation times.

Red circles indicate 2- or 3-fold and black circles 4- or 6-fold degenerate amino acids. q is Spearman’s correlation coefficient and P-values correspond to a

one-way asymptotic permutation test for positive correlation. In the case of A and B correlations were also separately assessed for 2-fold degenerate amino

acids, these are indicated in red text.
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less accurately translated in at least some cases (Dix and

Thompson 1989), and many sites in mRNAs may be under

selection to maintain features other than elongation rate, in-

cluding short- and long-range RNA structure (Kudla et al.

2009; Tuller et al. 2010; Kelsic et al. 2016) or cotranslational

protein folding (Chaney et al. 2017). Although it is clear that

using only “good codons” may actually impair protein expres-

sion and fitness (Agashe et al. 2013), the effect of increasing

CUB on specific sequence features has not been comprehen-

sively explored. Such effects can be investigated by simulating

sequences with increasing CUB and quantifying other se-

quence features like folding energy, base pairing propensities,

or occurrence of regulatory motifs. Apart from these possibil-

ities, we acknowledge that our inferences may be influenced

by the relationship between rRNA CN and growth rate. For

instance, the saturation in CUB could be explained if rRNA

CN continued to increase even when growth rate and as-

sociated selection on CUB ceased to change (i.e., if rRNA

CN increased under independent selection unrelated to

growth rate). At present, it is difficult to reliably assess

this possibility due to the limited number of organisms

with very high growth rates. But we must also highlight

that CUB and rRNA CN are both likely to be affected by

shared long-term selection on translation, whereas growth

rates are typically measured only in the laboratory. Hence,

rRNA CN may be a more realistic predictor of selection on

other translational traits such as CUB.

We also show for the first time that the imprint of growth

on tRNA GCN and CUB varies across amino acids, and—con-

trary to expectation—variation in tRNA GCN does not explain

variation in CUB for 2-fold degenerate amino acids. A quan-

titative match between tRNA GCN and CUB across amino

acids critically depends on tRNA GCN affecting the difference

in translation time of synonymous codons. We tested this

assumption using codon-specific translation time and tRNA

GCN of E. coli and B. subtilis, and found that tRNA GCN did

not explain amino acid-specific differences in the translation

times of synonymous codons. This supports the possibility that

translation times are influenced by other factors that differ

across amino acids,for example, the first two base pairs in the

codon:anticodon interaction. Nevertheless, CUB should re-

flect the time gained by using the fast codon for each amino

acid. After directly testing the correlation between amino

acid-specific translation time differences and CUB in these

bacteria, we found some evidence for a connection between

translation times and CUB. We note that the translation time

data for this analysis were obtained from single experiments

in specific conditions (Li et al. 2012; Dana and Tuller 2014)

and may not represent typical values for all bacteria in various

growth conditions. Combined measurements of tRNA con-

centrations and codon-specific translation time under differ-

ent conditions for different bacteria should clarify this issue

further. As with 2-fold degenerate amino acids, we also found

discordant impacts of growth rate on tRNA and CUB of 4-fold

degenerate amino acids. In this case, CUB can be mostly

attributed to consistent enrichment in NNU (and/or NNA)

codons versus the consistent avoidance of NNG (and/or

NNC) codons. Only two tRNA types—with UNN and

GNN anticodons—in turn explain most of the variation in

tRNA GCN across 4-fold degenerate amino acids.

However, there is little variation in the impact of growth

rate on CUB. We suggest that these discordant patterns

may arise because the observed changes in copy numbers

of UNN and GNN tRNAs are not sufficient to change the

translation rate of various codons. This hypothesis can be

tested only by measuring the translation rate of various

codon:anticodon pairs and the effect of tRNA abundance

on these rates.

The mismatch between tRNA GCN, translation time differ-

ences of synonymous codons, and CUB raise the possibility

that CUB is influenced by selection other than for translational

speed. We also observed that CUB for Cys, Lys, and Gln is

weak, that is, there is little difference in codon usage of highly

expressed versus other genes. In addition, CUB for these

amino acids does not increase with growth rate across bac-

teria; and we found only a weak increase in CUB for Glu and

Asp. This suggests that codon use for these amino acids is not

under selection for translational speed. This is surprising be-

cause the typical tRNA GCN for these amino acids ranges

from 2 (Cys) to 6 (Lys) in fast growing bacteria, and growth

rate should have thus impacted their CUB. Altogether, our

results suggest that the selection on CUB for some amino

acids is constrained by factors other than translation speed.

Another interesting aspect of our results is the differential

behavior of 2-fold degenerate amino acids encoded by NNA/

G versus NNU/C codons. Out of the ten 2-fold degenerate

amino acids, three are encoded by NNA/G codons and seven

by NNU/C codons. Across c-proteobacteria, there was no or

little impact of growth rate on the CUB of any NNA/G codon

family amino acids. In E. coli, differences in translation times

within NNA/G codon families were also among the lowest.

On the other hand, CUB of amino acids encoded by most

NNU/C codon families increased robustly (except Asp and

Cys). It is possible that this is just a chance occurrence given

the small number of amino acids with NNA/G codons.

However, NNA/G codon family tRNAs share a distinct mod-

ification (mnm5s2U34) in their UNN tRNAs (Yokoyama et al.

1985) and this tRNA type is often the only tRNA correspond-

ing to these amino acids in c-proteobacteria. It is possible

that mnm5s2-modifications of UNN tRNAs increases the

translation speed of both NNA and NNG codons, reducing

selection for favoring either codon, ultimately resulting in a

lack of significant CUB. This still leaves open the question of

why there is no increase in the CUB for Cys, and a weaker

change for Asp compared with other amino acids encoded

by NNU/C codons.

Regardless of the reasons for amino acid-specific differen-

ces in CUB, we expect the degree of CUB to be consistent
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with the actual fitness consequences of altering the codon

use. Few experimental studies have systematically varied co-

don use for every amino acid and measured its effect on

growth. A recent study in E. coli (Kelsic et al. 2016) measured

the fitness consequences of replacing every native codon of

infA (a highly expressed translation initiation factor) with every

possible alternate codon to uncover the fitness consequences

of using a specific synonymous codon for each amino acid.

This data set offered us the opportunity to compare amino

acid-specific differences in CUB with their fitness consequen-

ces. In agreement with a strong preference for NNC codons of

2-fold degenerate amino acids in E. coli (and other bacteria),

the fitness of strains carrying NNC codons for Tyr, His, Phe,

Asn, Ser2, and Ile was higher than corresponding NNU codons

(fig. 2B in Kelsic et al. 2016). On the contrary, even though

CUB for Lys, Gln, and Cys is weak in E. coli and does not

increase with growth rates across bacteria, specific synony-

mous codons for each of these amino acids (AAA–Lys, CAG–

Gln, UGC–Cys) conferred higher fitness in this experiment. In

Glu, both synonymous codons had similar fitness impacts,

consistent with our observation of weak CUB. Overall, the

strength of amino acid-specific CUB in E. coli appears to be

inconsistent with the fitness impact of codons in this experi-

ment. The mismatch between weak CUB and strong fitness

effect in the above experiment is puzzling, but to test its

generality, we need experiments that manipulate codon

use of multiple HEGs in many bacteria. If these effects

are more general, it will support the hypothesis that

codons of some amino acids are favored for reasons inde-

pendent of gene expression and growth rate, and there-

fore do not manifest as biased codon use in HEG. Further

investigations of the effect of synonymous codon choice

of these amino acids on other aspects of translation such

as translational accuracy and mRNA structure may be re-

quired to resolve this issue.

In summary, this study reveals several riders to the pre-

dicted coevolution of tRNA GCN and CUB. By studying

both traits in the context of growth rate-associated selection,

we found patterns that were unexpected, given current

assumptions about the mechanistic basis of tRNA–CUB co-

evolution. These patterns suggest the presence of other

constraints that shape the evolution of these traits. We

suggest that some constraints may act across many amino

acids (tRNA costs, conflicting selection between codon use

and other sequence features), while others may be specific

to particular amino acids (specific codon:anticodon inter-

actions and their effect on translation rates or other fea-

tures). Although identifying the exact nature of the

constraints is beyond the scope of our study, we suggest

several hypotheses, and computational and laboratory

experiments that can be used to test them. We hope

that such experiments will further our understanding of

the interrelation between growth rate and key features

of translation in bacteria.

Materials and Methods

Data sets

We curated a data set of about �1,000 bacterial genomes

based on a phylogeny from Segata et al. (2013). The curation

involved removing very closely related taxa and known endo-

symbionts. To remove closely related taxa, we used an in-

house script to traverse all internal nodes starting from the

root of the phylogeny, identified terminal branch lengths

leading to all descendant taxa, and chose only one represen-

tative taxon from all taxa that were within a specific branch

length threshold. Endosymbiont taxa were identified based

on literature and removed manually. We obtained genomes

of selected taxa by identifying the closest genome found in

the NCBI genomes database, and manually selected a ge-

nome when multiple genomes for the same taxonomic id

were available. In some cases this led to the selection of

genomes of a closely related strain (instead of the one in-

cluded in the original phylogeny). Only completely sequenced

genomes (not contigs and scaffolds) were retained. We

obtained rRNA copy number data from the rrnDB v5.1

(Stoddard et al. 2015), or from the IMG database

(Markowitz et al. 2012) (downloaded on May 5, 2016). We

obtained tRNA GCN directly from GtRNAdb (Chan and Lowe

2009) (downloaded August 13, 2016). For some genomes

that were missing in the GtRNAdb, we detected tRNA

genes via tRNAscan-SE (Lowe and Eddy 1997) using de-

fault parameters for bacteria. We excluded Ile and Ala

tRNA genes from the calculation of total tRNA gene num-

bers (NtRNA) because they are often found within rRNA

operons, thus introducing a superfluous correlation be-

tween NtRNA and rRNA copy numbers (rRNA CN). We cal-

culated codon usage statistics such as codon counts using

ENCprime software (Novembre 2002), and then nucleo-

tide and amino acid usage using the codon count data.

We used in-house scripts to calculate actual metrics of

CUB, that is, DENC0 and SCUB. All data sets and scripts

used for calculations and analysis can be accessed at

https://github.com/saurabh-mk/tRNA_CUB_aa.

As in previous studies, we separated the six codons of

Serine into two families of two and four codons each, and

treated them as separate amino acids (Ser2 and Ser). This

separation is warranted because these codon families are dif-

ferent at two nucleotides, and thus will be decoded by inde-

pendent sets of tRNAs. Moreover, mutational changes are

much less likely to change codons from one Serine family to

other, making the evolutionary dynamics of these two codon

families independent.

Calculation of Average DENC0 and SCUB

Both metrics of CUB (DENC0 and SCUB) are based on a com-

parison of codon usage in HEGs and remaining genes in the

genome. We defined HEGs as genes encoding ribosomal
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proteins, RNA polymerase subunits, and EF–Tu subunits, iden-

tified based on gene annotations from the coding sequence

files provided in the NCBI genomes database. All remaining

genes were classified as “other.” We concatenated all

genes within each set and calculated a single codon count

per set. We calculated position specific (1st/2nd/3rd posi-

tion in coding frame) nucleotide usage frequencies using

the codon counts.

We calculated SCUB as suggested by Sharp et al. (2005). In

brief, for each of the four amino acids—Phe, Tyr, Ile, Asn,

encoded by NNU and NNC codons, we calculated SCUB as

SCUB ¼ lnðnHEG
C nother

U =nHEG
U nother

C Þ; (1)

where n is the number of codons, subscript indicates the

codon and superscript indicates the gene set (HEG vs.

other). Finally, we calculated average SCUB by summing

amino-acid specific SCUB weighted by amino acid usage

in the HEGs.

Next, we calculated the second CUB metric based on the

differences in the effective number of codons (ENC) as

DENC0 ¼ ðENC0other– ENC0HEGÞ=ENC0other: (2)

ENC0 for each set (HEGs and other) was calculated sepa-

rately. All the following calculations are based on the method

developed by Novembre (2002). First, for each amino acid a

v2 statistic that represents the deviation of codon usage from

expected codon usage was calculated as

v2
aa ¼

Xk

i¼1

naaðfi– eiÞ2

ei

( )
; (3)

where aa is the amino acid, k is redundancy of the amino acid,

naa is the total number of sites at which the amino acid is

used, fi is the actual codon use frequency, and ei is the

expected codon use frequency. Expected codon usage

was defined as a product of position specific nucleotide

frequencies. For example, the expected frequency of the

AAT codon would be fA
1 � fA

2 � f T
3 , where f is the fre-

quency of the nucleotide in the superscript at the coding

position in the subscript. Position-specific nucleotide fre-

quencies were calculated separately for each gene-set

from the respective codon counts. We normalized the

expected frequencies by the sum of expected frequencies

of all sense codons. Next, we calculated codon usage het-

erogeneity (F0aa) as

F ’
aa ¼

ðv2
aa þ naa–kÞ
ðknaa–kÞ ; (4)

where the symbols are as defined above. This normalization

has the effect of making the inverse of F’aa a number between

1 and k, which can be interpreted as the effective number of

codons, ENC0. After this, we obtained the average ENC0 by

first calculating the average F0aa within a redundancy class

(i.e., separately for 2-, 3-, 4-, 6-fold degenerate amino acids)

and then calculating ENC0 as

ENC0 ¼
X

r

nr

F 0r
; (5)

where r is the redundancy class, nr is the number of amino

acids belonging to that redundancy class (9, 1, 5, 3, respec-

tively), and F’r is the average heterogeneity in the redundancy

class. Finally, average DENC0 was calculated as

DENC0 ¼ ðENC0other–ENC0HEGÞ
ENC0other

: (6)

Calculation of amino acid specific DENC0 and SCUB

ENC0aa ¼ 1

F 0aa : (7)

At this point, we defined the amino acid specific DENC0 as

DENC0aa ¼ ðENC0aa
other– ENC0aa

HEGÞ
ðk � 1Þ : (8)

This metric represents CUB and usually takes values be-

tween 0 (when codon usage in HEGs and other genes is iden-

tical) and 1 (codon usage in other genes is unbiased and HEGs

is completely biased).

To calculate amino acid-specific SCUB, we only considered

the magnitude of CUB, ignoring the identity of the preferred

synonymous codon. For 2-fold degenerate amino acids

encoded by NNU/C codons and Ile, we calculated SCUB as

SCUB ¼
����ln nHEG

C nother
U

nHEG
U nother

C

 !����:
For 2-fold degenerate amino acids encoded by NNA/G

codons, we calculated SCUB as

SCUB ¼
�����ln nHEG

A nother
G

nHEG
A nother

G

 !�����;
where n is the number of codons, subscript indicates the co-

don and superscript indicates the gene set (HEG vs. other).

Statistical Analysis

We always tested correlations using Spearman’s rank corre-

lation (nonparametric) and assessed significance using the as-

ymptotic permutation test included in the cor.test function of

stats package in base R (R Core Team 2015). We fit a satu-

rating model with the form

DENC0 or SCUB ¼
aþ b � ðrRNA CNÞ
ðc þ rRNA CNÞ

using nonlinear least squares in R using the nls function. Using

the segmented.lm() function in the package “segmented”
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(Muggeo 2008), we fit a piecewise linear model with one

breakpoint to the data set with tRNA gene numbers vs.

rRNA CN. We evaluated alternate models based on AIC values

without correction, because sample sizes were much larger

(at least 10-fold) than the square of the number of parameters

in the models. We fit smoothened Loess lines to data by

choosing an arbitrary smoothening parameter value that re-

moved kinks in the resulting fit. These were only used for the

purpose of visualizing trends.

We characterized the impact of growth rate on amino acid

specific CUB or tRNA GCN by fitting a linear regression model

to the relationship between trait value and rRNA CN. From

this regression equation, we calculated or obtained the esti-

mated trait value when rRNA CN¼ 1, and the slope of the

relationship between the trait versus rRNA CN.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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